
Queue-based Cost Evaluation of Mental Simulation Process
in Program Comprehension

Masahide Nakamura, Akito Monden, Tomoaki Itoh�,
Ken-ichi Matsumoto, Yuichiro Kanzaki, Hirotsugu Satoh

Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN
�masa-n, akito-m, matumoto, yuichi-k, hirots-s�@is.aist-nara.ac.jp

�Matsushita Electric Industrial Co.,Ltd., JAPAN
itoh.tomoaki@jp.panasonic.com

Abstract

This paper presents a method to estimate the cost of men-
tal (hand) simulation of programs. In mental simulation,
human short-term memory is extensively used to recall and
memorize values of variables. When the simulation reaches
a variable reference, the simulation can be performed easily
if the value is still remembered. However, if not, we have to
backtrack the simulation until the value is obtained, which
is time-consuming.

Taking the above observation into consideration, we first
present a model, called virtual mental simulation model
(VMSM), which exploits a queue representing short-term
memory. The VMSM takes one of the abstract processes
recall or backtrack, depending on whether the vari-
able is currently stored in the queue or not. Then, applying
cost functions to the VMSM, we derive four dynamic metrics
reflecting the cost of mental simulation.

In our empirical study, the proposed VMSM metrics re-
veal that the backtrack process for non-constant variables
gives a significant impact on the cost of mental simulation.
Since the proposed method can be fully automated, it can
provide a practical means to estimate the cost of mental
simulation, which can be also used as a program compre-
hension measure.

1 Introduction

Mental simulation (also called hand simulation) of a pro-
gram is a quite primary but effective activity to understand
how the program works [11]. In mental simulation, a person
(programmer, maintainer or hacker, etc...) executes the pro-
gram in mind instead of computers. To make our discussion

clearer, we first give a definition adopted in this paper.

Mental simulation of a given program � with in-
put � is a human activity such that: based on the
source code of � and � , the person simulates exe-
cution of � in his/her mind as accurately as com-
puters do.

Mental simulation is widely used in various situations. It
is typically used to locate faults in debugging, or to under-
stand the existing program before adding a new feature onto
it [1]. Program hacking is also based on mental simulation.

The goal of this paper is to propose a method that can be
used to estimate the cost of mental simulation. The cost of
mental simulation reflects important aspects of the program.
If the cost is low, it is easy to maintain the program. On
the other hand, if extremely expensive, it would be hard to
analyze the program, which is a good characteristic from a
viewpoint of program protection [6][13].

Mental simulation can be counted as a means for pro-
gram comprehension. There has been a number of hypothe-
ses, methodologies and empirical reports about program
comprehension measure (some are discussed in Section 5).
However, the notion of comprehension itself is so generic
and qualitative. Therefore, most comprehension measures
tend to be hypothetic or domain-specific, and often require
expensive parameters tuning or input factors that are hard
to be quantified. Also, due to dynamic nature of mental
simulation, we found it difficult to directly apply the con-
ventional program complexity metrics [7] to the cost esti-
mation.

In this paper, by narrowing our scope in the cost of men-
tal simulation only, we try to develop a more generic and
easy-to-use method that partially characterizes an aspect of
program comprehension.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

A key factor of mental simulation lies in human short-
term memory. When simulating a statement with some vari-
ables, we extensively use short-term memory to recall and
memorize values of the variables. However, since human
short-term memory is quite volatile, we cannot always re-
call the current values successfully.

Let us consider this from a viewpoint of the cost of men-
tal simulation. When the simulation reaches a reference of
a variable, if the current value of the variable is still remem-
bered, then the cost is low since the value is recalled fast and
easily. While, if the value is forgotten, we have to backtrack
the simulation until the value is obtained, which is generally
time-consuming and thus would yield an expensive cost.

Based upon the above idea, we develop a virtual model,
called virtual mental simulation model (VMSM, in short).
The VMSM exploits a queue modeling short-term memory,
to which variables and their associated values are dynami-
cally inserted. When a reference of a variable occurs, the
VMSM executes an abstract process recall or back-
track, depending on whether the variable is in the queue
or not. Then, by assigning cost functions to the VMSM, we
propose four dynamic metrics that characterize the cost of
mental simulation.

We have evaluated the proposed method through an em-
pirical study. As a result, the proposed VMSM metrics re-
veal that the backtrack process for non-constant variables
significantly influences the cost of mental simulation. The
proposed method can be fully automated, and it does not
require expensive parameters tuning. Therefore, it provides
an easy and practical means to estimate the cost of mental
simulation, which characterizes a part of efforts for program
comprehension.

The rest of this paper is organized as follows: In Sec-
tion 2, we conduct a preliminary experiment to address the
problem. Section 3 presents the VMSM and new metrics for
the cost estimation. In Section 4, we evaluate the proposed
method through an experiment. We review the related work
in Section 5. Finally, Section 6 concludes the paper with
discussion and future work.

