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SUMMARY Feature interaction is the term used in tele-
phony systems to refer to inconsistent conflict between multiple
communication services. Feature interaction is considered a ma-
jor obstacle to developing reliable telephony systems and many
approaches have been explored to resolve it. In this paper we
present an automatic method for detecting latent feature inter-
action in service specifications. This method uses bounded model
checking as its basis. The basic idea behind bounded model
checking is to reduce the detection problem to the propositional
satisfiability (SAT) decision problem. For asynchronous systems
like telecommunication systems, however, traditional bounded
model checking does not work well because resulting proposi-
tional formulas tend to become very large. We propose a new
encoding scheme to overcome this problem and show the effective-
ness through comparative experiments with traditional bounded
model checking and other model checking methods.
key words: bounded model checking, SAT, feature interaction

1. Introduction

Feature interaction refers to situations where a com-
bination of different services behaves differently than
expected from the single services’ behaviors. For exam-
ple, consider a situation where user A has subscribed to
the service Originating Call Screening (OCS) and does
not want calls to user C to be put through, and user B
has activated the service Call Forwarding (CF) to user
C. In this situation, if A calls B, the intention of OCS
not to be connected to C is invalidated since the call is
put through to C by way of B (Fig. 1).

In today’s intelligent telecommunication networks,
feature interaction is considered a major obstacle to the
introduction of new features and the provision of reli-
able services. In practical service development, how-
ever, the analysis of interactions has often been con-
ducted in an ad hoc manner. This leads to time-
consuming service design and testing without any
interaction-free guarantee.

To overcome this situation, we propose a formal
approach, aimed at detecting latent feature interac-
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tion in given communication service specifications. Al-
though formal approaches have been well studied [7],
ours is different in that it uses bounded model checking.

Model checking is a well-known formal approach
for verifying systems that are modeled as a finite state
machine. For realistic designs, however, the number of
states of the system can be very large and the explicit
traversal of the state space may become infeasible. This
problem is usually called the state explosion problem.

Symbolic model checking [9] is one of the most suc-
cessful approaches to state explosion. This method al-
leviates the problem by symbolically representing the
state space by Boolean functions. Many symbolic
model checking tools use Binary Decision Diagrams
(BDDs) as the data structure to manipulate Boolean
functions efficiently. Since Boolean functions can often
be represented by BDDs very compactly, the symbolic
model checking method can reduce the memory and
time required for analysis.

Bounded model checking [2], [15] is a new symbolic
model checking method which does not use BDDs.
The central idea behind this method is to reduce the
model checking problem to the propositional satisfia-
bility (SAT) checking problem and to look for coun-
terexamples that are shorter than some fixed length
k for a given property. The formula to be checked is
constructed by unwinding the transition relation of the
system k times such that truth assignments satisfying
the formula correspond to counterexamples.

In the literature, it has been reported that
bounded model checking can work efficiently, especially
for the verification of digital circuits. An advantage of
this method is that it works efficiently even when com-
pact BDD representation cannot be obtained. It is also
an advantage that it can exploit recent advances in de-
cision procedures of satisfiability.

Fig. 1 Interaction example.
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In contrast, this method does not work well for
asynchronous systems, because the encoding scheme
into propositional formulas is not suited for such sys-
tems. When applying this technique to asynchronous
systems, a large formula would be required to represent
the transition relation, thus resulting in large execution
time and low scalability.

To overcome this problem we have been working on
a new encoding. In this paper we describe the encod-
ing scheme. The new encoding reduces the size of the
resultant formula by exploiting the property that usu-
ally only small fraction of state variables take in part
of each state transition. Interestingly, as a side-effect,
the new scheme often explores a larger state space than
the existing bounded model checking does for the same
k. By applying the proposed scheme and other model
checking methods to feature interaction detection, we
show the effectiveness of the proposed method.

