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Abstract

This paper presents a new method to tackle the feature interaction problem in Internet telephony with the CPL (Call

Processing Language) programmable service environment. To cope with the problems of the programmable service, we

first propose a notion of semantic warnings, which are guidelines for non-experts to assure semantic correctness of

individual CPL scripts. Then, we define feature interactions as semantic warnings over multiple CPL scripts. On the

basis of this definition, we propose a method for detecting feature interactions. We conduct an experimental evaluation

with an open-source VoIP system. The results show that the proposed method identifies a semantic redundancy in a

ready-made feature and five interactions among pairwise combinations of the features. We also discuss the applicability

and limitations from the viewpoint of implementation.
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1. Introduction

Recent advances in networks enable the devel-

opment of increasingly sophisticated communica-

tion services. For providers of such services,

supplementary features (or simply features) are
playing an essential role to offer attractive value-

added services. For example, in the traditional
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Public Switched Telephone Network (PSTN), a

number of features, such as Call Waiting and Free-

phone Billing, were developed within the archi-

tecture of the Intelligent Network (IN) [20,22] to

meet evolving market needs.

An individual feature is usually specified with-
out knowledge of other features to achieve mod-

ular design and implementation. However, as two

or more features can be activated simultaneously,

problems arise when some functions of one fea-

ture conflict with those of others. These conflicts

are generally called feature interactions [3]. They

cause unexpected (often undesirable) behavior

for customers and/or systems, possibly leading
the whole system to malfunction. Thus, feature
ed.
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interactions can severely decrease the total quality

of service.

During the last decade, a number of research

efforts to tackle the feature interaction problem

have been conducted (see books [19] and surveys

[2,6]). Most of them deal with the classic telephony
features of PSTN/IN networks. Interactions in this

domain are now fairly well understood. Recently,

feature interactions in new application areas are

being actively discussed, including e-mail [4],

building control [10] and Web services [18]. The

conventional approaches can be helpful to under-

stand some interactions in these emerging appli-

cation. However, many domain-specific problems
remain to be solved.

This paper focuses on Internet telephony (VoIP)

[15] among such emerging applications. Internet

telephony has been extensively studied at the net-

work protocol level (i.e., SIP [13] and H.323 [21]).

The concern is now shifting to the application ser-

vice level, i.e., how to provide value-added features

on Internet telephony. For this, there are two
complementary approaches. The first one is to re-

use the PSTN/IN features from IP networks

through APIs (e.g., JAIN [23]). Although this is

quite challenging, we do not discuss it in this paper.

Another approach, which is the one of interest

here, is the programmable service [8] approach. It

allows end-users or third parties to define and

create their own features. The Call Processing

Language (CPL) [7], based on XML, is recom-

mended as a feature description language in

RFC2824 of IETF. CPL is gaining popularity, and

major VoIP systems (e.g., [24,25]) have adopted it

as a feature description language. Just by writing

feature definitions in CPL on the local VoIP ser-

ver, users can easily deploy their own features.

Also, in CPL, users can delete and modify the
features at any time. Thus, the programmable

service significantly improves the range of the

user’s choice and flexibility.

Feature interactions also occur in Internet tele-

phony. They are becoming an increasingly pressing

problem, since more and more sophisticated fea-

tures are created and deployed [1,9]. Especially in

the context of programmable services, the following
issues are domain-specific problems to which the

conventional approaches cannot be directly applied.
(P1) Features created by non-expert users: In

programmable services, end users have to control

the quality of features, although most end users do

not have the expertise of telecom engineers.

Therefore, users are very likely to create features

without concern for logical consistency and cor-
rectness of the features, and even less so for feature

interactions with others.

(P2) Distributed feature provision: The features

defined are completely distributed over the Inter-

net, and there is no centralized feature server. This

fact means that it is impossible to enumerate all

possible features. Thus, we cannot conduct off-line

feature interaction detection (e.g., [12,16]), nor
prepare resolution schemes in advance such as

feature priority [5,17].

The goal of this paper is to establish a definition

and describe a detection method for feature inter-

actions within the CPL programmable service

environment. To achieve this, we propose two new

methods corresponding to the above problems P1

and P2.
First, we present semantic warnings for CPL

scripts to address problem P1. The syntax of CPL

is strictly defined by a DTD (Document Type

Definition). However, compliance with the DTD

does not guarantee the semantic correctness of a

CPL script. As far as we know, there exist no

guidelines for users to assure the semantic cor-

rectness of individual CPL scripts. Focusing on the
structure of CPL and semantic aspects of tele-

phony features, we have identified eight classes of

warnings. The warnings can provide certain

guidelines by which the users can improve the

semantic correctness of their own CPL scripts.

Next, to address problem P2, we propose a new

definition of feature interaction, and of its detec-

tion method in the CPL environment. In general,
feature interactions can be defined informally as

violations of feature requirements (or intentions)

that are caused by the combination of multiple

features. In the CPL environment, the violation

occurs when a CPL script is not executed as de-

scribed, under the influence of other CPL scripts

within the call. Note that the violation can be

observed only at run time, and cannot be predicted
reasonably by off-line analysis. Thus, the new

definition of feature interaction must be dependent
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on call scenarios at run time, which is significantly

different from the definitions in the literature

[6,19]. Our key idea is to define feature interaction

(i.e., the violation) as a semantic warning over

multiple CPL scripts, each of which is semantically

valid. We propose a combine operator and some
new notions for CPL scripts (i.e., complete, safe).

We evaluate the proposed method through

application to a practical VoIP system––VOCAL

(Vovida Open Communication Application Li-

brary) [25]. In the experiment, the proposed seman-

tic warnings revealed a semantic redundancy in a

ready-made feature of VOCAL. Also, it was shown

that CPL scripts containing warnings could lead
VOCAL to problematic behaviors. Moreover, the

proposed detectionmethod has identified five feature

interactions among pairwise ready-made features.

We also examine the applicability and limita-

tions of the proposed method from the viewpoint

of implementation. We demonstrate that the pro-

posed method is well suited to the detection of

script-to-script interactions in a single VoIP server,
or server-to-server interactions within a trusted

network environment.

This paper was originally published as a work-

shop paper in the International Workshop

FIW2003 [11]. Changes were made for this ver-

sion, most significantly the addition of the evalu-

ation and implementation parts. We believe that

these new results clarify the applicability and lim-
itations of the proposed method against practical

VoIP systems.
2. CPL programmable services in VoIP

2.1. Call Processing Language (CPL)

We first review the definition of CPL briefly. A

CPL script is XML text whose syntax definition is

prescribed by the CPL’s DTD (see [7,8] for the full

specification). Each user is supposed to have at

most one CPL script at a time. 1 A CPL script is
1 Some practical systems (including our evaluation test-bed

VOCAL) do not follow this recommendation, because of

maintainability of ready-made features. We discuss this prob-

lem later in Section 5.4.
composed of mainly four types of constructors:

top-level actions, switches, location modifiers and

signaling operations.

Top-level actions: Top-level actions are first in-

voked when a CPL script is executed: outgoing

(or incoming) they specify a tree of actions taken
on the user’s outgoing call (or incoming call,

respectively). subaction describes a subroutine

to increase re-usability and modularity.