2 Preliminary experiment

2.1 Example programs

Firstly, we chose a simple Java program A, which finds
and outputs the maximum element in a given 3-dimensional
integral array. Borrowing an obfuscation technique [13], we
have then prepared two different versions A1 and A2 of the
program A, as shown in Figure 1 (see the last page). Note
that A1 and A2 yield the same execution result since both
satisfy the same specification.

Our concern here is to measure how much cost (effort)
is needed to perform mental simulation for each of A1 and

A2. In order to measure the cost taken purely for mental
simulation, A1 and A2 are prepared based on the following
careful considerations.

� The same set of Java instructions is used in both A1
and A2.

� The cumulative number of statements actually exe-
cuted is almost the same in both A1 and A2.

� Neither A1 nor A2 has comment lines. Also, identi-
fiers do not have special meanings. These are to avoid
influences of meaningfulness [5].

� A1 and A2 contain several (partitioned) loops with rel-
atively small number of iterations. This is to exclude
the effect of loop induction by causal reasoning [1].

2.2 Setting and Instruction

8 subjects participated in the preliminary experiment.
All of them had been learning the Java programming lan-
guage, and had experienced coding of mid-scale programs.
Either program A1 or A2 was assigned randomly to each
subject, and a printed source code was given. No additional
information about the programs, such as specification and
usage, was provided.

The instruction of the experiment is described as follows.
In the experiment, the subjects conduct a paper-based exe-
cution of the given program. They are allowed to take notes
on the sheet, but without computer assistance. In order to
examine the cost for accurate mental simulation, the sub-
jects are required to describe a program state (i.e., values
of all variables in the program) at every time a variable p is
updated (p stores a return value of func. See Figure 1).

Once each subject finishes the simulation, we check the
sequence of the program states. If the sequence is correct,
the simulation is completed. Otherwise, we say “incorrect”,
and point out only the last program state that is correct.
Then, the subject repeats the simulation until he/she reaches
the correct answer. Although we do not set deadline for the
simulation task, the subjects are requested to conduct the
simulation as fast as possible.

We measured the time spent for each subject to complete
the simulation. Also, we counted the number of failures of
the simulation.

2.3 Observation

Table 1 summarizes the result. According to the setting
of the experiment, it can be said that the measured time re-
flects the cost for accurate mental simulation. The result
shows that the mean time spent to simulate A2 is three times
as much as that of A1. Roughly speaking, reading program

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Table 1. Results of preliminary experiment
Program Mean time (sec) Ave. # of failures

A1 1213 1
A2 3542 3

A2 would be three times harder than reading A1. Note that
only different portions between A1 and A2 are bodies of
method func.

Much works have been done over decades to measure
program complexity and comprehension. However, as far as
we know, there is no metric that specifically focuses the cost
of mental simulation only (see Section 5). Table 2 shows the
well-known metrics [7] for method func in A1 and A2 1.

In Table 2, the values for A1 are larger than (or almost
equal to) those for A2. This fact implies that A1 is harder
to be understood than A2, which is completely against our
expectation. Thus, it is difficult to directly apply these met-
rics to cost evaluation for mental simulation, since they are
unable to justify our result.

Empirical evaluation in [13] shows that the obfuscation
applied to getting A2 is generally more difficult than the
one applied to A1. However, there is no quantitative conse-
quence for this. So, we need to develop alternative metrics.

3 Queue-based model for mental simulation

3.1 Human memory and cognitive activities

When performing mental simulation, we extensively uti-
lize human memory, specifically, short-term memory. For
example, let us consider the following statement:

a = b + 1;

To simulate the above statement, we must perform the fol-
lowing steps:

Step1: Recall the value of b.

Step2: Add 1 to the value of b.

Step3: Memorize the sum as a new value of a.

Performance of the above simulation heavily depends on
whether we remember the value of b or not (at Step1). If
the value of b is still cached in short-term memory, the sim-
ulation is easily performed. However, if not, we have to
backtrack the simulation, until the value of b is obtained. In
this case, the cost will become much more expensive. Note
that we do not need to recall the value of a in the simulation,

1We did not include OO metrics in Table 2, since method func does
not use object-oriented features of Java, specifically.

since a is updated to a new value regardless of its previous
value.

More generally, the following cognitive activities are es-
sentially involved in mental simulation.

CA1: When a reference of a variable x is reached, we try
to recall the value of x. If the value is not in short-
term memory, a backtrack of the simulation occurs to
get the value. The value of x is stored (or refreshed) in
short-term memory.

CA2: When an assignment to a variable y is reached,
the calculated right-hand value is stored in short-term
memory as a new value of y.

CA3: Values of variables in short-term memory are van-
ished in course of the simulation, due to the memory
capacity or time passing.