2. Services and Interaction

2.1 Communication Services

From ITU-T recommendation [6] (ITU-T Recommen-
dations Q.1200 Series - Intelligent Network Capabil-
ity Set 1 (CS1)) and Bellcore’s feature standards [1]
(Bellcore - LSSGR Features Common to Residence and
Business Customers I, II, III), we selected the following
seven services (features) to consider:
Call Waiting (CW): This service allows the sub-
scriber to receive a second incoming call while he or
she is already talking.
Call Forwarding (CF): This service allows the sub-
scriber to have his or her incoming calls forwarded to
another address.
Originating Call Screening (OCS): This service al-
lows the subscriber to specify that outgoing calls be ei-
ther restricted or allowed according to a screening list.
Terminating Call Screening (TCS): This service
allows the subscriber to specify that incoming calls be
either restricted or allowed according to a screening list.
Denied Origination (DO): This service allows the
subscriber to disable any call originating from the ter-
minal. Only terminating calls are permitted.
Denied Termination (DT): This service allows the
subscriber to disable any call terminating at the termi-
nal. Only originating calls are permitted.
Direct Connect (DC): This service is a so-called hot
line service. Suppose that x subscribes to DC and that
x specifies y as the destination address. Then, by only
offhooking, x is directly calling y. It is not necessary
for x to dial y.

2.2 Feature Interaction

In this paper we consider two types of feature interac-
tion. As shown below, the properties of the absence of

these types of interaction can be viewed as safety prop-
erties, and hence detecting these types of interactions
involves checking reachability from the initial state to
undesirable states.

2.2.1 Nondeterminism

The first type we consider is nondeterminism. Non-
determinism is one of the best known types of feature
interactions [3], [4], [8], [12], [13]. Nondeterminism refers
to a situation where an event can simultaneously acti-
vate two or more functionalities of different services,
and as a result, it cannot be determined exactly which
functionality should be activated.

It is known that this type of interaction occurs
between CW and CF. Suppose that A subscribes both
services. Now consider the situation where (1) A is
talking with B, (2) C is ready to dial, and (3) D is in
A’s forwarding address list and is idle. In this situation,
if C dials A, then either the call from C to A may be
received by A because of A’s CW feature, or it may be
forwarded to D by the CF feature.

This type of interaction can be detected by check-
ing reachability from the initial state to the states that
cause nondeterminism. We call such states nondeter-
ministic states.

2.2.2 Invariant Violation

The next type of interaction we consider is invariant
violation. It is usually the case that services require
some specific properties to be satisfied at any time. For
example, for OCS service, the service designer may de-
scribe that “If x specifies y in the screening list, then x
is never calling y at any time”. Such a property is gen-
erally referred to as an invariant property. It is known
that combining multiple services can result in violation
of invariant properties. The OCS plus CF example de-
scribed in the first section falls in this type.

This type of feature interaction can also be de-
tected by checking reachability from the initial state to
the undesirable states where the invariant properties
are violated.

3. Model

3.1 State Transition Rules

In this paper we adopt a variant of State Transition
Rules (STR) [5], [13] to describe services and model the
behavior of the system in a rigorous fashion.

A service specification is defined as 6-tuple 〈U,
V, P,E,R, sinit〉, where U is a set of constants repre-
senting service users, V is a set of variables, P is a set
of predicates, E is a set of events, R is a set of rules, and
sinit is the (initial) state. Each rule r ∈ R is defined as
follows:
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r : pre−condition [event ] post−condition.

A predicate is of the form p(x1, . . . , xk) where p ∈
P and xi ∈ V . Pre-condition consists of predicates or
negations of predicates, or both, while Post-condition
consists of predicates only. An event is of the form
e(x1, . . . , xk), where e ∈ E and xi ∈ V .

Figure 2 shows an example of a specification. This
specification describes the Plain Old Telephone Service
(POTS). Additional communication features, such as
those described in the previous subsection, can be de-
scribed by modifying this specification (for example,
adding rules or predicate symbols). Specifications for
the above services are shown in [11]. In all these speci-
fications, it is assumed that at the initial state, all users
are idle and no user subscribes to any service yet.

3.2 State Transition Model

Here we define the state transition system specified by
the rule-based specification. Let 〈U, V, P,E,R, sinit〉
be a service specification. For r ∈ R, let x1, . . . , xn

U = {A, B}
V = {x, y}
P = {idle(x), dialtone(x), busytone(x), calling(x, y), path(x, y)}
E = {onhook(x), offhook(x), dial(x, y)}
R = {

pots1 : idle(x) [offhook(x)] dialtone(x).
pots2 : dialtone(x) [onhook(x)] idle(x).
pots3 : dialtone(x), idle(y) [dial(x, y)] calling(x, y).
pots4 : dialtone(x),¬idle(y) [dial(x, y)] busytone(x).
pots5 : calling(x, y) [onhook(x)] idle(x), idle(y).
pots6 : calling(x, y) [offhook(y)] path(x, y), path(y, x).
pots7 : path(x, y), path(y, x) [onhook(x)] idle(x), busytone(y).
pots8 : busytone(x) [onhook(x)] idle(x).
pots9 : dialtone(x) [dial(x, x)] busytone(x).
}

sinit = {idle(A), idle(B)}
Fig. 2 Rule-based specification for POTS.