Switches: Switches represent conditional bran-

ches in CPL scripts. Depending on the condi-

tions specified, there are five types of switches:

address-switch, string-switch, lan-

guage-switch, time-switch and prior-

ity-switch.

Location modifiers: CPL has an abstract model,

called location set, for locations to which a call is

to be directed. The set of locations is stored as an

implicit global variable during call processing. For

outgoing call processing, the location is initialized

to the destination address of the call. For incoming

call processing, the location set is initialized to the
empty set. During execution, the location set can

be modified by three types of modifiers: loca-

tion adds an explicit location to the current

location set; lookup obtains locations from out-

side the script; remove-location removes some

locations from the current location set.

Signaling operations: Signaling operations trig-

ger signaling events in the underlying signaling
protocol for the current location set. There are

three operations: proxy forwards the call to the

location set currently specified; redirect

prompts the calling party to make another call to

the current location set, then terminates the call

processing; reject causes the server to reject the

call attempt and then terminates the call process-

ing.

2.2. Example of CPL features

We start with a simple feature, namely Origi-

nating Call Screening (OCS, for short). Suppose

the following requirement: Alice (alice@in-

stance.net) wants to block any outgoing calls

from her end system to Bob (bob@home.org).
Fig. 1 shows an implementation of Alice’s script

sa. In Fig. 1, the first three lines represent the

mail to: http://alice@instance.net
mail to: http://alice@instance.net
mail to: http://bob@home.org


<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>

<outgoing>
<address-switch field="destination" >
<address is="sip:bob@home.org">

<reject status="reject"
reason="No call to Bob is permitted" />

</address>
</address-switch>

</outgoing>
</cpl>

Fig. 1. A CPL script sa of OCS.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<subaction id="voicemail">

<location url="sip:chris@voicemail.example.com">
<proxy />

</location>
</subaction>

<incoming>
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:chris@office.example.com">

<proxy />
</location>

</address>
<address subdomain-of="crackers.org">

<reject status="reject"
reason="No call from this domain allowed" />

</address>
<address subdomain-of="instance.net">

<location url="sip:bob@home.org">
<redirect />

</location>
</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</incoming>

</cpl>

Fig. 2. A CPL script sc of DCF.

2 The use of the term warning is borrowed from those of

compilers.
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declaration of XML and DTD. The tag <cpl>

means the start of the body of the CPL script.

The top-level action <outgoing> describes ac-

tions activated when Alice makes a call. Next,

<address-switch> specifies a conditional

branch. In this example, the condition is extracted
from the destination address of the call

(field¼ 00destination00). If the destination

address matches bob@home.org (<address

is¼ 00bob@home.org00>), the call is rejected

(<reject status. . ./>). If it does not match, the
call is proxied to the destination address (This is

done by default behavior of CPL, although the

proxy operation is not explicitly specified. See
Section 4.2.1).

The next example is a bit more complicated.

Chris (chris@example.com) wants to

• receive calls from domain example.com at

office chris@office.example.com.

• reject any call from users belonging to crack-

ers.org.
• redirect any call from clients within instan-

ce.net to Bob’s home at bob@home.org.

• proxy any other calls to his voicemail at

chris@voicemail.example.com.

Fig. 2 shows an implementation of Chris’s

script sc. Let us call this feature Domain Call Fil-
tering (DCF). The portion surrounded by <sub-
action> </subaction> defines a subaction

invoked from the main-routine, where the call is

proxied to the voicemail of Chris. <incoming>

specifies actions activated when Chris receives an

incoming call, where each of the above require-

ments is coded as a branch (output) of <ad-

dress-switch>.
3. Semantic warnings for CPL scripts

As described in [7], compliance with the DTD is

not a sufficient condition for the correctness of a

CPL script. This is because DTD is not powerful

enough to express semantic aspects of the scripts.

Therefore, there is enough room for non-expert

users to create semantic flaws in the feature logic.

To detect the source of such semantic flaws in

individual CPL scripts, we propose the concept of
semantic warnings. Note that we use the term

warnings instead of errors, since they do not nec-

essarily identify errors depending on the intention

of the users. 2 Focusing on constraints of CPL and

semantic aspects of telephony features, we have

identified eight types of warnings so far.
3.1. Multiple forwarding addresses (MFAD)

Definition: The execution reaches <proxy> or

<redirect> while multiple addresses are con-

tained in the location set.

mail to: http://bob@home.org
mail to: http://bob@home.org
mail to: http://chris@example.com
mail to: http://chris@office.example.com
http://crackers.org
http://crackers.org
mail to: http://bob@home.org
mail to: http://chris@voicemail.example.com
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Effects: By design, CPL allows calls to be

proxied (or redirected) to multiple locations

simultaneously, by cascading <location> tags

(i.e., a forking proxy [13]). However, this drasti-

cally increases the potential of race conditions

among multiple end systems. A typical example is
that a user simultaneously sets the forwarding

address to his cell phone and voicemail that

immediately answers the call. Then, the call never

reaches his cell phone.

Example CPL: Fig. 3(A) shows an example.

The user is setting three different addresses 1001,

1002, 7000. When the user makes a call, the call

is proxied simultaneously to the three destina-
tions, among which race conditions may be

expected.

3.2. Unused subactions (USUB)

Definition: A subaction (let it be <subaction

id¼ 00foo00>) exists, but it is not called <sub

ref¼ 00foo00>.
Effects: The subaction is defined but not used.

The defined subaction is completely redundant,

and should be removed to decrease the server’s

overhead.

Example CPL: Fig. 3(B) shows an example. In

this script, a subaction rejectcall is declared in

the subaction part, but it is not used in the body of

the script. Hence, rejectcall is redundant and
should be removed.
3.3. Call rejection in all execution paths (CRAE)

Definition: All execution paths terminate at

<reject>.

Effects: The call is rejected no matter which

path in the script is taken. No call processing is
performed, and all actions executed so far are in

vain. If the user wants to reject all calls explicitly,

this might not be a problem. However, complex

conditional branches and deeply nested tags make

this problem difficult to find, and could be con-

trary to the user’s intention.

Example CPL: Fig. 3(C) shows an example. By

this script, all incoming calls are rejected, no
matter who the originator is. All actions and

evaluated conditions are meaningless after all.
3.4. Address set after address switch (ASAS)

Definition: When <address> and <other-

wise> tags are specified as outputs of <ad-

dress-switch>, the same address evaluated
in the <address> is set in <otherwise>

block.

Effects: The <otherwise> block is executed

when the current address does not match the one

specified in <address>. If the same address is set

as a new current address in an <otherwise>

block, then a violation of the conditional branch

might occur. A typical example is that a certain
address is blocked by <address-switch>,

however, the call is proxied to the address in

<otherwise>.

Example CPL: Fig. 3(D) shows an example.

