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SUMMARY  Feature interaction detection determines
whether interactions occur or not between the new and exist-
ing telecommunication services. Most of conventional detection
methods on state transition model utilize an exhaustive search.
The exhaustive search is fundamentally very powerful in the sense
that all interactions are exactly detected. However, it may suffer
from the state explosion problem due to the exponential growth of
the number of states in the model when the number of users and
the number of features increase. In order to cope with this prob-
lem, we propose a new detection method using a state reduction
technique. By means of a symmetric relation, called permutation
symmetry, we succeed in reducing the size of the model while pre-
serving the necessary information for the interaction detection.
Experimental evaluation shows that, for practical interaction de-
tection with three users, the proposed method achieves about
80% reduction in space and time, and is more scalable than the
conventional ones especially for the increase of the number of
users in the service.

key words: feature interactions, telecommunication services,
permutation symmetry, state reduction

1. Introduction

Recent advancement of new telecommunication plat-
form such as AIN (advanced intelligent network) en-
ables functional enrichment in telecommunication ser-
vices. As a result, various new services are being de-
veloped and deployed. When such new services (also
called features, interchangeably) are added on the sys-
tem, functional conflicts can happen between the new
and existing services, which may trigger even system
down. This conflict is generally known as Feature In-
teraction, and it becomes serious problem that prevents
the rapid development of new services. Feature inter-
action detection is one of the most fundamental steps
for interaction managements. It determines whether
interactions occur or not for given pair of services.

The telecommunication services are often modeled
by a finite state machine (i.e., state transition model),
in which a global state consisting of user’s local states
successively moves to a next state by the occurrence
of user’s event. Then the interactions are defined on
certain states in the FSM at which some undesirable
properties hold.

The simplest way to detect the interaction in the
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state transition model is to exhaustively enumerate all
possible states, then to identify such undesirable states
that cause interaction. This approach is quite simple
but powerful in the sense that all interactions are ex-
actly detected. So, it is adopted by most of conven-
tional detection frameworks [3]-[5],[8],[12]. However,
due to concurrent characteristics of telecommunication
services, the number of states in the model is expo-
nential in the numbers of features and users, which is
so-called state explosion problem. Therefore, the appli-
cation of this approach should be limited to relatively
simple services with small number of users. In order
to make it possible to deal with more complex services,
it is necessary to reduce the state space needed for the
interaction detection in a certain manner.

As for the state reduction, two policies can
be considered, which we call efficiency-oriented and
effectiveness-oriented. First, the efficiency-oriented re-
duction mainly focuses on the large reduction of the
state space rather than the optimal interaction detec-
tion. Cameron et al. [2] proposed the tool CADRES-
FI which utilizes state abstraction based on heuristics.
Kimbler introduced a concept of interaction filtering [9]
that makes rough pre-evaluation of the interaction-
prone service combination before the detection process.
There also exist static interaction detection methods,
in the sense that they never enumerate reachable states
within the state transition model. Nakamura et al. [11]
proposed a Petri Net based method using only neces-
sary condition for the non-deterministic interactions.
Also, a method by Yoneda et al. [14] reduces the com-
plexity only by using the structure of a rule-based spec-
ification, STR [12], without reachable state enumera-
tion.

In general, the efficiency-oriented reduction will at-
tain drastic state reduction and semi-optimal detection
as shown in [11]. Instead, the detection algorithms may
miss some interactions, or may detect the redundant in-
teractions which do not actually occur. Also, the types
of detectable interactions may be limited. This may re-
quire examination of the detection results by subjective
experts.

On the other hand, the effectiveness-oriented re-
duction attempts to reduce the state space with com-
pletely preserving necessary information for the inter-
action detection. To the best of our knowledge, the fea-
ture interaction detection based on this policy has not
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Fig.1 Interaction examples.

been proposed yet, but there are several state reduction
techniques based on this policy such as partial order re-
duction [6] and symbolic model checking [10] in other re-
search fields. The effectiveness-oriented reduction will
realize the exact (optimal) interaction detection and it
can be applied to any types of interactions defined on
the FSM. Instead, the reduction ratio may not be so
significant as that of the efficiency-oriented reduction.
The relationship between two policies is clearly trade-
off, and thus they should be chosen for different pur-
poses.

In this paper, we propose a new effectiveness-
oriented reduction method for the interaction detection,
which is a modification of the conventional reachable
state enumeration. The key idea to achieve the re-
duction is to utilize a permutation symmetry [7] with
respect to users. In the telecommunication systems,
there exists a specific constraint that all subscribers
of a service X are guaranteed to be able to use the
same functionality of X. Under this constraint, sup-
pose that both users A and B are subscribers of X. If
we know A’s possible behavior on X, then we can infer
B’s behavior on X from A’s. Therefore, we can dis-
card the state transitions for B’s behaviors since they
can be reproduced from A’s. Based on this idea, we de-
fine a relation symmetrical on the states and transitions
for the state reduction, and then provide theorems for
the detection of three types of interactions: deadlock,
loop, and non-determinism [8], [12]. Using the proposed
method, we can exactly detect any of three types of in-
teractions with much smaller state space. This fact
implies it can be applicable to more complex services
with many users.

2. Practical Examples

We present here two practical examples of feature in-
teractions. More instances can be referred to [1],[3],
[13],[15].

Example 1: Interaction between Call Waiting and
Call Forwarding.

Call Waiting (CW): This service allows the sub-
scriber to receive additional call while he is talking.
Suppose that = subscribes to CW. Even when z is
busy talking with y, x can receive an additional call
from third party z.

Call Forwarding (CF'): This service allows the sub-
scriber to have his incoming calls forwarded to another
user. Suppose that x subscribes to C'F' and that x spec-
ifies z to be a forwarding address. Then, any incoming
call to x is automatically forwarded to z.