In the above activities, we explicitly distinguish the as-
signment from the reference. We say that an assignment
to a variable occurs only when the variable appears in the
left-hand of an assignment statement. On the other hand, a
reference occurs only when the variable appears in an ex-
pression, an index of array, or a parameter (not in a decla-
ration). We assume that every appearance of a variable is
exactly one of either reference or assignment.

We consider that a certain model [12] involving these
cognitive activities is inevitable for the cost estimation of
mental simulation. Of course, there are other factors that
might influence human memory in mental simulation, such
as programming style [15] (naming conventions, comments,
indentations, spacing, etc.) and tool supports [14]. How-
ever, these contains plenty of human factors, which are quite
difficult to be quantified. To keep our model as simple and
easy-to-use as possible, we take only CA1-CA3 into con-
sideration.

3.2 Queue representing short-term memory

In order to build a model involving CA1-CA3, we first
exploit a queue which simplifies human short-term memory.
The proposed queue, called mental simulation queue (MS-
queue, in short), holds a set of variables and their associated
values that are temporally stored in the short-term memory
at a certain instant during mental simulation. The definition
of the MS-queue is described below.

An MS-element � � ��� ������� is defined as a pair of a
variable � and its associated value ������, or an empty ele-
ment � � �. Then, an MS-queue � is an FIFO queue storing
ordered MS-elements as its contents. A length of �, de-
noted by ������, is the number of non-empty MS-elements
currently stored in �. A maximum length, denoted by �, is
a capacity of � such that � can store at most � elements, si-
multaneously. The first (or last) element of � is referred as

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Table 2. Conventional metrics for func in programs A1 and A2
Max # of # of # of McCabe Halstead Halstead Ave. Live Ave. Span

Program LOC Nest Statements Variables Operators CYCL Length Volume Knots Variables Size
A1 73 7 47 8 67 22 368 1730 6 6.894 3.656
A2 40 5 29 9 56 15 290 1394 4 6.379 2.925

������� (or �������, respectively). Next, we define opera-
tions to the MS-queue.

dequeue(q): Remove �������. Then, the next element be-
comes �������.

enqueue(q,e): Insert an element � as the tail of � when
������ 	
. If ������ �
, execute ���������� first,
then insert �. Finally, � becomes �������.

is queue(q,e): Return true if an element � exists in �. Oth-
erwise, return false.

refresh(q,e): If �� �������
 �� is true, delete � from the
queue. Then, execute ���������
 ��.

We regard an MS-queue � as a simple but intuitive
model of human short-term memory. Each MS-element
� represents a chunk, which is the information unit stored
in short-term memory. ������ represents the number of
chunks currently memorized, and
 represents a capacity
of short-term memory. The operation ���������� models
to forget the oldest chunk. ���������
 �� corresponds to
that the information � is memorized as the newest chunk.
�� �������
 �� returns a state whether � is remembered or
not. ���������
 �� simulates a situation that a chunk � that
is still remembered is refreshed.

3.3 Execution trace for mental simulation

In addition to modeling short-term memory itself, we
need to know how information is incoming to short-term
memory. In mental simulation, we try to execute the pro-
gram as exactly as the computer does. Hence, it is reason-
able to use the program trace [2] to characterize the infor-
mation flow. For this purpose, we introduce a specific trace,
called AR-trace, which focuses assignments and references
of variables.

For each appearance of a variable � in a given program,
an AR-action is defined as a triplet ��
 ������
 ��������,
where ������ is a (current) value of �, and ������� is ei-
ther reference or assignment. For a program � and a given
input � , an AR-trace is a sequence of AR-actions occurring
in accordance with execution of � with respect to � .

Figure 2 shows an example of (a) a program (fragment) �
and (b) the corresponding AR-trace. Traversing � from the
beginning to the end derives the AR-trace consisting of the

i = 1 ;
j = 2 ;
A[1] = i + 4 ;

j = A[i] - j ;

i 1 assignment
j 2 assignment
i 1 reference
A[1] 5 assignment
i 1 reference
A[1] 5 reference
j 2 reference
j 3 assignment

(a) (b)

Figure 2. Example of AR trace

ordered AR-actions. Note that the input � is not especially
needed in this example, and that every AR-trace is uniquely
determined for given � and � 2 .

It is not very difficult to obtain the AR-trace automat-
ically, from given program � and input � . Our idea is to
embed a print statement as a monitoring code [2] imme-
diately after each appearance of a variable, which is per-
formed by a simple analysis of stack operations at the as-
sembler code level. The monitoring code outputs an AR-
action at run-time when execution reaches there. Thus, exe-
cuting the modified � with respect to � outputs an AR-trace.

3.4 Virtual mental simulation model (VMSM)

Using an MS-queue � and an AR-trace � for given pro-
gram � and input � , we imitate the process of mental sim-
ulation for � and � . Figure 3 shows the proposed virtual
mental simulation model (VMSM). In the figure, let � be a
variable storing an integer, and let ��� be a length of �.