When the user makes an outgoing call, this script

checks the destination of the call. The call should

be rejected if the destination address is prefixed

with 5000, according to the condition specified in
<address> (subdomain-of works as ‘‘prefix

matching’’ when used with digits). However, in the

<otherwise> block, the call is proxied to

5000@vocalserver.domain, which must have

been rejected.
3.5. Overlapping conditions in single switch

(OCSS)

Definition: Let A be a switch, and let condA1 and
condA2 (arranged in this order) be conditions

specified as output tags of A. Then, condA1 is im-
plied by condA2.

Effects: CPL evaluates multiple conditions in

the order in which their tags are presented, and the

first tag to match is taken. By the above definition,
whenever condA2 becomes true, condA1 is true.

Hence, condA1 is always taken and condA2 tag

is never executed, which is a redundant descrip-

tion.

Example CPL: Fig. 3(E) shows an example. The

first condition (subdomain-of¼ 004000) is implied
by the second one (subdomain-of¼ 0040000),
since 40 is a substring of 400. As a result, the
second condition block is shadowed and thus is

unreachable.

mail to: http://5000@vocalserver.domain


<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<location url="sip:1001@vocalserver.domain">
<location url="sip:1002@vocalserver.domain">
<location url="sip:7000@vocalserver.domain">

<proxy>
</proxy>

</location>
</location>
</location>

</incoming>
</cpl>

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<subaction id="rejectcall">
<reject reason="feature activated"
status="reject"></reject>

</subaction>
<incoming>

<location url="sip:1001@vocalserver.domain">
<proxy/>

</location>
</incoming>

</cpl>(A) (B)

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">

<address subdomain-of="1">
<reject status="reject" reason=
"I don’t accept call from subdomain of 1"/>

</address>
<address subdomain-of="2">

<reject status="reject" reason=
"I don’t accept call from subdomain of 2"/>

</address>
</address>
<otherwise>

<reject status="reject" reason=
"I don’t accept call from anyone"/>

</otherwise>
</address-switch>

</incoming>
</cpl>

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<outgoing>
<address-switch field="original-destination"
subfield="user">
<address subdomain-of="5000">

<reject status="reject"
reason="I don’t call 5000"></reject>

</address>
<otherwise>

<location url="sip:5000@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</outgoing>

</cpl>

(C) (D) 

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">

<address subdomain-of="40">
<location url="sip:1001@vocalserver.domain">

<proxy/>
</location>

</address>
<address subdomain-of="400">

<location url="sip:1002@vocalserver.domain">
<proxy/>

</location>
</address>
<otherwise>

<location url="sip:1003@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>

</cpl>

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<incoming>

<address-switch field="origin" subfield="user">
<address subdomain-of="30">
<location url="sip:1001@vocalserver.domain">

<proxy/>
</location>

</address>
<address subdomain-of="40">
<location url="sip:1001@vocalserver.domain">

<proxy/>
</location>

</address>
<otherwise>
<location url="sip:1001@vocalserver.domain">

<proxy/>
</location>

</otherwise>
</address-switch>

</incoming>
</cpl>

(E) (F) 

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">

<address subdomain-of="400">
<address-switch field="origin" subfield="user">

<address subdomain-of="40">
<location url="sip:1001@vocalserver.domain">
<proxy/>

</location>
</address>
<otherwise>

<reject status="reject"></reject>
</otherwise>

</address-switch>
</address>
<otherwise>

<location url="sip:1002@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>

</cpl>

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">
<address is="sip:4000@vocalserver.domain">

<address-switch field="origin"
subfield="user">
<address is="sip:2000@vocalserver.domain">

<location url=
"sip:5000@vocalserver.domain">
<proxy/>

</location>
</address>
<otherwise>
<location url=

"sip:1001@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</address>
<otherwise>

<location url=
"sip:1002@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>

</cpl>(G) (H) 

Fig. 3. Example CPL scripts containing semantic warnings. (A) Example of MFAD, (B) example of USUB, (C) example of CRAE,

(D) example of ASAS, (E) example of OCSS, (F) example of IASS, (G) example of OCNS and (H) example of ICNS.

610 M. Nakamura et al. / Computer Networks 45 (2004) 605–624
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3.6. Identical actions in single switch (IASS)

Definition: The same action is specified in all

conditions of a switch.

Effects: Whichever conditional branch is taken,
the same action is executed. Therefore, the condi-

tional branch specified in the switch is meaning-

less. In such case, this switch should be eliminated

to reduce the complexity of the logic.

Example CPL: Fig. 3(F) shows an example.

This script specifies a conditional branch of the

caller’s address. However, whatever the address is,

the call is proxied to 1001@vocalserver.
domain, and thus, the switch is not needed.
3.7. Overlapping conditions in nested switches

(OCNS)

Definition: Let A and B be switches of the same
type, and let condA and condB be the conditions of
A and B, respectively. Then, [A is nested in Bs
condition block] and [condB implies condA].

Effects: Since CPL has no variable assignment,

any condition that is evaluated to be true (or

false) remains true (or false, respectively). 3 As-

sume that condB implies condA. Bs condition

block, in which A is specified, is executed only

when condB is true. By the assumption, condA
always becomes true when evaluated, therefore,
As condition block is unconditionally executed. If
A has an otherwise block, then the block is

unreachable.

Example CPL: Fig. 3(G) shows an example.

When an incoming call arrives, the script first

checks the address of the caller. If the address

contains 400, then the second switch checks if 40

is contained. However, since the condition for the
second switch is implied by the first one, it is a

redundant description. Also, <reject/> in

<otherwise> is unreachable.
3 Indeed, <location> virtually defines variable assignment

to the location set. However, the location set is referred to by

the signaling operations only, but is not evaluated explicitly in

any conditions in the script.
3.8. Incompatible conditions in nested switches

(ICNS)

Definition: Let A and B be switches of the same
type, and let condA and condB be the conditions of
A and B, respectively. Then,

(a) (A is nested in Bs condition block) and (condA
and condB are mutually exclusive), or

(b) (A is nested in Bs otherwise block) and (condA
implies condB).

Effects: Let us consider ðaÞ first. Bs condition
block, in which A is specified, is executed only

when condB is true. However, condA and condB are
exclusive, so condA cannot be true at this time.

Therefore, As condition block is unexecutable. ðbÞ
is the complementary case of ðaÞ, where As con-
dition block is also unreachable.

Example CPL: Fig. 3(H) shows an example for

ICNS ðaÞ. When an incoming call arrives, the script
first checks the caller’s address. If the address

matches 4000@vocalserver.domain, the sec-

ond address-switch evaluates the caller’s address.

If the address matches 2000@vocalserver.

domain, the call is proxied to 5000@vocal-

server.domain. However, this proxy operation

never occurs, since the address cannot match both

4000 and 2000, simultaneously.