Interaction CW&CF: Let A, B, C and D be sub-
scribers of the telephone network. Assume that A sub-
scribes to both CW and CF. Suppose that (1) A is
talking with B, (2) C is ready to dial, and (3) D is
in the A’s forwarding address and is idle. Then, if C'
dials A, should the call from C to A be received by
A’s CW feature, or should be forwarded to D by CF
feature? This non-determinism will make A confused,
thus should be avoided (See Fig. 1(a)).

Example 2: Interaction of Emergency call with itself.
Emergency call (EMG): This service is usually de-
ployed on police station and fire station. In case of the
emergency accident, the call will be held even when the
caller mistakenly onhooks. Suppose that z is a police
station on which EMG is deployed, and that y made
a call to x and is now busy talking with z. Then, even
when y onhooks, the call is held instead of being dis-
connected. Followed by that, if y offhooks, the held
line goes back to connected line and y can talk with x
again. In order to disconnect the call, x has to onhook.
Interaction EM G4 & EMGp: Suppose that both
A and B subscribe to EMG and are talking to each
other. Here, if A onhooks, the call is held by B’s EMG.
At this time, if A offhooks, the call reverts to the talk-
ing state. On the other hand, if B onhooks, the call
is also held by A’s EMG without being disconnected.
Symmetrically, this is true when B onhooks first. Thus,
neither A norB can disconnect the call. As a result, the
call falls into a trap from which it never returns to the
idle state (See Fig.1(b)).
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3. Definitions
3.1 Service Specification

In this paper, we adopt a rule-based service specification
for a service description method. Since the rule-based
description is rich in the modularity and easy to under-
stand, it is studied towards practical use, as shown in
STR[12]" and declarative transition rules [4].

3.1.1 Notation

First, we define the syntax notation of the specification.

Definition 1: A service specification S is defined as
S =(U,V,P,E, R, sy), where

a) U is a set of constants representing service users.
b) V is a set of variables.

c) P is a set of predicate symbols.

d) E is a set of event symbols.

e) R is a set of rules.

(f) so is the (initial) state.

(
(
(
(
(

Each rule r € R is defined as follows:
r: pre-condition [event] post-condition.

Pre(post)-condition is a list of predicates p(z1,...,
xk)’s, where p € Px; € V and k is called arity
which is a fixed number for each p. Especially, pre-
condition can include negations —p(x1, ... , zx)’s which
implies p(x1,... ,x) does not hold. FEwvent is a pred-
icate e(x1,...,x), where e € E, z; € V. For con-
venience, we represent pre-condition, event and post-
condition of rule r as Pre[r|, Ev[r] and Post[r], re-
spectively.

A state is defined as a list of instances of predi-
cates p(a, ... ,a)’s, where p € P,a; € U. We think of
each state as representing a truth valuation[10] where
instances in the list are true, and instances not in the
list are false.

Example 3: Figure 2 shows an example of a ser-
vice specification for Plain Ordinary Telephone Service
(POTS). For example, potss means that “Suppose that
user x receives dialtone and y is not idle. At this time,
if = dials y, then x will receive a busytone”. State sq
means that two users A and B are idle. In state sqg, two
instances idle(A) and idle(B) are true because they are
included in sg. On the other hand, any other instances
(e.g., dialtone(B) or calling(A, B)) are false since they
are not included in sg.

3.1.2 State Transition Model

Next, we define the state transition model specified by
the rule-based specification.
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s idle(z) [of fhook(z)] dialtone(x)

: dialtone(x) [onhook(z)] idle(x)

: dialtone(x), ~idle(y) [dial(z,y)] busytone(x)

: dialtone(z),idle(y) [dial(z,y)] calling(z,y)

: calling(z,y) [onhook(z)] idle(z),idle(y)

: calling(z,y) [of fhook(y)] talk(zx,y), talk(y, x)

: talk(z,y), talk(y, ) [onhook(x)] idle(x), busytone(y)
potss : busytone(x) [onhook(z)] idle(x) }

idle(A),idle(B)

Fig.2 Rule-based specification for POTS.

Definition 2: Let S = (U,V, P, E, R, so) be a service
specification. For r € R, let x1,... ,z, (z; € V) be
variables appearing in 7, and let § = (x1|a1, ... ,zp|a,)
(a; € U) be a substitution replacing each z; in r with
a;. Then, an instance of r based on 6 (denoted by
rf) is defined as a rule obtained from r by applying
0 = (x1|ay,...,znlan) tor.

Definition 3: Let s be a state. We say rule r is en-
abled for 6 at s, denoted by en(s,r,0), iff all instances
in Pre[rf] take true value at s (i.e., all instances are
included in s). When en(s,r,0) holds, next state s’ of
s can be generated by deleting all instances in Pre[r]
from s and adding all instances in Post[rf] to s. For
convenience, we describe it by

s’ = s — Pre[rf] + Post[rf]

where 4+ and — respectively represent addition and
deletion operators on the list. These operators work
in the same way as union and subtraction operators on
the set, respectively. At this time, we say a state tran-
sition from s to s’ caused by an event Ev[rf] is defined
on S, which is denoted by s — Ev[rf] — s’ (or simply
s — s'). We say that state s is reachable from sq iff
s = sg or a sequence of state transitions so—eg—s1,
S1—€e1—82 ,..., Spn—ep—s exists, which is denoted by
so—*s (reflexive and transitive closure of —).

Example 4: Let us consider rule pots; and state sg
in Fig. 2. For a substitution 8 = (x|A), en(so, potsy, 0)
holds since idle(A) in Pre[potsi6] is included in sg.
Then, next state s; can be defined as follows:

s1 = 8o — Pre[pots16] + post[pots, 6]
idle(A),idle(B) — idle(A) 4 dialtone(A)
= dialtone(A),idle(B)

As a result, a state transition so—of fhook(A)—s1 is
defined, which implies that if A offhooks at sg, then A
receives a dialtone, while B remains idle.