The proposed VMSM takes an AR-action one-by-one
from the given AR-trace �. Depending on the type of the
AR-action, one of sub-routines Reference or Assignment
is executed.

The sub-routine Reference models the cognitive activity
CA1 (See Section 3.1). It contains two abstract proce-
dures: recall(e,i) and backtrack(v,i). Accord-
ing to CA1, if the referred variable is still memorized (i.e.,
�� �������
 �� is true), the value of the variable is recalled
through a chunk � (denoted by recall(e,i)). Then, the
memory for � is refreshed via ���������
 ��. While, if the

2This is because our target here is sequential programs

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Step1: Initialize � to be empty, and � � �.

Step2: If � � ��� go to Step 5.

Step3: For �-th AR-action ��� ������� �	
����� of �, if
�	
���� is reference, then go to Reference. If
�	
���� is assignment, then go to Assignment.

Step4: � � �� �. Go to Step2.

Step5: End mental simulation.

Reference: Let � � ��� �������. If �� �
�
���� �� is:

true: Execute recall(e,i). Then,
���������� ��, and return.

false: Execute backtrack(v,i). Then,
���
�
���� ��, and return.

Assignment: Let � � ��� �������. Execute
calc righthand(v,i). Then, ���
�
���� ��,
and return.

Figure 3. Virtual mental simulation model
(VMSM)

variable is forgotten, a backtrack of simulation to obtain the
variable’s value occurs (i.e., backtrack(v,i)). After
getting the value, the information is newly memorized via
���
�
���� ��.

The sub-routine Assignment corresponds to the cogni-
tive activity CA2. As seen in the example in Section 3.1, the
assignment does not require to recall the value. Instead, we
have to calculate right-hand value of the assignment state-
ment. The values of the all right-hand variables must have
been obtained through the previous reference AR-actions.
Hence, we purely apply operators to the operands, which is
abstracted by calc righthand(v,i). The calculated
value is newly memorized via ���
�
���� ��.

The details of the abstract procedures (recall,
backtrack and calc righthand) are not specifically
given here. In order to achieve our goal, it is sufficient to
have a cost calculation method for each of them, which will
be discussed in the next subsection.

Note that, as the virtual simulation proceeds, the older
MS-elements are dequeued due to the limited capacity � of
�. This reflects the cognitive activity CA3.

Figure 4 shows how the VMSM (� � �) works for the
AR-trace in Figure 2(b). In the figure, a box represents an
MS-element, a pair of parallel lines depicts an MS-queue,
and an arrow depicts a transition caused by an AR- action.

i
1

j
2

i
1

j
2

i
1

i
1

A[1]
5

i
1

A[1]
5

i
1

A[1]
5

A[1]
5

j
2

j
2

j
5

calc_righthand((i,1),1)
enqueue((i,1),1)

calc_righthand((j,2),2)
enqueue((j,2),2)

recall((i,1),3)
refresh((i,1),3)

calc_righthand((A[1],5),4)
enqueue((A[1],5),4)

recall((i,1),5)
refresh((i,1),5)

recall((A[1],5),6)
refresh((A[1],5),6)

backtrack(j,7)
enqueue((j,2),7)

calc_righthand((j,5),8)
enqueue((j,5),8)

Figure 4. Example of VMSM execution

We assume that an MS-element is enqueued from right and
dequeued to left.

3.5 Cost functions for VMSM

In order to calculate the cost for mental simulation, we
assign a weighted cost function to each abstract proce-
dure in the VMSM. Note that there are three abstract pro-
cedures recall, backtrack and calc righthand.
We consider that these are the dominant factors that influ-
ence the simulation cost.

Cost for recall

recall(e,i) involves a cognitive activity to recall the
value of a variable memorized in short-term memory. Since
the information is still remembered as a chunk �, the value
can be obtained relatively easily and fast. So, the cost taken
for this is inexpensive (compared with the cost for back-
track).

We suppose that the same amount cost is taken for each
recall(e,i), regardless of the position of � in the MS-
queue �. This comes from our definition of the MS-element,
stating that all chunks (MS-elements) have a isomorphic
structure ��� ������� 3.

Thus, for each execution of recall(e,i), a constant
value is accumulated as the cost. For simplicity, we define
a dynamic metric RCL as the number of recall(e,i)
executed through a VMSM run.

Cost for backtrack

backtrack(v,i) contains a backtrack of simulation
from �-th AR-action in order to obtain the current value of
forgotten variable �. It can be considered that the cost heav-
ily depends on whether the variable is a constant variable
or not.

The constant variable is a variable to which a value is as-
signed only once (initialized) during entire execution. Since
the initialized value never changes, we just jump back to

3There is no hierarchy or dependency between chunks in our model.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

the initialization point to obtain the value in the backtrack.
The cost for this process is independent of the simulation
history. So, we suppose that a constant value is accumu-
lated as the cost in this case. For simplicity, we define a
metric BT CONST as the number of backtrack(v,i)
with constant variable � executed through a VMSM run.