The above eight warnings can occur even if a

given CPL script is syntactically valid against the

DTD. The semantic warnings in a single script can

be detected by a simple static (thus, off-line)
analysis. Theoretically speaking, it is not easy to

statically determine a condition overlap or impli-

cation in general logic formulae. However, a con-

dition in CPL is basically constructed by the fixed

number of parameters and static values (quoted

by 00). Hence, evaluating the overlap and inclusion
among these static values associated with a certain

parameter practicably allows us to detect OCSS,
OCNS, ICNS in a static way, as implemented in

our tool CPL checker (see Section 5.2).
Definition (Semantically safe). We say that a CPL
script is semantically safe iff the script is free from
semantic warnings.

mail to: http://1001@vocalserver.domain
mail to: http://1001@vocalserver.domain
mail to: http://4000@vocalserver.domain
mail to: http://2000@vocalserver.domain
mail to: http://2000@vocalserver.domain
mail to: http://5000@vocalserver.domain
mail to: http://5000@vocalserver.domain
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4. Feature interactions in CPL environment

4.1. Key idea

Even if each user creates a safe script, feature
interactions may occur when multiple scripts are

executed simultaneously. Since each user has at

most one CPL script (see Section 2.1), interactions

occur among different scripts owned by different

users.

Interaction between OCS and DCF: Let us recall

two features OCS and DCF in Section 2.2,

implemented as sa in Fig. 1 and sc in Fig. 2,
respectively. Suppose a call scenario where Alice

(alice@instance.net) calls Chris (chris@

example.com). First, Alice’s script sa is executed.
Since Chris is not screened in sa, the call is proxied
to Chris. Next, Chris’s script sc is executed. Since
Alice belongs to a domain instance.net, the

call is redirected to Bob (bob@home.org). As a

result, Alice can make a call to Bob, although this
call must have been blocked in sa. Thus we can say
that sa and sc interact.
The interaction in the above example is quite

similar to the semantic warning ASAS. However,

this situation happens within the combination of

multiple scripts. Based on this observation, we ex-

tend the concept of semantic warnings over mul-

tiple scripts, and characterize feature interactions
by the semantic warnings. Before formalizing

feature interactions in the CPL environment, we

define some new notions with respect to CPL

scripts in the next subsection.
4 For example, the VOCAL system adopts redirect for D3.
4.2. Preliminaries

4.2.1. Complete CPL scripts

When the execution of a CPL script reaches an

unspecified condition or an empty signaling oper-

ation, it follows a default behavior (see Section 11

of [7] for more details). Here are some exam-

ples:

D1: In an outgoing action, if there is no location

modifier and no signaling operation is
reached, then proxy to the destination of the

call.
D2: In an incoming action, if there is no location

modifier and no signaling operation is

reached, then treat it as if there is no CPL

script (i.e., the server tries to connect the

call to an end system of the owner of the
script).

D3: If a location modifier exists but no signaling

operation is specified, proxy or redirect to

the location, based on the server’s standard

policy.

The default behaviors are taken implicitly from

the viewpoint of users, based on the server’s policy
and the underlying protocol. 4 Hence, they may

sometimes contradict a user’s intention; the

implicitness should be hopefully eliminated from

every script. For this purpose, we define a new

class of CPL scripts:

Definition (Complete script). We say that a CPL
script is complete iff no default behavior is taken in
any possible execution path (i.e., all actions taken

are explicitly specified in the script).

The default behaviors must be simulated deter-

ministically by using auxiliary information on the

VoIP server. Hence, we assume that every CPL

script on a VoIP server can be transformed into a

complete script without changing the logic of the
original script. The followings are guidelines to

achieve the transformation:

(a) Make all conditional branches complemen-

tary. For instance, an <otherwise> block

must be added to every switch if it is not pres-

ent.

(b) Based on the server’s standard policy, specify
an appropriate signaling operation in every

terminating node that has any location modi-

fier.

(c) Add empty <incoming> or <outgoing>

blocks if either is not present.

For example, consider again the CPL script in

Fig. 1. This script is not complete, since there is no

mail to: http://alice@instance.net
mail to: http://chris@example.com
mail to: http://chris@example.com
mail to: http://bob@home.org


<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD

RFCxxxx CPL 1.0//EN" "cpl.dtd">
<cpl>

<outgoing>
<address-switch field="destination" >

<address is="sip:bob@home.org">
<reject status="reject"

reason="No call to Bob is permitted" />
</address>
<otherwise>

<proxy />
</otherwise>

</address-switch>
</outgoing>
<incoming>

</incoming>
</cpl>

Fig. 4. A complete CPL script sa of OCS.

Table 1

Example of successor functions for sa

Call scenarios exitðsa; ciÞ nextðsa; ciÞ typeðsa; ciÞ
c1 (Alice calls
Bob)

<reject

. . ./> line

8–9

None Reject

c2 (Alice calls
Chris)

<proxy

. . ./> line

12

sc Proxy
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action specified when the destination address is

not bob@home.org. Based on the default

behavior and the guidelines above, the script can

be transformed into a complete one as shown in

Fig. 4.

4.2.2. Successor functions

Suppose that we have a complete and safe CPL

script s, and that we want to examine feature

interactions between s and other related scripts.

Then, we need to know at least which script should

be executed immediately after s. Since s is com-
plete, the execution of s must exit on an empty tag
or a certain signaling operation (proxy, redirect or

reject), with a location set containing the next
address(es) the call is directed to.

Note that the next script varies depending on a

given call scenario, which is dynamically charac-

terized by a set of parameters, typically including

destination address, originator address, time,

caller preferences, and so on. Note also that the

number of the next script is at most one, since s is
safe (i.e., s must be free from MFAD). These dy-
namic parameters are supposed to be obtained

from the call setup message issued by a user agent.

Specifically, we assume that the following func-

tions are available at run time for a given CPL

script s and a call scenario c.
Definition (Functions). For a complete and safe

CPL script s and a call scenario c, we define the
following functions:

exitðs; cÞ: returns the tag of a signaling opera-
tion executed at the end of s under c.
nextðs; cÞ: returns the next CPL script executed

following s under c.
typeðs; cÞ: returns the type of the signaling

operation performed by exitðs; cÞ: proxy, redirect,
reject or end (for empty signaling operation).

For instance, consider again the example in

Section 2.2, and the scripts sa in Fig. 4 and sc in
Fig. 2. Table 1 summarizes values of the functions,

with respect to two instances c1 and c2 of call
scenarios.

4.3. Feature interactions among two scripts

First, let us consider two complete scripts s and
t only. To define feature interactions between s
and t, we need to capture a combined behavior of s
and t. For this purpose, we introduce a combine

operator. Intuitively, the combine operator merges

two scripts s and t such that t is executed after s.
This order is defined only when the call is proxied

from s to t. In the case that s redirects a call to t,
the call reverts to the caller, and s terminates.
Then, a new call is originated from the caller to t
without passing through s. Note that the combine
operator depends on a given call scenario, because
t depends on the scenario.