TNote that the notation in the following is similar to
STR, but is slightly different from STR.
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3.2 Feature Interactions

In this paper, we especially focus on the following three
types of interactions. These are very typical cases of
interactions and are discussed in many papers (e.g., [5],
(8], [12]):

deadlock: Functional conflicts of two or more services
cause a mutual prevention of their service execu-
tion, which results in a deadlock.

loop: The service execution is trapped into a loop from
which the service execution never returns to the
initial state.

non-determinism: An event can simultaneously ac-
tivate two or more functionalities of different ser-
vices. As a result, it cannot be determined exactly
which functionality should be activated.

Before formally defining the above interactions, we
define a combined operator of two service specifications.
Because of the good modularity of the rule-based spec-
ification, we can easily combine two specifications.

Definition 4: For two specifications S = (U, V4,
P1,E,Ry,s10) and Sy = (U, Va, P2, Ea, Ry, $20),
we define a combined specification Sy & Sy =
(U,V,P,E, R, s0) such that U =U; UUs, V =V U Vs,
P=PUP, F = FEiUEy,, R = R URy and
So = S10 + S20 Where + denotes the addition operator
in Definition 3.

For each of three types of interactions mentioned
above, we define the undesirable states each of which
causes the corresponding interaction.

Definition 5: Let S = (U,V, P,E, R, so) be a given
service specification. For any state s such that sg—*s,
s is said to be a

deadlock state: iff —en(s,r,0) holds for any r € R
and 6.

loop state: iff there exists such a state s’ that
s—*s'—*s and —(s—*sp).

non-deterministic state: iff there exists a pair of
rules 7,7/ € R such that en(s,r,0) and en(s,r’,6")
hold, and that Ev[ré] = Ev[r'6].

A service specification S is called safe iff S is free from
the above states. For two service specifications S; and
So, we say that Sy interacts with Ss iff both S7 and S
are safe and S; @ Sy is not safe.

Example 5: We explain the non-deterministic state
using an example. Consider the following two rules cwy
and cfyp, and a state s.

cws : CW (), talk(z,y), dialtone(z)[dial (z, x)]
CW(x),talk(z,y), CWealling(z, ).
cfio : CF(y, z), dialtone(z), idle(z)[dial(x, y)]
CF(y, 2),calling(zx, z).
s=CW(A),CF(A,D),talk(A, B),talk(B, A), dialtone(C),
idle(D)
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The rules cwy and cfig respectively describe the
functionality of CW and CF shown in Example 1.
Also, the state s means the situation of interaction. Let
01 = (z|A,y|B, z|C) and 0 = (z|C,y|A, z|D). Then,
en(s, cwy, 01) and en(s, cfig, 02) hold, and Ev[cwsb:] =
Evlcfi082] = dial(C,A). This is just the interaction
explained in Example 1.

4. Classical Approach

Most of the conventional feature interaction detection
methods [3]—[5], [8], [12] adopt the exhaustive search,
which is realized by means of a reachability graph.

4.1 Full Reachability Graph FRG

For a given service specification S = (U,V, P, E, R, so),
the rule applications from initial state sy construct a
finite state machine (FSM) consisting of all reachable
states from sg, in which a state moves to the next state
by occurrence of an event. Since an FSM can be de-
scribed by a labeled directed graph, here we directly
define such an FSM as a directed graph. In the follow-
ing, we represent a directed edge from s to s’ labeled
by e as a triple (s, e, s’).

Definition 6: A labeled directed graph is defined as
G = (N, L,T) where:

(a) N is a set of nodes.
(b) L is a set of labels attached to the directed edges.
(¢) TC N xLx N is aset of directed edges.

For any directed graph G, a directed path p is a se-
quence of directed edges: p = (s1,e€1,$2), (s2,e2, s3),

.y (8n,€n, Spt1). For this, the node s; is called head
node of p, while s,,41 is called tail node of p, n is called
a length of p. A directed path is a directed cycle iff its
head node and tail node are identical. A node is called
a terminal iff it has no outgoing edge.

Definition 7: Let S = (U,V, P, E, R, so) be a service
specification. A full reachability graph for a given S is a
labeled directed graph FRG(S) = (N, L,T) such that:

(a)N = {s|sop—"s}.
(b) L is a set of all instances of events.
(¢) T =A(s, Ev[rf],s")| s—Ev[rf]—s" }

Example 6: Figure 3 shows a full reachability graph
for the POTS specification in Fig.2. We can see there
are 12 reachable states (represented by ovals) and 30
state transitions (represented by directed arrows).

4.2 Proof Rules of Interaction Detection

Using the full reachability graph FRG, we can easily
identify the undesirable states in Definition 5.



1356

NO

idle(A),
2 idle(B) o

Tooki®

N1 alfGok(A)  onhodk(B NS
o IR TR e, ornhook(B)
< Q ffbct%l?ngl ofq};%% ’ ’d]a]tone(B
dial(A,B) onhook(B) onhook(A) dial&B A)

(=Ev[p363]) dialtone(A),

dialtone(B)

BRI gnhook(A)  (EY p364])

=Ev(p26:
onhook(B) “EF92) (=Ev(p881))

(=Ev(pso2])

dial(B,A dial(A,B
dialtone(A), FEVSP“"R N9 FEV?P‘“”]; busytone(A))
busytone(B)/g; H dialtone(B)
S w0 SR

offhook(B) onhook(B)
(=Ev(p182))  (<Ev(p862])

N§

calling(B,A)

N N6

calling(A,B)

busytone(A),

busytone(B)
! onhookgA) onhookg B
g (=Ev[p8B1]) (=Ev(p862])

N3
idle(A), busytone(A),
busytone(B, onhookgA) onhook(B) dle(B)
(=Ev[p703)) l:EVW vend
talk(A,B), esenc-
onhookgB) talk(B.A onhook(A) Ev(p,8}=Ev(pots 9}
2)) alk(B,A) (=Ev[p801]) o1= _
v 1=<x|A>  B2=<x|B>
To'NO N1l To NO 03=<x|A,y|B> 84=<x|B,y|A>

(=Ev(p8!
Fig.3 FRG for POTS specification.

offhook(A? onhookgA)
(=Ev(p181])  (=Ev(p8BI])

offhook(B)
(=Ev(p683])

offhook(A)
N7 CEvposa])

Proposition 1: The following properties are satisfied

for FRG(S).