Fig. 3 State transition diagram.

(xi ∈ V ) be variables appearing in r, and let θ =
〈x1|a1, . . . , xn|an〉 (ai ∈ U, ai |= aj (i |= j)) be a substi-
tution replacing each xi in r with ai. Then, an instance
of r based on θ (denoted by rθ) is defined as a rule ob-
tained from r by applying θ = 〈x1|a1, . . . , xn|an〉 to
r. We represent the event and the post-condition of
an instance rθ of a rule as e[rθ] and Post[rθ], respec-
tively. In addition, we denote by Pre[rθ] and P̂ re[rθ]
the set of predicates in the pre-condition and the set of
predicates whose negations are in the pre-conditions.
Hence the precondition of an instance rθ of a rule is
Pre[rθ] ∪ {¬p | p ∈ P̂ re[rθ]}.

A state is defined as a set of instances of predicates
p(a1, . . . , ak) where p ∈ P and ai ∈ U . We think of each
state represents the instances of predicates that hold in
that states.

Let s be a state. We say that an instance of rule,
rθ, is enabled for e(rθ) at s iff all instances in Pre[rθ]
hold and no instances in P̂ re[rθ] hold at s. The execu-
tion of the enabled rule causes the next state s′ of s by
deleting all instances in Pre[rθ] from s and adding all
instances in Post[rθ] to s; that is,

s′ = (s\Pre[rθ]) ∪ Post[rθ].

For example, suppose that r = pots4 in Fig. 2,
θ = 〈x|A, y|B〉, and s = {dialtone(A), dialtone(B)}.
Then Pre[rθ] = {dialtone(A)}, P̂ re[rθ] = {idle(B)},
Post[rθ] = {busytone(A)}, and rule pots4 with sub-
stitution θ is enabled for event dial(A,B). If sub-
scriber A dials B, that is, this event happens, then a
state transition occurs, resulting in s′ = {busytone(A),
dialtone(B)}. Figure 3 shows the state transition di-
agram that is obtained from the STR specification
shown in Fig. 2. In this diagram each circle repre-
sents a state and each arc between two states repre-
sents a state transition caused by execution of a rule
instance. States that are not reachable from the initial
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state {idle(A), idle(B)} are omitted in the diagram.
Let V denote the set of states. For each instance t

of a rule, we define a relation t→ over states ( t→ ⊂=V ×
V ) as follows: s t→ s′ iff the execution of t causes s′

from s. We also define a computation as a sequence
of states s0s1 · · · sk. such that for each 0 <= i < k, (i)
si

t→ si+1 for some t, or (ii) no rule is enabled at si and
si = si+1. We think of the length of the computation
as k.

4. Bounded Model Checking

Bounded model checking has received recent attention
as an efficient verification method [2]. The basic idea of
this method is to reduce the model checking problem
to the propositional satisfiability decision problem.

For asynchronous systems, however, the existing
bounded model checking does not work well because
the propositional formula to be checked tends to be-
come very large for such systems. Because of the asyn-
chronous nature of telecommunication systems, it is
thus not practical to apply the original method to fea-
ture interaction detection.

In order to avoid this problem we develop a new
encoding scheme. We describe the scheme in detail in
this section.

4.1 Symbolic Representation

To apply bounded model checking to service specifica-
tions, it is necessary to encode the state space and the
transition relation by Boolean functions.

Let P = {p1, · · · , pm} be the set of all instances
of predicates and let T = {t1, · · · , tn} be the set of all
instances of rules (m = |P| and n = |T |). A state s can
then be viewed as a Boolean vector s = (b1, · · · , bm)
such that bi = true iff an instance pi of a predicate
holds in that state.

Any set of states can be represented as a Boolean
function such that

f(s) =
{

true s ∈ the set
false otherwise.

We say that f is a characteristic function of the state
set.

For example, the characteristic function Et(s) of
the set of states where t ∈ T is enabled is

Et(s) =
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi.

Any relationR over states can be similarly encoded
since they are simply sets of tuples.

F (s, s′) =
{

true sRs′

false otherwise.