If � is an ordinary (non-constant) variable, how would
the backtrack be performed, and how should the cost be cal-
culated? Here we define three kinds of backtrack criteria.

Constant: Backtrack the simulation to a certain (fixed)
point, regardless of the simulation history. A constant
value is accumulated as the cost for each execution of
backtrack(v,i).

Latest Reference: Backtrack the simulation to the most re-
cent reference of �. The cost increases along with the
distance, from the current appearance of � to the pre-
vious appearance in which � is referred.

Latest Assignment: Backtrack the simulation to the most
recent assignment of �. The cost increases along with
the distance to the previous assignment to �.

We characterize the above distance as an interval be-
tween two AR-actions on the AR-trace �. Let �� �
��� ��� ���������� be 	-th AR-action currently processed.
For 	, we define the latest referred index
��	� and lat-
est assigned index
��	� as follows.
��	� is an integer

�� 	� such that
-th AR-action �� � ��� �� � ����������
exists and that there is no ��� ��� ���������� between ��
and �� . Similarly,
��	� is an integer
�� 	� such that
-th
AR-action �� � ��� �� � ���	������� exists and that there is
no ��� ��� ���	������� between �� and �� . Then, the dis-
tance to the latest reference (or assignment) can be defined
by 	�
��	� (or 	�
��	�, respectively).

For example, let us consider 5th AR-action (i, 1,
reference) in Figure 2(b). Since the latest reference
of i occurs in 3rd AR-action,
���� � �. So, Lat-
est Reference criterion says that we have to backtrack 2
(� � �
����) steps to obtain the value of i. Similarly,
since the latest assignment of i occurs in 1st AR-action,

���� � �. Latest Assignment criterion forces to back-
track 4 (� ��
����) steps.

After all, the cost for each backtrack(v,i) where �
is a non-constant variable is defined as follows:

� � � � (if Constant is applied)
	�
��	� � � � (if Latest Reference is applied)
	�
��	� � � � (if Latest Assignment is applied)

For a VMSM run with a (given) criterion, we define a metric
BT VAR as the accumulated cost for backtrack(v,i)
where � is a non-constant variable.

Cost for calc righthand(v,i)

As mentioned in Section 3.4, calc righthand(v,i) is
to obtain the right-hand value of the assignment statement v
= �, where v is a variable currently processed in 	-th AR-
action, and � is the right-hand expression. References of
all variables in � must have been processed in the previous
AR-actions. Hence, calc righthand(v,i) is devoted
purely to applying operators to the operands. So, for each
calc righthand(v,i), where v = �, we define the
cost by the number of operators in� + 1 (for the assignment
operator itself).

For a VMSM run, we define a metric ASSIGN by the
accumulated cost for calc righthand(v,i).

3.6 Calculating dynamic metrics with VMSM

Now, we present a procedure of cost calculation using
the VMSM with the cost functions.

VMSM cost calculation procedure

Input: a program �, input � , maximum queue length
,
and a backtrack criterion �.

Output: Four dynamic metrics

ASSIGN: The accumulated cost for calc right
hand for assignment statements.

RCL: The total number of recall executed.

BT CONST: The total number of backtrack exe-
cuted with constant variables.

BT VAR: The accumulated cost for backtrack
with non-constant variables, according to �.

Procedure: Obtain AR-trace � from � and � . Then, cre-
ate an MS-queue � with length
. For � and �,
run the VMSM. For each execution of recall,
backtrack or calc righthand, calculate and
accumulate the cost, according to � and the corre-
sponding cost function presented in Section 3.5.

4 Experimental evaluation

4.1 Preparation

In this experiment, we had 12 subjects. In addition to
program A, two new programs B and C were introduced
which are almost the same as A in size: Program B calcu-
lates sum of only positive (or negative) elements stored in
an integral array. Program C counts the number of char-
acter ’X’s in a char-type array. For program B (or C), we
made two versions B1, B2 (or C1, C2, respectively), using
the same technique as we had exploited for program A. The

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Table 3. Results of experiment (� � �)
VMSM metrics Empirical measures

Prgs ASSIGN RCL BT CONS BT VAR LEN TR Mean Time Ave. # of
Constant Latest Refer Latest Assign (Sec.) Failures

A1 71 46 47 67 622 1609 231 1213 1
A2 72 47 36 81 1053 2631 236 3542 3

B1 93 95 55 64 788 1870 307 1294 0
B2 92 87 36 88 1338 2990 303 2955 3.5

C1 72 59 41 25 328 638 197 896 0.25
C2 71 52 22 48 652 1207 193 1689 1.25

six (� � prg. �� ver.) programs were assigned to the sub-
jects so that each subject had two different programs with
different versions. As a result, each program was simulated
by four subjects. We adopt basically the same setting and
instruction as the ones in the preliminary experiment, pre-
sented in Section 2.