(a) s is a terminal. < s is a deadlock state.

(b) there exists a directed cycle starting from s, and
there exists no directed path from s to sg. <
s is a loop state.

(¢) s has a pair of outgoing edges (s,e1,s’) and
(s,e2,5") such that e; = es. &
s is a non-deterministic state.

Proof: Straightforward from Definitions 5 and 7. O

Thus, in order to detect the interactions between
given two specifications S; and Sy, we first construct
FRG(S1 @ Sz2), then identify the undesirable states us-
ing Proposition 1.

Although the detection using FRG is quite sim-
ple and powerful, it may suffer from the state explosion
problem. That is, the size of the FFRG exponentially
grows when the number of users and the number of
rules in the specification become large. Therefore, the
application of F'RG is limited to relatively simple ser-
vices with small number of users.

5. New Approach

In order to cope with the state explosion problem, we
try to reduce the size of FRG without losing the neces-
sary information. The key idea to achieve this reduc-
tion is to utilize a relation among states called permuta-
tion symmetry. The permutation symmetry was orig-
inally proposed in several fields such as colored Petri
Net verification [7], but we show in this paper that the
state reduction is successfully realized by means of a
specific constraint on telecommunication services.

5.1 Key Idea

There exists the following specific constraint in the
telecommunication services:

Constraint: All subscribers of service X must be able
to use functionality of X in the same way.
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For example, let us consider that A uses POTS’s
dialing functionality to B: “Suppose that A receives
a dialtone and B is idle. At this time, if A dials B,
then A will be calling B”. Similarly, when B uses this
functionality, the situation is: “Suppose that B receives
a dialtone and A is idle. At this time, if B dials A, then
B will be calling A.” We can easily convince that two
situations are symmetrical with respect to users, that is,
the one can be inferred from the other only by swapping
A and B. In terms of our service specification, we can
observe the symmetry on states and state transitions.

Example 7: Consider the following states s; and so:
s1 = dialtone(A),idle(B), busytone(C)
sg = dialtone(C),idle(A), busytone(B)

We see s1 and s, are symmetrical, in the sense that ss is
obtained from s; just by substituting A for C, B for A,
C for B. In other words, letting U = {A, B, C}, there
exists a permutation ¢ : U — U such that ¢(A) = C,
o(B) = A, ¢(C) = B from s; to s3. Now, let us apply
the following rule to s; and so:

potss : dialtone(x), idle(y)[dial(z,y)]calling(x, y).

Then, for 61 = (z|A,y|B) and 62 = (z|C,y|A),
en(s1,potss, 01) and en(sa, potss, d2) hold.

potssby : dialtone(A),

idle(B)[dial(A, B)]calling(A, B).
potssbs : dialtone(C),

idle(A)[dial(C, A)]calling(C, A).

As a result, the following next states sj and s}, are
obtained from s; and ss, respectively.

sy = calling(A, B),busytone(C')
sy = calling(C, A), busytone(B).

Now, we can observe that there also exists the same
permutation ¢ from s} to sh. Roughly speaking, this
fact implies that state transition sy—dial(C, A)—sh
can be reproduced as ¢(s1)—¢(dial(A, B))—¢(s))
from s;—dial(A, B)—s}.  Therefore, we need no
longer to store either states s, s, mnor transition
sp—dial(C, A)—s) in the reachability graph.

From this example, we reach a hypothesis in gen-
eral case that if we have a state transition s—e—s’, then
we also have ¢(s)—¢(e)—¢(s') for any permutation ¢
on U. If the hypothesis is true, then it is sufficient to
have only s—e—s’ in a reachability graph, since we can
infer symmetric state transitions from s—e—s’. As a
result, the reduced reachability graph will preserve the
all information of the original F'RG.

5.2  Permutation Symmetry
In this section, we formally define the permutation sym-

metry. Throughout this section, we assume that a ser-
vice specification S = (U, V, P, E, R, so) is given unless
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especially specified. First, we define all permutations
with respect to users.

Definition 8: Let Perm(U) denote a set of all per-
mutations ¢ : U — U. Each element ¢ of Perm(U) is
called a permutation symmetry.

Example 8: Let U = {A, B,C}. Then, Perm(U) =

A B C A B C A B C
A B C A C B B A C
A B C A B C A B C
B C A C A B C B A
Each permutation symmetry of Perm(U) specifies
o A B C
a bijection ¢ from U to U. For example, [ C A B
specifies a bijection ¢ such that ¢(A) = C, ¢(B) = A,

4(C) = B.

Next, we extend ¢ € Perm(U) for states, rules and
substitutions.

Definition 9: Let ¢ € Perm(U) be a permuta-
tion symmetry. Then, for any instance p(ai,... ,a)
of a predicate with p € Pa; € U, we define
o(plas,...,ax)) =p(dplar),...,d(ax)). At this time,

(a) For any state s, we define ¢(s) to be a state ob-
tained by applying ¢ to each instance of predicate
in s.