Now consider representing the relation t→ by

Boolean function Tt(s, s′). Since execution of t causes
(i) predicate instances in Post[t] to hold, (ii) those in
Pre[t] but not in Post[t] not to hold, and (iii) those in
neither Pre[t] nor Post[t] to be unchanged, we have

Tt(s, s′) = Et(s)

∧
∧

pi∈Post[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i

∧
∧

pi∈P\(Pre[t]∪Post[t])

(bi ↔ b′i)

where s′ = (b′1, · · · , b′m).
For example, consider the specification shown

in Fig. 2. Let t be the instance of the rule
‘pots4 : dialtone(x),¬idle(y)[dial(x, y)]busytone(x)’
with substitution (x, y) = (A,B). Since Pre[t] =
{dialtone(A)}, P̂ re[t] = {idle(B)}, and Post[t] =
{busytone(A)}, we have Tt(s, s′) = dialtone(A) ∧
¬idle(B) ∧ busytone(A)′ ∧ ¬dialtone(A)′ ∧ (idle(A) ↔
idle(A)′) ∧ (idle(B) ↔ idle(B)′) ∧ (dialtone(B) ↔
dialtone(B)′) ∧ (busytone(B) ↔ busytone(B)′) ∧
(calling(A,B) ↔ calling(A,B)′) ∧ (calling(B,A) ↔
calling(B,A)′) ∧ (path(A,B) ↔ path(A,B)′) ∧
(path(B,A)↔ path(B,A)′).†

4.2 Existing Scheme

Let G denote the set of states whose reachability is to
be decided and let fG(S) be the characteristic function
for G. Although there are some variations [15], the ba-
sic formula used for checking reachability in bounded
model checking is as follows.

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) · · · ∧ T (sk−1, sk)
∧(fG(s0) ∨ · · · ∨ fG(sk))

where I(S) is the characteristic function of the set of
the initial states, and

T (s, s′) =




true s′ is reachable from s in one
step, or s has no next states
and s = s′.

false otherwise.

Clearly, I(s0) ∧ T (s0, s1) ∧ T (s1, s2) · · · ∧
T (sk−1, sk) = true iff s0, s1, · · · , sk is a computation
from the initial states. Hence the above formula is sat-
isfiable iff there is a state that is in G and reachable
from one of the initial states in at most k steps. By
checking the satisfiability of the formula, therefore, the
verification can be carried out.

In practice, the formula often needs to be trans-
formed into conjunctive normal form (CNF), since most
of SAT solvers require for input formulas to be in that

†The same symbol is used to denote each predicate and
its corresponding Boolean variable, since this is convenient
and causes no confusion.
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form. However the logically equivalent CNF formula
can be exponential with respect to the size of the orig-
inal formula. To avoid this, it is usual to use structure
preserving transformation [14], which guarantees that
the size of the resulting CNF formula is linear with
the original formula. Thus the efficiency of verification
critically depends on the size of the original formula in
textual form.

Since we assume that exactly one rule is executed
at a time, T (s, s′) will be

T (s, s′) = Tt1(s, s
′) ∨ · · · ∨ Ttn(s, s

′)

∨(
∧

pi∈P
(bi ↔ b′i) ∧ ¬Et1(s) ∧ · · · ∧ ¬Etn(s)).

It should be noted that this formula would be very large
in size in practice. Since Tt contains at least m literals,
the total number of the literals in T is greater than
m ∗ n literals.

4.3 Proposed Scheme

4.3.1 Encoding

Our proposed scheme alleviates the above problem with
a new encoding. Let Chng[t] denote the set of predi-
cate instances that change as a result of execution of
rule instance t; that is, Chng[t] = (Post[t]\Pre[t]) ∪
(Pre[t]\Post[t]). Then Tt can be transformed as fol-
lows:

Tt(s, s′) =
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi

∧
∧

pi∈Post[t]\Pre[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i

∧
∧

pi∈P\Chng[t]

(bi ↔ b′i).

Now let Dt(s, s′) be defined as follows.

Dt(s, s′) = Tt(s, s′) ∨
∧

pi∈P
(bi ↔ b′i)

= ((
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi

∧
∧

pi∈Post[t]\Pre[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i)

∨
∧

pi∈Chng[t]

(bi ↔ b′i)) ∧
∧

pi∈P\Chng[t]

(bi ↔ b′i).