Definition (Combine operator). Let c be a call

scenario, and let s and t be complete scripts such
that typeðs; cÞ ¼ proxy and nextðs; cÞ ¼ t. Then, a
combined script r ¼ s .c t is a CPL script obtained

from s and t by the following procedures:

Step 1: If any subaction (let it be <subaction
id¼ 00foo00>) is defined in s (or t), eli-
minate it by replacing <sub ref¼
00foo00/ > with the body of the subaction.

mail to: http://bob@home.org


<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">
<cpl>

<outgoing>
<address-switch field="destination" >

<address is="sip:bob@home.org">
<reject status="reject"

reason="No call to Bob is permitted" />
</address>
<otherwise>

<remove-location>
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:chris@office.example.com">

<proxy />
</location>

</address>
<address subdomain-of="crackers.org">

<reject status="reject"
reason="No call from this domain is permitted" />

</address>
<address subdomain-of="instance.net">

<location url="sip:bob@home.org">
<redirect />

</location>
</address>
<otherwise>

<location url="sip:chris@voicemail.example.com">
<proxy />

</location>
</otherwise>

</address-switch>
</remove-location>
</otherwise>

</address-switch>
</outgoing>
<incoming>
</incoming>

</cpl>

Fig. 5. A combined CPL script sa .c2 sc.
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Step 2: Let InðtÞ be the body of the incoming ac-
tion of t (i.e., the portion surrounded by
<incoming> � � � </incoming>). In

s, replace <proxy/> pointed to by
exitðs; cÞ with <remove-location>

InðtÞ </remove-location>. Let the

resulting script be r.
5 The forwarding loop can be managed by a loop detection

mechanism in the underlying protocol [13]. However, how to

process the detected loop is left to the application, thus we

regard it as an interaction.
The combine operator .c makes a chain be-

tween s and t, by merging the <proxy> operation
executed at the end of s, with the <incoming>
action of t executed next. The <remove-loca-
tion> inserted in Step 2 simulates that the loca-

tion set is initialized to empty when the incoming

action occurs (see Section 2.1). Note that the

combine operation does not compromise the syn-

tax structure of s and t, since both <remove-

location> InðtÞ </remove-location> and
<proxy/> are defined as nodes in the DTD of

CPL. Hence, if both s and t are syntactically valid,
then s .c t is also valid.
Based on the key idea discussed in Section 4.1,

we now define feature interactions among two

scripts s and t as semantic warnings over s .c t.
Moreover, we also regard the forwarding loop as
an interaction (i.e., s proxies the call to t, while t
proxies the call to s, too). 5

Definition (Feature interaction among two scripts).
Let s and t be complete scripts, and let c be a call
scenario. We say that s and t interact with respect
to c, iff either of the following conditions holds: (a)
both s and t are semantically safe, but s .c t is not
safe, or (b) nextðs; cÞ ¼ t and nextðt; cÞ ¼ s hold.

Let us consider two scripts sa (in Fig. 4) and sc
(in Fig. 2). Also, take a scenario c2 in Table 1. Fig. 5



Fig. 7. Algorithm Succðs; cÞ for computing a set of scripts to be
checked.
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shows a combined script sa .c2 sc. Now, both sa and
sc are semantically safe, but sa .c2 sc is not safe. It
contains a semantic warning ASAS, since address

bob@home.org evaluated in <address> is set in

the <otherwise> block. This is just the interac-

tion explained in Section 4.1.

4.4. Feature interaction detection

A call can involve more than two scripts, be-

cause of successive redirect and proxy operations.

Hence, the definition of feature interactions is

generalized as follows.

Definition (Feature interactions). Let s0 be a given
script of the call originator, and let c be a given call
scenario. Let s1; s2; . . . ; sn be scripts, where si
proxies the call to siþ1 under a call scenario c.
Then, we say that feature interactions occur with
respect to s0 and c, iff either of the following con-
ditions holds:

(a) all of sið06 i6 nÞ are semantically safe, but

there exists some k ð16 k6 nÞ such that

s0 .c s1 .c � � � .c sk is not semantically safe, or
(b) there exists some i, j ði < jÞ such that si ¼ sj.

Fig. 6 shows an example of a call scenario

where multiple scripts are successively executed. In

the figure, a box represents a CPL script. A solid
arrow represents a proxy operation between

scripts, while a dotted arrow describes a redirect

operation. To identify feature interactions in this

call scenario c, we must check the semantic

warnings for the following six scripts: (1) s, (2)
s .c t, (3) s .c r, (4) s .c r .c v, (5) s .c r .c v .c w and

(6) s .c r .c v .c x.
We present an algorithm to compute a set of

combined scripts that must be checked in feature

interaction detection. Fig. 7 shows pseudo code to
s t

wr v

x

Fig. 6. Multiple scripts involved in a call scenario.
compute the set R of the scripts for a given origi-
nating script s and a call scenario c. In the algo-
rithm, we define a procedure check_loop(t,c).

This abstract procedure checks if script t forms

the forwarding loop in the call scenario c, by using

a loop detection mechanism. We assume that the

loop detection is performed at run time in our

implementation framework, which will be dis-

cussed later in Section 6. If a loop is detected, the
procedure terminates the algorithm with some

error reports.

The algorithm Succ first puts the given script s
itself in the set R. Next, if the processing type is
proxy, Succ first checks a forwarding loop by

check_loop. If no loop is detected, Succ com-

bines s with its successive scripts t that are recur-
sively computed by setting the next script as the
initial script. Then, it puts them in R. If the pro-
cessing type is redirect, Succ recursively obtains a

set of scripts starting with the redirected script,

and then puts them in R. For example, for the call
scenario c in Fig. 6, Succðs; cÞ computes the above
six scripts.

Finally, we present a feature interaction detec-

tion algorithm. We assume that each individual
script is semantically safe.

Feature interaction detection algorithm

Input: A CPL script s of a call originator, and a
call scenario c.
Output: Feature interactions occur or not.

mail to: http://bob@home.org
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Procedure: Compute Succðs; cÞ, and check if

each script in Succðs; cÞ is semantically safe. If
all of the scripts are semantically safe, return

‘‘feature interaction does not occur’’. Otherwise,

return ‘‘feature interaction occurs’’ with the
corresponding (combined) scripts. Also, if

Succðs; cÞ stops due to a forwarding loop (de-
tected by check_loop), return ‘‘loop interac-

tion occurs’’.
5. Evaluation with VOCAL Internet telephony

system

5.1. VOCAL VoIP System

The VOCAL system, developed by an open-

source community vovida.org [25], is a col-

lection of server applications that provides VoIP

telephony services. The reason why we chose

VOCAL as our evaluation test-bed is that: (a) it
supports the CPL programmable service envi-

ronment, and (b) the source code, feedback and

comments are open for public use. VOCAL

contains a SIP stack as its standard protocol. It

works as a SIP proxy which can communicate

with a variety of phone appliances, including SIP

phones and SIP User Agent (UA) software

applications. At the application service level,
VOCAL supports CPL-based feature provision-

ing. Upon each call setup from a user, a feature

server tells the redirect server how the call

should be processed, based on the CPL script of

the user.

VOCAL provides two options for a user to

deploy a feature. The first option is to use the

VOCAL ready-made features, whose default tem-
plates are already prepared by VOCAL. Using a

built-in interface, called the feature provisioning

GUI, a user can activate, deactivate and configure

features. Based on the feature configuration, the

GUI automatically generates the corresponding

CPL scripts. In the following, we briefly explain

the five core features. Each of the features is clas-

sified into originating features (CB and CIB) or
terminating features (CFA, CFB and CS),

depending on whether the feature is activated by a

caller or a callee.
Call blocking (CB): CB prevents the user from

establishing connections to specified parties such

as 1–900 or 976 numbers.