We have implemented two programs: addtracer is to
embed the monitoring code to a given Java code for deriva-
tion of AR-trace (329 LOC, C). While, vmsm-cost.pl is
a script (361 LOC, Perl) that computes the VMSM metrics
for given AR-trace with � and �.

4.2 Setting VMSM parameters

To run the VMSM, we need to decide input parameters
� and �.

The maximum length � models the capacity of short-
term memory (See Section 3.2). The capacity of short-term
memory has been believed to be �� � chunks, traditionally.
However, in an interview to the subjects, they said at most
only 2 or 3 variables at a time could be memorized during
mental simulation. Also, recent research [8] states that it
is less than � � �, and is around 4 along with other non-
capacity-limited sources. Moreover, the running-memory
aspect of mental simulation decreases the capacity as well.
Taking these facts into account, we consider that the reason-
able value of � is around 3.

The backtrack criterion � is an important factor for
calculation of the metric BT VAR. Though we measured
BT VAR with respect to all the criteria, we consider that
Latest Assignment agrees best with the reality of the ex-
periment. As mentioned, the subjects were instructed to
write down a program state every time a (given) variable is
updated (i.e., a new value is assigned). Hence, in the back-
track, the subjects could refer to the list of program states,
to get the latest updated values.

4.3 Result

For each of the six programs, we got two empirical mea-
sures: elapsed time and the number of failures. Also, we

obtained the VMSM metrics as well as the length of AR-
trace (LEN TR). Table 3 summarizes the result.

First, we make inter-version comparison in the same pro-
gram (category). Let us take a look at the result for program
A. As we have seen in Section 2, the empirical measures
show that simulating A2 costs much more than simulating
A1. This fact is well explained by the metric BT VAR, no
matter which criterion is applied. Intuitively speaking, sim-
ulating A2 requires much more effort to salvage forgotten
values of (non-constant) variables through simulation back-
track.

One of the main reasons why BT VAR(A2) is greater
than BT VAR(A1) is that: N, M and L are constant vari-
ables in A1, while they are not in A2 (See Figure 1). This
implies the fact that: when the current values of these vari-
ables are forgotten in the simulation, we can obtain the val-
ues through backtrack much more easily in A1, since the
values never change during entire execution of A1. This is
also characterized by BT CONST.

Similar tendencies have been seen also for programs B
and C. We did not get any interesting observation for AS-
SIGN, RCL and LEN TR in this comparative evaluation.
We conduct further investigation on BT VAR in the next
subsection.

4.4 BT VAR as cost metric for mental simulation

It is, in general, difficult to reason simulation costs for
different independent programs by a single metric. For ex-
ample, there is no single metric by which we can completely
explain why simulating C2 took more time (thus, more cost)
than simulating B1 in Table 3.

Interestingly however, the metic BT VAR had a quite
high correlation to empirical cost measures in the experi-
ment. Figure 5 shows BT VAR (Latest Assignment, � � �)
and mean time taken for mental simulation of each of the
six programs. In the figure, a solid bar represents a value of
BT VAR for each program, while a plot with a thin line de-
picts the mean time. The correlation factors between mean
time and BT VAR (� � �) with respect to Constant, Latest
Reference, or Latest Assignment are 0.768, 0.854, or 0.854,

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Latest Assignment (L=3)

0

500

1000

1500

2000

2500

3000

3500

A1 A2 B1 B2 C1 C2

Programs

B
T

_V
A

R

0

500

1000

1500

2000

2500

3000

3500

4000

M
ea

nT
im

e
(S

ec
.)

BT_VAR
Time(Sec.)

Figure 5. BT VAR and mean time

respectively.
Even when varying � � �� �� �, BT VAR kept high cor-

relation with measured time. Figure 6 shows scattered plots,
where the horizontal axis takes BT VAR, and the horizontal
axis draws the time taken for each subject. It can be seen
that BT VAR increases as � decreases. This is because:
the smaller the capacity of short-term memory is, the more
frequently we have to backtrack the simulation. Although
BT VAR varies with �, we can see a sufficient correlation
between BT VAR and the time for each fixed �.

After all, among the VMSM metrics, BT VAR is shown
to be quite essential to capture the simulation cost. There-
fore, it can be utilized as a powerful metric for cost mea-
surement of mental simulation.

5 Related works

The well-known complexity metrics focusing the vari-
able usage are live variables and span [7]. These metrics
measure only static aspects of variables without evaluating
branch and loop conditions. By the dynamic nature of men-
tal simulation, these metrics do not have strong relevance to
the cost of mental simulation, as seen in Table 2.

Davis [9] presented a complexity metric with informa-
tion chunks. Also, Cant et al. [4] proposed a cognitive
complexity model (CCM) based on chunks. These met-
rics assume that a set of code blocks corresponding to ba-
sic chunks is available for a given program, which does not
always hold for general programs. Burnstein et al. [3] pre-
sented a tool to identify the candidate basic chunks based on
heuristics. In these methods, the complexity is accumulated
in a static basis on the code blocks and their control/data re-

Latest Assignment

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000
BT_VAR

T
im

e
(S

ec
.)