(b) For any instances rf of rule r € R, we define ¢(r6)
to be an instance of rule obtained by applying ¢
to each instance of predicate in rf. Similarly, we
define ¢(Pre[rd]), ¢(Post[rf]) and ¢(Ev[rd]).

(¢) For any substitution 6 = (z1]a,...,xs|an),
v, € V, a € U, we define ¢(¢) =
(z1lg(ar), ... znld(an)).

Two states s; and so are symmetrical, denoted by s1 =
sy iff ¢(s1) = 55 for some ¢ € Perm(U)T.

Example 9: Consider again Example 7. Then,
‘ tati by ¢ — A B C

or a permutation symmetry = c A B|
we can see that (a) &(s1) = s2 and é(s)) =
sh, (b) ¢(potssf) = potssbe, and (c) ¢(01) =

(x]0(A),ylo(B)) = (z|C,y|A) = 0>.

Before showing the main theorem, we present the
following lemma. Intuitively, Lemma 1 implies that it
does not matter whether we use a permutation sym-
metry ¢ before or after the instantiation of the rule r
based on the substitution 6.

Lemma 1: Suppose that a permutation symmetry
¢ € Perm(U) is given. Then, for any rule r € R
and any substitution 6, ¢(rf) = r¢(6) holds. Also,
¢(Pre[rf]) = Pre[r¢(0)], ¢(Post[rd]) = Post[ré(0)],
o(Ev[rf]) = Evlr¢(6)] hold.

Proof: See Appendix. O
Now, we are ready to provide the main theorem
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for a state transition.

Theorem 1: For any permutation symmetry ¢ €
Perm(U),
s—Ev[rf]l—s < ¢(s)—p(Ev[ro))—o(s).

Proof: (=) Assume that the state transition
s—Ev[rf]—s’ is defined on S. Since en(s,r,6) holds,
all predicates of Pre[rf] are included in s from Defini-
tion 3. From Definition 9, all predicates of ¢(Pre[rd])
are clearly included in ¢(s). From Lemma 1, all pred-
icates of Pre[r¢(6)] are included in ¢(s). This implies
en(¢(s),r,¢(0)) holds. Hence, from Definition 3 and
Lemma 1, the next state s* of ¢(s) is obtained as fol-
lows:

s* = ¢(s) — Pre[r¢(0)] + Post[rg(6)]
= ¢(s) — ¢(Pre[rf]) + ¢(Post[rd])
= ¢(s — Pre[rf] + Post[rf]) = ¢(s')

Therefore, a state transition ¢(s)—Ev[ré(0)]—o(s') is
defined on S. From Lemma 1, ¢(s)—Ev[r¢(0)]—¢(s’)
= ¢(s)—@(Ev[rf])—d(s'), as required.
(<) Assume that s* —e* — §'* = ¢(s) — Ev[ro(0)] —
¢(s") is defined on S. Since ¢ is a bijection, there exists
an inverse ¢! € Perm(U). By applying ¢!, we have
¢ 1(s*) =L (e*) — ¢~ 1(s'*) = s—Ev[rf]—s’. Hence,
we must show that if a state transition s* — e* — s'*
is defined on S, then ¢=1(s*) — ¢~ 1(e*) — ¢~ 1(s'*) is
defined on S. However, it directly follows from =. O
Theorem 1 clearly explains the hypothesis dis-
cussed in Sect.5.1 is true. That is, if we have a state
transition s—e—s’ on S, then we can confirm that all
of its symmetric transitions ¢(s)—@(e)—¢(s')’s are de-
fined on S. Theorem 1 is easily extended for the se-
quences of state transitions.

Corollary 1: For any permutation symmetry ¢ €
Perm(U), the following properties hold.

(a)s1 —e1 — sy —ex — ... = 5, &
P(s1) — Pler) — ¢(s2) — dlea) — ...
(b) s0—"s & d(s0)—="9(s).

Proof: Property(a) follows by repeated use of Theo-
rem 1. Property(b) is a direct consequence of Prop-
erty(a). O

Thus, if we have only one transition sequence 7 on
S, then we can confirm the existence of all sequences
symmetrical with 7 by Corollary 1.

5.3 Consistent Symmetry

For a state transition defined on S, Theorem 1 and
Corollary 1 guarantee the existence of its symmet-
rical transitions for any permutation symmetry ¢ €

TThe relation ~ is an equivalence relation on states since
() s == s (reflexive), (ii) s1 & s2 implies s2 & $1 (symmetric)
and (iii) s1 = s2 and sz &~ s3 imply s1 & s3 (transitive).
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Perm(U). However, they never guarantee the reach-
ability of symmetric states from the initial state sy of
S. That is, even if sp—*s, we cannot generally conclude
so—*¢(s) since Corollary 1 only says ¢(s) is reachable
from ¢(sp). In order to assure the reachability of sym-
metric states, we must put a restriction on ¢ so that
?(s0) = so. We define such a permutation symmetry ¢
as a consistent symmetry.

Definition 10: Let S = (U,V, P, E, R, so) be a given
service specification. A permutation symmetry ¢ is a
consistent symmetry iff ¢(so) = so. Let CS(U, sp) de-
note a set of all consistent symmetries, i.e.,
CS(U, s0) = {d|¢p € Perm(U) A ¢(so) = so}

Two states s and s’ are consistently symmetrical, de-
noted by s~ s, iff ¢(s) = s’ for some ¢ € CS(U, sg).
For a given state s, the symmetric class of s, denoted
by [s], is defined as [s] = {s'|s~2.s'}. For [s], s is called
a representative of [s].

Note that all theories in the previous section
are still valid for the consistent symmetry ¢ since
CS(U,so) C Perm(U), and that the relation ~. is an
equivalence relation on states as discussed in ~. Addi-
tionally, the consistent symmetry provides the follow-
ing theorem, which guarantees the reachability from the
initial state sg.