Calling party identity blocking (CIB): CIB al-

lows a user to control whether or not his/her name

and number are delivered.
Call forward all calls (CFA): CFA allows a user

to re-route all calls to a specified alternative

number.

Call forward no answer or busy (CFB): CFB

allows a user to specify where a busy or un-

answered call should be re-routed.

Call screening (CS): CS prevents incoming calls

from specified parties from establishing connec-
tions with the user.

The second option is to write a CPL script from

scratch. We call these scratch-built features cus-

tomized features to distinguish them from the

ready-made features. For this, there is no specific

GUI available. The user just carefully writes a

CPL script in a designated directory. Then,

restarting a feature server’s process enables the
new script.

5.2. Setting up the experiment

The goal of the experiment is to validate the

applicability of the proposed method to a practical

situation. The experiment consists of the following

two parts:
Validation of semantic warnings: We check

semantic problems in each of the VOCAL ready-

made features by means of the semantic warnings.

Also, we validate the effect of the semantic warn-

ings by observing how VOCAL behaves for the

customized feature scripts containing the warn-

ings.

Detection of feature interactions: We apply the
proposed feature interaction detection method to

the VOCAL ready-made features.

We have installed VOCAL-1.4.0 on a Linux

server (Vine Linux 2.6). As a SIP client (user

agent), we have chosen Microsoft Windows Mes-

senger 4.7 running on Windows XP, and used

Voice Chat for voice communication. Thus, our

test-bed consists of one Linux server (with
VOCAL) and several Windows clients (with MS

Messenger). Deployment of the ready-made fea-



Fig. 8. Screenshots of developed tools. (a) CPL checker, (b) FI simulator.

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<subaction id="rejectcall">
<reject reason="feature activated"
status="reject"></reject>

</subaction>
<incoming>
<address-switch field="origin" subfield="user">

<address subdomain-of="40">
<sub ref="rejectcall"></sub>

</address>
<address subdomain-of="400">

<sub ref="rejectcall"></sub>
</address>
<address subdomain-of=";">

<sub ref="rejectcall"></sub>
</address>
<otherwise>

<lookup clear="yes" source="registration"
timeout="2">
<success>

<proxy ordering="first-only"></proxy>
</success>
<notfound>

<sub ref="rejectcall"></sub>
</notfound>

</lookup>
</otherwise>

</address-switch>
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tures is performed by the provisioning GUI with a

Web Interface on the clients. For the creation of

the customized features, we edited the CPL script

directly on the server.
We have developed a set of tools to support the

proposed method. Fig. 8(a) shows the CPL

checker, which detects the semantic warnings for a

given CPL script. The CPL checker also performs

syntax checking to validate conformance to the

XML syntax and to the DTD of CPL. Thus, it can

be used for debugging CPL scripts as well. Fig.

8(b) shows the FI simulator, which simulates exe-
cution of CPL scripts. For a given CPL script and

a call scenario, the FI simulator automatically

combines related scripts by the Succ algorithm,

then reports feature interactions if detected.

</incoming>
</cpl>

Fig. 9. Script of CS containing OCSS.
5.3. Validation of semantic warnings

5.3.1. Application to ready-made features

We have applied our method of warnings to the

five ready-made features of VOCAL. Among the

five features with various configurations, we have

identified a semantically redundant case in CS by

the semantic warning OCSS. CS allows the user to

configure multiple screening addresses. If the user

sets two screening addresses where the second
address is implied by the first one, the second one

is always ignored.

Fig. 9 shows a CPL script of CS generated from

the provisioning GUI. In this script, the user

specifies two screening numbers 40 and 400. All

calls from addresses containing these numbers are
screened (rejected). However, since the address
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containing 400 also contains 40, the second con-

dition with 400 is always ignored. 6 This case is not

necessarily an error, but just a redundancy. How-

ever, if the user wants to specify a different

rejecting action for the number 400, this redun-

dancy may violate the user’s intention.
For the other four ready-made features, no

semantic warnings were found. This is implied by

the fact that the current version of the GUI sup-

ports a very limited class of features programma-

ble in CPL. However, there is the possibility of

introducing additional semantic checks in future

extensions, as shown in the next subsection.

5.3.2. Validation with customized features

To justify the proposed warnings, we took the

CPL scripts in Fig. 3, and let VOCAL execute

them as customized features. We executed each

script one-by-one and observed how VOCAL be-

haved. As a result, the problematic effects antici-

pated in Section 3 were exactly reproduced for all

warnings.

(A) Multiple forwarding address (MFAD) in Fig.

3(A)

This script forwards (proxies) an incoming call

to three destinations 1001, 1002 and 7000,

simultaneously. The problem is that 7000 is a

number reserved by VOCAL for a voicemail ser-

vice which immediately answers incoming calls.
Therefore, the voicemail always replies, and the

call never reaches 1001 or 1002. A possible solu-

tion to this problem is to recommend to the user to

specify the ordering parameter sequential in

<proxy> (see [8] for more details).

(B) Unused subactions (USUB) in Fig. 3(B)

Upon deploying a CPL feature, VOCAL com-

piles the CPL script into a C++ virtual state ma-
chine and loads it into memory. Hence, the unused

subactions increase memory overhead on the fea-

ture server although they are never executed. They

cause no harm from the feature’s point of view.

However, from the viewpoint of the system, they
6 We could not figure out what the third condition means in

this automatically-generated script. It seems to be an imple-

mentation issue of the provisioning system.
should be optimized to reduce memory usage of

the server.

(C) Call rejection in all execution (CRAE) in Fig.

3(C)

By this script, VOCAL rejects all incoming

calls. Whether or not the script is intentional, all
actions and conditions are just wasting the re-

source.

(D) Address set after address switch (ASAS) in

Fig. 3(D)

When the user originates a call directly to

5000, the call is rejected by VOCAL. But when

the user makes a call to other users, the call is

automatically proxied to 5000 which should have
been rejected. Thus, we can see that an inconsis-

tent destination problem occurs when ASAS exists

in the script.

(E) Overlapping conditions in single switch

(OCSS) in Fig. 3(E)

In this script, we suppose that the user intends

to forward calls (a) from numbers containing ‘‘40’’

to 1001, (b) from numbers containing ‘‘400’’ to
1002, and (c) from any other numbers to 1003.

However, we observed that any call incoming from

numbers prefixed by ‘‘40’’ (e.g., 400 or 4001)

were always forwarded to 1001, and that no call

was proxied to 1002. Thus, we have an unreach-

able part of the script.

(F) Identical actions in single switch (IASS) in

Fig. 3(F)
This script has an <address-switch> which

specifies a conditional branch depending on the

address of the incoming call. However, the same

action of proxy to 1001 occurs independently in

all the branches. Thus, the <address-switch>

is completely meaningless and redundant, and

should be removed.