For example, let t be the instance of the
rule pots4 in Fig. 2 with substitution (x, y) =
(A,B). Then Dt(s, s′) = ((dialtone(A) ∧ ¬idle(B) ∧
busytone(A)′ ∧ ¬dialtone(A)′) ∨ ((dialtone(A) ↔
dialtone(A)′) ∧ (busytone(A) ↔ busytone(A)′))) ∧
(idle(A) ↔ idle(A)′) ∧ (idle(B) ↔ idle(B)′) ∧
(dialtone(B) ↔ dialtone(B)′) ∧ (busytone(B) ↔
busytone(B)′) ∧ (calling(A,B) ↔ calling(A,B)′) ∧

(calling(B,A) ↔ calling(B,A)′) ∧ (path(A,B) ↔
path(A,B)′) ∧ (path(B,A)↔ path(B,A)′).

It is easy to see that Dt(S, S′) = true iff S t→
S′ or S = S′. In other words, Dt(S, S′) differs from
Tt(S, S′) only in that Dt(S, S′) evaluates to true also
when S = S′. Using this property, a step (or more) can
be represented by a conjunction of Dt(s, s′) as follows.

Dt1(s0, s1) ∧Dt2(s1, s2) ∧ · · · ∧Dtn(sn−1, sn)

Note that this is in contrast to the traditional encod-
ing, where a disjunction of Tt(S, S′) is used to represent
one step. By definition, s0, s1, · · · , sn satisfies this for-
mula iff for any 0 <= i < n, si

ti+1→ si+1 or si = si+1.
This means that if the formula evaluates to true, sn
is reachable from s0 in at most n steps (including 0
steps), and that if there is at least one ti such that
s0

ti→ s′, it is satisfiable with an assignment such that
s0 = · · · = si−1, si = · · · = sn = s′.

As a result, our proposed scheme uses the following
formula ϕ for the verification.

I(s0)
∧Dt1(s0, s1) ∧Dt2(s1, s2) ∧ · · · ∧Dtn(sn−1, sn)
∧Dt1(sn, sn+1)∧Dt2(sn+1, sn+2)∧ · · · ∧Dtn(s2n−1, s2n)
· · ·
∧Dt1(s(k−1)∗n, s(k−1)∗n+1) ∧ · · · ∧Dtn(sk∗n−1, sk∗n)
∧fG(sk∗n)

If the formula ϕ is satisfiable, then we can conclude
that there is a state in G that can be reached from the
initial state in at most k ∗ n steps. On the other hand,
if the formula ϕ is unsatisfiable, then there is no state
in G that can be reached from the initial state in less
than or equal to k steps.

An important observation here is that the method
may be able to find a state in G that requires more
than k transition executions to reach.

4.3.2 Constructing a Succinct Formula

The most important advantage of our scheme is that
ϕ can be converted into a more succinct formula that
is not logically equivalent but has the same satisfi-
ability. Let sj = (b1,j , b2,j, · · · , bm,j) and sj+1 =
(b1,j+1, b2,j+1, · · · , bm,j+1). In each Dt(sj , sj+1) in ϕ,
term (bi,j ↔ bi,j+1) for any pi ∈ P\Chng[t] appears
as a conjunct. Because of this, ϕ is satisfiable only if
bi,j and bi,j+1 have the same value. Hence a shorter
formula that maintains the satisfiability is obtained by
removing (bi,j ↔ bi,j+1) and replacing bi,j+1 with bi,j .
That is, for each Dt(sj , sj+1) in ϕ, (bi,j ↔ bi,j+1) for
all pi ∈ P\Chng[t] can be removed by quantifying away
bi,j+1 by applying the formula below.

∃bi,j+1(F ∧ (bi,j ↔ bi,j+1)) = F |bi,j+1→bi,j

where F is an intermediate formula obtained from ϕ
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for pi ∈ P
ci := 0;

j := 0;
X := I(s)|si→si,0 for all pi∈P ;

for step = 1, · · · , k {
for t ∈ T {

j := j + 1;
X := X∧

((
∧

pi∈P re[t]

bi,ci
∧

∧
pi∈P̂ re[t]

¬bi,ci

∧
∧

pi∈P ost[t]\P re[t]

bi,j ∧
∧

pi∈P re[t]\P ost[t]

¬bi,j)

∨
∧

pi∈Chng[t]

(bi,ci
↔ bi,j))

for pi ∈ Chng[t]
ci := j;

}
}
X := X ∧ fG(S)|bi→bi,ci

for all pi∈P ;

Fig. 4 Algorithm for constructing the formula used for verifi-
cation.

and F |y→x denotes the formula obtained from F by
replacing y with x.

Note that bi,j may also be replaced by a further
earlier version of variable bi,j−1. In that case bi,j+1 is
replaced with bi,j−1 as a result.