Theorem 2: Let ¢ € CS(U,sp) be any consistent
symmetry. Then, so—*s < so—"¢(s).

Proof: It follows from Corollary 1(b) assuming ¢(sg) =
S0- O
Example 10: Consider the following initial state so.

so = CW(A),CW(B),idle(A),idle(B),idle(C)

so means all A, B and C are idle and A and B are
subscribers of CW. Assume that the following state s
is reachable from sg.
s=CW(A),CW(B),talk(A, B),
talk(B, A), CWealling(C, A)
in which A is receiving CW calling from C. Now, we
apply a permutation symmetry ¢ such that ¢(A4) =
C,o(B) = B,¢(C) = A to s. Then,
¢(s) = CW(C),CW(B),talk(C, B),
talk(B,C),CWcalling(A, C)
C was not a CW subscriber at sg. Therefore, it is incon-
sistent that ¢(s), in which C is receiving CW calling,

is reachable from sy. This is justified by a fact that ¢
is not a consistent symmetry, i.e., ¢(sg) # So.

5.4 Symmetric Reachability Graph SRG

Here, we define a reachability graph called symmetric
reachability graph SRG.
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Definition 11: Let S = (U,V, P, E, R, sp) be a ser-
vice specification. A symmetric reachability graph for a
given S is a labeled directed graph SRG(S) = (N, L, T)
such that

(a) N is a partition of the set of all reachable states
based on equivalence relation ~. (Let it be N =
{[s]})-

(b) L is a set of instances of events, and

(c) T = {([s], Ev[ro], [s'])| s—Ev[rf]—s* A(s*~.s")}

In SRG, each node represents a symmetric class [s]
with a representative (state) s, and each arc outgoing
from [s] represents a state transition which occurs at the
representative s. Also, from Theorem 2, each node [s]
in SRG(S) implies that all states belonging to the class
[s] are reachable from the initial state sg. The following
algorithm constructs a SRG for a service specification

S.

SRG construction algorithm.
Input: S =(U,V,P, E,R,sg)
Output: SRG(S) = (N,L,T)

Procedure:
Waiting = N :={[so]}; L=T :=0;
Repeat

select [s] from Waiting ;
for any r € R s.t. en(s,r,0) for some 6 {
generate the next state s’ by applying r to s;
add Ev[rf] to L ;
if [s*] ¢ N s.t. s*~.s" then {
add [s'] to N ; add [¢] to Waiting;
add ([s], Ev[rf],[s']) to T ; }
else add ([s], Ev[rd], [s*]) to T'; }
delete [s] from Waiting ;
Until Waiting = ()

Example 11: Figure 4 shows a symmetric reachabil-
ity graph SRG for POTS specification in Fig. 2. Each of
nodes N4, N5, N6 and N7 represents a symmetric class

s
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with two states, while each of other nodes represents a
class with only one state. For example, N4 actually
represents two symmetrical states dialtone(A),idle(B)
and dialtone(B),idle(A), while NO does one state
idle(A),idle(B). Compared with FRG in Fig.3, SRG
has smaller number of nodes (8 nodes) and edges (20
edges) (though it might be a small reduction in this
example).

Proposition 2: The following properties are satisfied

for SRG(S).

(a) Each directed path p in SRG(S): p = ([s1],
e1,[s2]), ([s2], €2, [s3]), - - -, ([Sn], €n, [Sn+1]) has, for
each state s} € [s1], a corresponding sequence
of state transitions 7 on S: 7 = s] —e] —
s5 —e; — 83— ... — sy —e; — Sy, where
siresi(1<i<n+41).

(b) Each sequence of transitions 7 on S: 7 = s1 —
€1 — S2 — €2 — 83 — ... — Sp — €p — Sp41,
where sp—*s1, has a corresponding directed path
in SRG(S): p = ([‘ﬁ]vé{v [53])’ ([Sz]aeza [Sg]))v R
([sn], €5, [5541]), where s;es;(1 <i<n+1).

Proof: See Appendix. O
5.5 Proof Rules of Interaction Detection

Using the symmetric reachability graph SRG, we can
identify the undesirable states in Definition 5.

Proposition 3: The following properties are satisfied
for SRG(S).

(a) [s] is a terminal. < each s* € [s] is a deadlock
state.

(b) there exists a directed cycle starting from [s], and
there exists no directed path from [s] to [so]. <
each s* € [¢] is a loop state.

(c) [s] has a pair of outgoing edges ([s],e1,[s']) and
([s], e2, [s"]) such that e; = ea. < each s* € [g] is
a non-deterministic state.

Proof: Properties (a) (b) directly follow from Proposi-
tion 2 and Theorem 2.

Property (c) : (=) Assume that there exists a pair
of the edges ([s],e,[s']) and ([s],e,[s"]) in SRG(S).
From Definition 11(c), there exists a pair of tran-
sitions s—e—ss’, s—e—ss” such that sp—*s, ss’ €
[s'],88" € [¢"]. From Theorem 1, for any ¢ € C'S(U, s¢),
there exists a pair of transitions ¢(s)—@(e)—¢(ss’),
o(s)—d(e)—¢(ss”). Since so—*s, so—*P(s) from The-
orem 2. Hence, from Definition 5, s* = ¢(s) € [s] is a
non-deterministic state, as required.