(G) Overlapping conditions in nested switches
(OCNS) in Fig. 3(G)

Incoming calls from addresses containing

‘‘400’’ are proxied to 1001. However, it is not

necessary to evaluate the second condition of

subdomain-of¼ 004000, since string 40 is a sub-

string of 400. Also, note that calls from ad-

dresses containing 40 but not 400 (e.g., 4010) are

not proxied to 1001 but to 1002. Thus, we can
see that OCNS adds a very complicated logic

structure to the scripts.
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(H) Incompatible conditions in nested switches

(ICNS) in Fig. 3(H)

In order for VOCAL to proxy a call to 5000,

the originating address must be 2000 and 4000

simultaneously. However, this is impossible.
Therefore, the proxy operation to 5000 never

occurs.

Thus, it was shown that the proposed semantic

warnings identify the possibility that VOCAL may

execute problematic behaviors. Although some of

them are not directly connected to errors, they

can often highlight potential sources of faults
and interactions. An effective application of the

semantic warnings is to implement a semantic

checker (like our CPL checker) in a provisioning

GUI or a CPL server, so that they are reported to

the user upon each provisioning of a CPL script.

5.4. Detecting feature interactions among pairwise

ready-made features

Next, we evaluate the proposed interaction

detection method by applying it to every pair of

the five ready-made features. We do not especially

discuss customized features here, since there are a

number of safe customized scripts and thus it is

difficult to pick up specific ones without loss of

generality.
As mentioned in Section 2.1, in the CPL

framework each user is supposed to have at most

one CPL script at a time. However, the VOCAL

implementation does not follow this regulation.

Specifically, VOCAL manages each ready-made

feature as an independent CPL script. Therefore,

when a user activates multiple ready-made fea-

tures, VOCAL generates multiple CPL scripts for
Table 2

Result of interaction detection for VOCAL ready-made features

T–T combinations

CFA CFB C

CFA FI FI F

Loop Loop S

CFB FI F

Loop S

CS F

S

the user without merging them into one script.

This implementation issue, specific to VOCAL,

may introduce new feature interactions that are

out of our scope, since a user is enabled to run

multiple scripts in response to a condition (these

are called feature-to-feature interactions [7]).
However, these interactions (resulting in non-

determinism) are thoroughly discussed in previous

research (e.g., [12,16]). Hence, we do not dis-

cuss the case where a user activates multiple

features.

Accordingly, combinations of the ready-made

features considered in the experiment are summa-

rized as follows. Each category of combinations
has a critical call scenario which activates two

features simultaneously.

O–T combinations: Combinations of an origi-

nating feature s1 and a terminating feature s2,
where s1 and s2 are activated by different users u1
and u2, respectively. The critical call scenario is

that u1 calls u2.
T–T combinations: Combinations of a termi-

nating feature s1 and a terminating feature s2,
where s1 and s2 are activated by different users u1
and u2, respectively. The critical call scenario is

that a third party u0 calls u1 (or u2).
First, we confirm that each CPL script of the

ready-made features is safe by using the CPL

checker. Then, for each feature combination, we

execute a critical call scenario on the test-bed, and
detect feature interactions with the assistance of

the FI simulator. Moreover, for each execution of

a scenario, we perform careful observation and

interpretation manually, to find other types of

interactions not covered by our method.

Table 2 shows the result. In the table, FI (or FI-

free) represents the fact that a feature interaction
O–T combinations

S CB CIB

I-free FI FI-free

W-free ASAS SW-free

I-free FI FI-free

W-free ASAS SW-free

I-free FI-free FI

W-free SW-free SW-free
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was observed (or not) in the combination. Each

combination with FI may be associated with a

name of a warning or a (forwarding) loop found in

the combined CPL script. SW-free means that no

semantic warning was found. Using the FI simu-

lator and manual observation, we have identified a
total of six interactions, of which five were de-

tected by the proposed method.

FIs between CB and CFA, CB and CFB

User 1000 activates CB to block outgoing calls

to user 1900. User 1001 activates CFA to for-

ward all incoming calls to 1900. When 1000 calls

1900, the call is immediately rejected by 1900

and 1000 receives a rejection message (as re-

quired). Strangely however, when 1000 makes a

call to 1001, 1000 receives no response though

no connection is established. Then, 1000 keeps re-

dialing 1001 until the call is terminated by time-

out.

These interactions were detected by the

semantic warning ASAS. Fig. 10 shows the com-
bined script obtained from the two scripts of CB

and CFA. The script contains ASAS since the

address of 1900 evaluated in <address> is set in

the <otherwise> block. This strange behavior
<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<subaction id="rejectcall">
<reject reason="feature activated"
status="reject"></reject>

</subaction>
<outgoing>
<address-switch field="original-destination"
subfield="user">
<address subdomain-of="1900">

<sub ref="rejectcall"></sub>
</address>
<address subdomain-of=";">

<sub ref="rejectcall"></sub>
</address>
<otherwise>

<lookup clear="yes" source="registration"
timeout="2">
<success>

<remove-location>
<location clear="yes" url="sip:1900">

<redirect></redirect>
</location>

</remove-location>
</success>
<notfound>

<sub ref="rejectcall"></sub>
</notfound>

</lookup>
</otherwise>

</address-switch>
</outgoing>
</cpl>

Fig. 10. Combined script of CB and CFA.
of VOCAL would not have been observed if we

had changed 1900 to any other address. From this

fact, it seems that actions for rejection and for-

warding to the same address 1900 were conflicting

in the VOCAL implementation, which unexpect-

edly put VOCAL to silence. The same problem
was observed for CB and CFB when the called

party was busy.

FIs between CFA and CFA, CFA and CFB, CFB

and CFB

User 1000 activates CFA to forward all

incoming calls to 1001. User 1001 also activates

CFA and sets the forwarding address to 1000.
When a third user 2000 calls 1000, 2000 receives

a rejection message from 1000, although 2000

never knows what the reason for the rejection

is.

These interactions were detected by the

forwarding loop. 1000 forwards the incoming call

to 1001, then 1001 forwards the call back to

1000, which forms a forwarding loop. The
VOCAL implementation seems to reject further

forwardings when a forwarding loop is detected in

the underlying protocol. However, the problem is

that 2000 cannot recognize that the rejection is

due to the forwarding loop. A similar forward-

ing loop also occurs for combinations CFA

and CFB and CFB and CFB, when the callee is

busy.

FI between CIB and CS

User 1000 activates CIB to block his/her caller-

ID (name and address). User 1001 activates CS to

screen incoming calls from 1000. When 1000

makes a call to 1001, 1001 accepts the call, al-

though any call from 1000 should have been re-

jected by CS. The problem is that CS activated by
1001 was not able to identify the caller’s address

1000, since CIB made 1000 anonymous. This

interaction could not be covered by the proposed

semantic warnings, which is justified by the fol-

lowing reason. VOCAL uses a special parameter

value 00complete_caller_idblock00 in <re-

move-location> to handle CIB. This parame-

ter value is a proprietary keyword of VOCAL and
is beyond the CPL specification. Therefore, it is

currently out of our scope.
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5.5. Discussion

The interactions detected in the experiment

were due to ASAS and forwarding loops only.

This is because the VOCAL ready-made features
were too simple to cause more ‘interesting’ inter-

actions, and is not because of limitations of the

potential of the semantic warnings. We believe

that for more sophisticated features, the other

types of warnings would detect additional

potential interactions.