L=2
L=3
L=4

Figure 6. Measured time and BT VAR

lations. They do not especially concern dynamic aspects of
the program as the proposed method does. Hence, we con-
sider that these metrics are relevant to causal reasoning[1]
(rather than mental simulation) by which the subject ac-
quires a high level interpretation for the code blocks. Thus,
they are complementary approaches to measure different
comprehension aspects from ours.

In [11], mental simulation was shown to be the most re-
liable measure for program comprehension for novice pro-
grammers. However, the measure was based on the scores
of questionnaires, but not derived by metrics.

6 Discussion and concluding remarks

In this paper, we have presented a new method to mea-
sure the cost of mental simulation, with a virtual model
VMSM and new dynamic metrics. The key of the cost cal-
culation with the VMSM is to accumulate different costs,
depending on whether current values of variables are mem-
orized in short-term memory modeled by a queue, or not.
Through empirical evaluation, the VMSM metric BT VAR
revealed that the simulation backtrack is a dominant factor
for the cost of mental simulation.

Since mental simulation is a fundamental technique
to understand a program, the VMSM metrics (especially
BT VAR) have a wide range of application, such as main-
tenance cost estimation, testing cost estimation and temper
proofing. The proposed method can be fully automated if
input of the target program is given. This is a great advan-
tage compared to the other related methods.

A limitation is that the proposed method cannot be ap-
plied to programs under construction. Since the VMSM re-

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

quires an execution trace of the target program, the program
must be compilable and executable. Moreover, we do not
count the tracing cost [4] for functions and control flows
(i.e., the cost of locating the next code to be executed). To
keep our model simple, we do not also consider any hierar-
chical chunk constructed by reasoning [3], nor meaningful-
ness of identifiers [5] in mental simulation.

Finally, we summarize our future work. First, we will
conduct further empirical studies to investigate impacts of
the VMSM metrics ASSIGN, RCL, BT CONST on the to-
tal simulation cost.

Another interesting topic is to develop new VMSM
metrics for other than cost measurement. For example,
BT VAR tends to increase according to LEN TR (length of
AR-trace, see Table 3). This is reasonable from a viewpoint
of cost, since longer simulation costs more expensive. How-
ever, from a viewpoint of difficulty, �� � ��

��� ��
would give a

more reasonable indicator.
Also, it is important to clarify how mental simula-

tion works in the whole program comprehension process.
We need to investigate relationships between the proposed
method and other method related to reasoning. This is quite
challenging and our long-term goal.

Acknowledgment

The authors wish to thank Dr. Takao Yamaguchi and Yuji
Sato in Matsushita Electric Industrial Co.,Ltd., for the fruit-
ful discussion. This work is partly supported by a Grant-in-
Aid for COE (Center Of Excellence) Research of the Min-
istry of Education, Science, Sports and Culture, Japan.

References

[1] Bisant, D. B. and Groninger, L., “Cognitive Processes
in Software Fault Detection: A Review and Synthe-
sis”, International Journal of Human-Computer Inter-
action, 5(2):189-206, 1993.

[2] Ball, T. and Larus, J. R., “Optimally Profiling and
Tracing Programs”, ACM Transactions on Program-
ming Languages and Systems, Vol. 16, No. 3, pp.
1319-1360, July 1994.

[3] Burnstein, I., Roberson, K., Saner, F., Mizra, A. and
Tubaishat, A., “A Role for Chunking and Fuzzy Rea-
soning in a Program Comprehension and Debuggin
Tool”, Proc. of the 9th Int’l Conf. on Tools with Ar-
tificial Intelligence (ICTAI’97), pp.102-109, 1997.

[4] Cant, S., Jeffery, D.R. and Henderson-Sellers, B., “A
conceptual model of cognitive complexity of elements
of the programming process”, Information Software
Technology, Vol. 37, No. 7, 351-362, 1995.

[5] Chaudhary, B. D. and Sahasrabuddhe, H. V., “Mean-
ingfulness as a Factor of Program Complexity”, Pro-
ceedings of the ACM 1980 annual conference, pp.457-
466, 1980.

[6] Collberg, C. and Thomborson, C., “Watermarking,
Tamper-Proofing, and Obfuscation – Tools for Soft-
ware Protection”, IEEE Transactions on Software En-
gineering, Vol. 28, No.8, pp. 735-746, 2002.

[7] Conte, S. D., Dunsmore, H. E. and Shen V. Y., “Soft-
ware Engineering Metrics and Models,”, The Ben-
jamin/Cummings, 1986.

[8] Cowan, N., “The Magical Number 4 in Short-
Term Memory: A Reconsideration of Mental Storage
Capacity”, Behavioral and Brain Sciences, Vol.24,
pp.87-185, 2001.