(<) Since s* is a non-deterministic state, there ex-
ists a pair of transitions s*—e—ss’, s*—e—ss” such
that sp—*s*.  From Definition 11 (a), there ex-
ists a node [s] such that s = ¢(s*) in SRG(S).
From Theorem 1, there exists a pair of transi-

tions ¢(s*)—(e)—(ss'), d(s*)—d(e)—p(ss") on S.
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From Definition 11(c), SRG(S) has a pair of edges
([B(s")]. (). [5]), ([6(s")], d(e):[s"]), where d(ss') €
['],6(ss"”") € [s"]. Thus, SRG(S) has a pair of edges
([s],e*, [s']), ([s],€*,[s"]), as required. O

Thus, in order to detect the interactions be-
tween two specifications S7 and Sy, we first construct
SRG(S1 @ S2), then identify the undesirable states us-
ing Proposition 3. The proof rules described in Proposi-
tion 3 is very similar to the conventional ones in Propo-
sition 1, thus, they may appear to be not radically new
concepts. However, the main contribution here is that
we have shown that the similar detection mechanism
can be still applicable in the reduced state space, due
to well-organized theories concerning the SRG. This
fact implies that the proposed method is easy to use
and implement.

6. Experimental Evaluation
6.1 Preliminaries

For the experiments, we have developed a software
to construct both SRG and FRG for any given rule-
based specification. Also, based on [16],[17], we have
prepared the rule-based specifications for the follow-
ing six practical services (features): CW (Call Wait-
ing), CF (Call Forwarding), DC (Direct Connect), DO
(Denied Origination), DT (Denied Termination) and
EMG (Emergency call). All of them commonly include
POTS.

For each service X, we added a pair of rules which
specify the registration and withdrawal of X. These
rules enable all users to dynamically subscribe to and
withdraw from X during the service execution. Also,
we assume at the initial state sg that all users are idle
and that none of users subscribes to any service yet,

e.g.,

so = yetCW (A), yetCW (B), yetCW (C), idle(A),
idle(B),idle(C)

By doing this, we have CS(U,sp) = Perm(U).
The experiments have been performed on the UNIX
workstation Sun SS-UAT.

6.2 Experiment 1 (effectiveness and efficiency)

The objective of Experiment 1 is to evaluate the pro-
posed method from the following two viewpoints:

(a) effectiveness: whether SRG can exactly identify
all interactions detected by FRG,
(b) efficiency: how much reduction is attained by us-

ing SRG.

First, we checked if each of six specifications prepared
in Sect. 6.1 is safe by constructing F'RG (and SRG). As
a result, we have found that all services except EMG
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Table 1  Result of experiment 1.

Service FRG(S) SRG(S)

Spec. S DLK LOP NDT IN]| IT| Time(s) DLK LOP NDT IN| IT| Time(s)
CW+CF x 102746 446124  4706.4 X 17610 76732 9138
CWADC 9592 38424 2704 1684 6838 556
CW4DT x 7120 39036 1872 x 1344 7470 439
CW+DO 3480 16560 89.3 668 3234 20.7
CF+DC 65410 243876 1851.5 11065 41456 364.7

CF+DT b3 38584 206868 1006.1 X 6662 35902 2132

CF+DO 17775 80538 447.6 3087 14079 93.5

DC+DT 5390 27510 69.6 954 4956 17

DC+DO x 4654 23490 579 x 820 4202 142

DT+DO 1450 9180 15.7 300 1936 49

EMG x 522 2802 35 X 116 646 13

are safe, while EMG contains the loop states as shown
in Example 2. Next, we combined each pair of the
remaining five services, then tried to detect the inter-
actions between any two services by constructing FRG
and SRG. For all specifications, the number of users is
assumed to be three.

Table 1 summarizes the result. In the table, the
columns DLK, LOP and NDT may contain “z” indicat-
ing the existence of deadlock states, loop states, non-
deterministic states, respectively, |[N| and |T| represent
the number of nodes and edges in the graph, respec-
tively. Time(s) represents the execution time of the
software for the construction of the graph.

It can be seen that all interactions detected by
FRG are exactly identified by SRG, as is guaranteed by
the theories. Also, we see that SRG attains about 80%
reduction of F'RG in both the graph size and the execu-
tion time (e.g., as for the number of nodes in CW+CF,
1—17610/102746 = 0.83).

6.3 Experiment 2 (scalability)

In order to investigate the applicability of the proposed
method to more complex services with many users, we
compare SRG with FRG from the following viewpoints:

(a)scalability w.r.t. # of users: impact of the number
of users on the graph size.

(b)scalability w.r.t. # of features: impact of the num-
ber of features on the graph size.

First we compare the scalability w.r.t. # of users.
Concretely, for a fixed service specification, we observe
the growth of the graph size by varying the number
of users. We have selected the POTS specification de-
scribed in Fig. 2 and varied the number of users from 2
to 8.

Figure 5 shows the result. Note the logarithmic
scale on the vertical axis. It can be seen that, for the
increase of the number of users, the size of FRG ex-
ponentially grows. We couldn’t construct F'RG with 8

users due to the memory overflow. On the other hand,
the size of SRG grows much more slowly than that of
FRG. The larger the number of users is, the more SRG
attains the significant reduction. From this, we can say
that our detection method by means of SRG is much
more scalable than that of FF'RG with respect to the
number of users.

Next, we evaluate the scalability w.r.t. # of fea-
tures. For this, we first prepare the POTS specification
and fix the number of users (here we set it to be three).
Then, by incrementally adding the specifications DO,
DT, DC, EMG to POTS in this order, we observe how
the graph size grows for each addition of the feature.

Figure 6 shows the result. Unfortunately, for the
increase of the number of features, the size of SRG ex-
ponentially grows as well as the size of FRG. However,
it can be seen that SRG constantly achieves more than
80% reduction of FRG (e.g., as for the number of nodes
with 5 features, 1—58832/348868 = 0.83). In this sense,
SRG is slightly more scalable than F'RG with respect
to the number of features.

7. Discussion and Conclusion

In this paper, we have newly proposed a state reduc-
tion technique using permutation symmetry for efficient
feature interaction detection. The permutation symme-
try works well under a constraint of telecommunication
services that: all subscribers of service X must be able
to use functionality of X in the same way. By using
the proposed SRG, we can achieve not only efficient
state space reduction but also exact interaction detec-
tion based on necessary and sufficient condition.