For instance, let us consider the following fea-

ture interaction: Alice rejects any outgoing calls
issued in the morning (using <time-switch>).

Similarly, Bob rejects all incoming calls arriving in

the afternoon. Then, Alice can never reach Bob.

This problematic situation can be characterized by

CRAE and surely detected by the proposed

method.

Another point is that the defined semantic

warnings range from rather minor to rather more
significant. It is expected that more essential

interactions tend to concentrate in certain types of

semantic warnings. Furthermore, semantic prob-

lems that cannot be covered by the proposed

semantic warnings may still exist. We consider that

clarifying the coverage and optimization of the

proposed warnings requires more experiments

with more sophisticated features, which is left as
our challenging future work.
6. Implementing run-time FI detection

6.1. FI detection server and FI detector

To implement the proposed method on prac-
tical network architectures, we need at least the

following three components: a semantic checker, a

script repository and a script combination engine.

The semantic checker is a module to detect

semantic warnings for a given CPL script, which is

exactly like our CPL checker. A user can create or

modify a script dynamically at any time. So, the

script repository is needed to keep up-to-date CPL
scripts of all users. The script combination engine

implements the proposed algorithm Succðs; cÞ.
Specifically, for a given pair of script s and call
scenario c, the engine simulates s based on c. Then,
it determines the successive scripts to be executed,

and picks them up from the script repository. It

also checks the existence of the forwarding loop.

Finally, it derives a set of scripts combined by .c,
according to Succðs; cÞ. The combination engine is
also implemented in our FI simulator.

Using these components, we construct an FI

detection server, which works as follows. First, the

server receives an FI detection request from a client

program (FI detector, explained later), with the

originating address of a user u and a call scenario
c. Then, the server takes a script s of u from the

script repository. Next, the script combination
engine computes Succðs; cÞ by combining scripts in
the repository. For each of the combined scripts,

the semantic checker detects semantic warnings. If

any warning is detected, the server returns a report

of the interaction to the client with an appropriate

message.

As a client module, we add an FI detector to a

VoIP server. When a call setup from a user agent u
arrives at the VoIP server, the FI detector inter-

cepts the call setup, and sends an FI detection

request to the FI detection server, with the origi-

nating address u and a call scenario c derived from
the call setup request. If the FI detector receives a

report of FI from the FI detection server, it sends u
the report to ask whether it should continue the

call setup or not.
Note that the interaction detection can be per-

formed locally in the FI detection server, with an

assumption that all the up-to-date CPL scripts of

users are available in the script repository. Hence,

the key issue is how to synchronize the scripts in

the repository with the latest ones. In general, this

synchronization is a difficult problem. So, we need

to identify applicable cases of the proposed
implementation.

6.2. Implementation for script-to-script interactions

It is not difficult to detect feature interactions

between CPL scripts in a single VoIP server.

According to [7], these types of interactions are

called script-to-script interactions. In this case, all
users involved in a call use the same VoIP server,

and all the up-to-date scripts are stored in the
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Fig. 11. Implementation architectures of the proposed method. (a) Single-server system, (b) multiple-server system.
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VoIP server. Therefore, if an FI detection server

can use the storage directly as the script repository,

the synchronization of scripts is not especially

needed.

Fig. 11(a) shows an implementation of the

detection system. In the figure, all user agents

(represented by UA) use a VoIP server, and the
storage of the VoIP server is shared by the FI

detection server. The administrator first deploys

an FI detection server in the same network of the

VoIP server, then connects it with the VoIP server

so that the detection server can access the CPL

scripts. The administrator also installs the FI

detector in the VoIP server. On each call setup, the

FI detector issues an FI detection request to the FI
detection server. Then, the detection server per-

forms the interaction detection by using the latest

CPL scripts in storage. Thus, script-to-script

interactions can be detected at run-time. Our

experiment in Section 5.4 was conducted in a

similar environment.

6.3. Implementation for server-to-server interactions

Feature interactions can occur between CPL

scripts in different VoIP servers. These are called

server-to-server interactions [7]. Fig. 11(b) shows a

network architecture where multiple VoIP servers

and an FI detection server are connected by a

network. In order for the FI detection server to

detect the server-to-server interactions, we need to
mirror all the latest CPL scripts in the VoIP servers

to the script repository of the FI detection server.

Basically, mirroring can be achieved by a VoIP

server in such a way that every time a user creates

or modifies a CPL script, the VoIP server uploads

the script to the FI detection server. However, a

CPL script may contain private information of a
user such as forwarding addresses, screening con-

ditions, and secret messages. Hence, the user will

not expose the CPL script unless both the network

and the FI detection server are completely trusted.

Also, exposing CPL scripts to an untrusted net-

work could leak security information of the VoIP

server.

In this sense, we consider that detection of the
server-to-server interactions by the proposed

method is feasible only for trusted VoIP systems,

where the VoIP servers and the network are se-

curely administered by a trusted network provider

(or a group of allied providers). In this case, the

provider deploys an FI detection server, and in-

stalls the FI detector in all the VoIP servers. The

provider also customizes the CPL provisioning
system, so that the latest CPL scripts are uploaded

to the detection server. Then, the detection of

server-to-server interactions can be performed in

the same way as that of script-to-script interac-

tions.

If a trusted server and network are unavailable,

the proposed method cannot be directly applied. A

technique of mobile cryptography [14], which al-
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lows an untrusted remote server to execute an

operation for encrypted data, could give a solu-

tion. The proposed method is also difficult to

implement on VoIP systems in an administratively

heterogeneous network. This is because some

administrators may refuse to install the FI detector
in the VoIP server, or to share the FI detection

server with other providers. The problem caused

by heterogeneous networks is essentially unsolv-

able as described in [7], and is also the limitation of

the proposed method.
7. Conclusion

In this paper, we have presented a method to

detect feature interactions for the CPL program-

mable service environment of Internet telephony.

We first proposed eight types of semantic warnings

to identify semantic problems in each individual

CPL script. Then, by extending the warnings to

multiple scripts, we proposed a definition of fea-
ture interaction, and an interaction detection

method.

The proposed method has been evaluated with

a practical VoIP system, VOCAL. The semantic

warnings revealed a semantically redundant case

in a ready-made feature. It was also shown that

CPL scripts with semantic warnings can lead

VOCAL to certain problematic situations. Al-
though only a small set of features was tested, the

proposed method detected five of six feature

interactions among ready-made features of

VOCAL. We also discussed the applicability and

limitations of the proposed method from the

implementation viewpoint. As a result, the pro-

posed method is shown to be feasible for the

detection of script-to-script interactions, or server-
to-server interactions with a trusted VoIP system.

Finally, we summarize our future work. We are

currently implementing an FI detection system,

based on the design issues described in Section 6.

Performance evaluation of the system is an

important topic. As seen in the interaction between

CIB and CS in Section 5.4, the proposed method

does not cover interactions specific to a server
implementation. To cover such server-specific

interactions or newly discovered warnings, we are
developing a framework for administrators to

customize semantic warnings themselves. Al-

though this paper only discussed the detection of

interactions, it is also important to consider how

to resolve the detected interactions. Development

of an effective resolution scheme is a challenging
goal.
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