[9] Davis, J. S., “Chunks: A Basis for Complexity Mea-
surement”, Information Processing & Management,
Vol. 20, No.1-2, pp.119-127, 1984.

[10] Douce, C., “Long Term Comprehension of Software
Systems : A Methodology for Study”, 13th Workshop
of the Psychology of Programming Interest Group,
Bournemouth UK, pp.147-159, April 2001.

[11] Dunsmore, A. and Roper, M., “A Comparative Evalua-
tion of Program Comprehension Measures”, The Jour-
nal of Systems and Software, Vol.52, Issue 3, pp.121-
129, June, 2000.

[12] Fenton, N., “Software Measurement: A Necessary
Scientific Basis”, IEEE Trans. of Software Engineer-
ing, Vol.20, No.3, pp.199-206, 1994.

[13] Monden, A., Takada, Y. and Torii, K., “Methods for
Scrambling Programs Containing Loops”, Trans. of
the Institute of Electronics, Information and Commu-
nication Engineers, Vol. J80-D-I, No. 7, pp. 644-652,
July 1997 (in Japanese).

[14] Storey, M.-A. D., Fracchia, F. D. and Muller H. A.,
“Cognitive Design Elements to Support the Construc-
tion of a Mental Model During Software Visualiza-
tion”, Proc. of the 5 th IEEE International Workshop
on Program Comprehension, pp17-28, May, 1997.

[15] ——–, “Java Programming Style Guidelines,
Version 3.0”, Geotechnical Software Services,
http://geosoft.no/javastyle.html, Jan. 2002.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

import java.io.*;
public class a1 {

static int func(int A[][][], int N, int M, int L) {
int i, j, k;
int p;
p = A[0][0][0];
for(i = 0;i < N;i++) {

for(j = 0;j < M;j++) {
k = 0;
if(k < L) {

for(;;) {
if(A[i][j][k] < p) {

p = A[i][j][k];
}
k++;
if(k >= L) {

break;
}

}
}
j++;
if(j >= M) {

break;
}
for(k = 0;k < L;k++) {

if(A[i][j][k] < p) {
p = A[i][j][k];

}
}

}
i++;
if(i >= N) {

break;
}
j = 0;
if(j < M) {

for(;;) {
for(k = 0;k < L;) {

if(A[i][j][k] >= p) {
k++;

}
else {

p = A[i][j][k];
k++;

}
}
j++;
if(j >= M) {

break;
}
k = 0;
if(k < L) {

if(A[i][j][k] < p) {
p = A[i][j][k];

}
for(;;) {

k++;
if(k >= L) {

break;
}
if(A[i][j][k] < p) {

p = A[i][j][k];
}

}
}
j++;
if(j >= M) {

break;
}

}
}

}
return p;

}
public static void main(String args[]) {

int A[][][];
int N, M, L;
A = new int[3][3][3];
A[0][0][0] = 97;
A[0][0][1] = 48;
A[0][1][0] = 52;
A[0][1][1] = 71;
A[1][0][0] = 17;
A[1][0][1] = 64;
A[1][1][0] = 11;
A[1][1][1] = 32;
A[2][0][0] = 20;
A[2][0][1] = 22;
A[2][1][0] = 48;
A[2][1][1] = 86;
N = 3;
M = 2;
L = 2;
System.out.println("Result: "

+ func(A, N, M, L));
}

}

import java.io.*;
public class a2 {

static int func(int A[][][], int N, int M, int L) {
int i, j, k, l;
int p;
p = A[0][0][0];
l = M;
for(i = 0; i < N; i++){

for(j = 0; j < M; j++){
M--;
for(k = 0; k < L; k++){

if(A[i][j][k] < p){
p = A[i][j][k];

}
}
if(j >= M) break;
for(k = 0; k < L; k++){

if(A[i][M][k] < p){
p = A[i][M][k];

}
}

}
N--;
if(i >= N) break;
for(; M < l; M++){

for(k = 0; k < L; k++){
if(A[N][M][k] < p) {

p = A[N][M][k];
}

}
if(j <= 0) break;
j--;
for(k = 0; k < L; k++){

if(A[N][j][k]<p) {
p = A[N][j][k];

}
}

}
}
return p;

}
public static void main(String args[]) {

int A[][][];
int N, M, L;
A = new int[3][3][3];
A[0][0][0] = 97;
A[0][0][1] = 48;
A[0][1][0] = 52;
A[0][1][1] = 71;
A[1][0][0] = 17;
A[1][0][1] = 64;
A[1][1][0] = 11;
A[1][1][1] = 32;
A[2][0][0] = 20;
A[2][0][1] = 22;
A[2][1][0] = 48;
A[2][1][1] = 86;
N = 3;
M = 2;
L = 2;
System.out.println("Result: "

+ func(A, N, M, L));
}

}

(a) Program A1 (b) Program A2

Figure 1. Example programs

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