The result of Experiment 1 shows that the pro-
posed method with SRG attains an adequate cost re-
duction for practical interaction detection. The scala-
bility evaluated in Experiment 2 is the key factor for the
state explosion problem. From the result, the proposed
method is quite scalable even when the number of users
increases. However, it has poor scalability with respect
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to the number of features. This is not surprising since
the permutation symmetry is defined only among users
but not features, thus, it never contributes to state re-
duction when the number of users is fixed. Hence, we
can conclude that state explosion caused by increase of
the number of users is well circumvented by the pro-
posed method. This facilitates interaction detection
with many users, but with a relatively small number
of feature combinations.

The state explosion problem concerning the num-
ber of features is still an open issue. One of the ma-
jor sources of the state explosion is that we allow all
users to dynamically subscribe to and withdraw from
any feature in the experiment. This causes the combi-
national explosion of users’ subscription cases to each
feature. The promising way for this problem is to di-
vide the whole state space based on the subscription
condition, and then to separately explore the divided
spaces in each of which the users’ subscription condi-
tion is statically fized. Also, symmetry among features
will be powerful tool. For example, DT (Denied Termi-
nation) and TCS (Terminating Call Screening) [16], [17]
are similar features. The difference is that DT blocks
any terminating call, while, TCS screens users in its
screening list. Therefore, appropriate symmetry may
be defined among similar functionalities. We believe
that these approaches improve the scalability regard-
ing the number of features, and are now investigating
them as our future work.

We have discussed only three types of interactions
in this paper. However, SRG can be surely applied to
the detection of any other types of interactions if the
interactions can be defined on the finite state machine.
The application to other interactions is also our future
work.
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Appendix

[Proof of Lemma 1]

Suppose that ¢ = @ dz . 9 €

by by ... b|U\

Perm(U), and a;,b; € U be given.
Let p = pm(@Tm1, Tm2,- .-, Tmk) be any predicate in
rule r. If we apply 0 = (z1]ai,...,Znl|aimn) to
r, then p in r is instantiated to an instance p’ =
D (Qim1, Gim2, - - -, Gimp) In 76. Next, we apply ¢ to r6.
Then p’ in 70 is transformed into the following instance

p” in ¢(T0) p” = pm(¢(aim1)7¢(aim2)v' .. 7¢(aimk))
= pm(biml, bim27 . ,bimk)

On the other hand, if we first apply ¢ to 6,
we obtain @(0) = (x1|d(ain),. .., zalP(aim)) =

,Tn|bin) Next, by applying #() to r, we

*

<1‘1 |bi17 ‘e
get the following instance p* of p in r¢(f): p* =
D (Dim1, bim2, -« ybimk) = p”. Thus, for any predi-
cate p in r € R, two instances p” in ¢(rf) and p* in
r¢(0) are identical. Hence we conclude that ¢(rf) =
r¢(0). By the similar discussions, we can prove that

¢(Pre[rf]) = Pre[ré(0)], ¢(Post[rf]) = Post[ro()]
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and ¢(Ev[rd]) = Ev[r¢(0)].

[Proof of Proposition 2]
We prove this lemma by means of induction over the
length n of p/7.

(Property(a):) When the length of p is zero, prop-
erty(a) is clearly satisfied from Definition 11 (a). Next,
assume that property(a) is satisfied when the length of
p is n, and assume that we have a directed path p’ such
that p' = ([81]7617 [52])7 ) ([Sn]7 €n; [SnJrl])v ([SnJrl]v
€n+1,[Sn+2]). From the inductive hypothesis, it fol-
lows that, for each state s € [s1], there exists a se-
quence of state transitions:

*

sy — ey — s5.q. From Definition 11 (c) and the
edge ([Snt1]s€n+1, [Sntz2]) of p, there exists a transi-
tion sp41—€n41—8), .9, Where s, o € [s,42]. From
Theorem 1, for ¢ € CS(U,so) such that ¢(sp+1) =
sy 41, there exists ¢(snq1)—0(eny1)—d(s),,0). Let
Snyz = O(spge) and epy = ole ). Since
sn+2%cs;+2, Sn2/cSy 9. Thus, there exists a tran-
sition s}, 1—e} 1155 1o. This means that s] —e] —
§5—... = 8y —€n — S5 —€n. 1 — S, 18 asequence
of transitions with the requested properties.
(Property(b):) When the length of 7 is zero, prop-
erty(b) is clearly satisfied from Definition 11 (a). Next,
assume that property(b) is satisfied when the length
of 7 is n, and assume that we have a directed path
7" such that 7 = s1 —e; — s9 — ...
Sn+1 — €n+1 — Sn+2, Where sp—*s;. From the induc-
tive hypothesis, it follows that there exists a directed
path: ([s7], 7, [s3]), ([s5], €3, [Sg]))v s (snlsens [S:L—‘rl])
and s,41~:5,, ;1. From a transition s,i1—€n41—5n42
of 7/, we know sp—*s,4+2. From Definition 11 (a),
there exists a node [s}, ,] in SRG(S) such that
551 o~ cSny2. Moreover, from Theorem 1, for
such that ¢(sp11) = s34, there exists a tran-
sition s —@(ent1)—d(sp42).  Since spi12/csy o,
O(Sny2)~csy o Hence, from Definition 11 (c), there
exists an edge ([s); 1], d(ent1),[s542]). This means
that ([31]761*7 [53])’ Tt ([5;]7627 [S:Hrl])v ([SZ+1]762+17
[s712]) is a directed path in SRG(S) with the required
properties.

* * *
s] —el — 8§ — ... —

— S, — €en —
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