Consequently, Dt in ϕ can be replaced with

((
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi

∧
∧

pi∈Post[t]\Pre[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i)

∨
∧

pi∈Chng[t]

(bi ↔ b′i))

by appropriately replacing some variables.
The number of literals occurring in the above for-

mula is 4 ∗ |Pre[t]\Post[t]| + |Pre[t] ∩ Post[t]| + 3 ∗
|Post[t]\Pre[t]| + |Post[t] ∩ P̂ re[t]| + |P̂ re[t]\Post[t]|.
Tt, which is the counterpart in the traditional encod-
ing, contains at least |P| literals. Hence the proposed
scheme can exploit its advantage if Pre[t] ∪ P̂ re[t] ∪
Post[t] is a small fraction of the whole set of predicate
instances P . This is usually the case for the service
specifications we consider and is more likely when the
number of users is large.

Figure 4 shows the algorithm that directly con-
structs the shorter formula for a given k. In the algo-
rithm, variable ci is used to denote the earlier version
of the variable that is substituted for bi,j; that is, bi,j
will be replaced with bi,ci .

4.4 Representing States where Interaction Occurs

The remaining problem is to represent states where
nondeterminism occurs by Boolean function fG(s).

4.4.1 Nondeterminism

Nondeterminism occurs at a state s iff two rules, r1
and r2, can be triggered by the same event e at s. As
shown in the previous example, when such r1, r2, and
e are given, the set of states where they are enabled
simultaneously is represented by∨

{θ1,θ2}:e[r1θ1]=e[r1θ2]

Er1θ1 ∧Er2θ2.

Thus the characteristic function for the set of all states
where nondeterminism occurs is∨

{r1,r2}:r1,r2∈R

∨
{θ1,θ2}:e[r1θ1]=e[r2θ2]

Er1θ1 ∧ Er2θ2.

4.4.2 Invariant Violation

Given an invariant that is intended to be satisfied by a
service, whether it is satisfied or not can be decided by
checking the reachability to states where the property
does not hold. In this case

fG(s) = ¬Inv(s)

where Inv(s) is the Boolean function representing the
set of states where the invariant property holds.

5. Experimental Results

In order to evaluate the effectiveness of the proposed
method, we conducted experimental evaluation for the
seven services described in Sect. 2. We used the same
ordering as in the given specification in the experiment.
Combining two of the seven services, we examined a
total of the 21 pairs.

The experiments were performed on a Linux work-
station with a 853 MHz Pentium III processor. The
number of users was assumed to be four. ZChaff, an
implementation of Chaff [10], was used as a SAT solver.

For each problem we incremented k until interac-
tion was detected. Tables 1 and 3 show the value of k
for which interaction was first found and the time (in
seconds) required by ZChaff to find a satisfying assign-
ment for that value of k.

5.1 Nondeterminism

It has been known that out of a total of the 21 pairs
of the seven services, 11 pairs cause nondeterminism.
Since the proposed method in itself cannot prove the
absence of feature interaction, we evaluated the perfor-
mance of the detection method for these combinations
only.

Table 1 compares the proposed encoding and the
traditional one with respect to the running time, in
seconds, required to detect nondeterministic states for
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Table 1 Performance of bounded model checking for nonde-
terminism detection.

k time Trad. scheme length
CW+CF 2 3.02 4934.76 10
CW+DT 3 4.81 212.10 8
CW+OCS 2 2.90 330.15 8
CW+TCS 2 3.80 1470.37 8
CF+DT 2 0.02 53.52 5
CF+OCS 2 0.02 89.32 5
CF+TCS 2 0.02 65.10 5
DC+DO 1 0.02 0.87 2
DT+OCS 2 0.05 1.91 3
DT+TCS 1 0.02 1.86 3
OCS+TCS 1 0.01 1.01 2

these specifications. Items in the ‘length’ column rep-
resent the length of the shortest counterexample, that
is, the shortest computation from the initial state to a
nondeterministic state.

As can be seen in this table, when using the pro-
posed encoding, interaction was detected with k of less
than or equal to three for all cases. For CW plus CF
case, for example, k = 2 was sufficient while the short-
est counterexample computation is of length 10. This is
because it may be possible to check execution of two or
more rules by one formula Dt1 ∧Dt2 ∧· · ·∧Dtn . In this
experiment, we used the same ordering of rules as in the
given specification in encoding the formula. Thus if two
rules are executed in the order as in the specification,
they can be checked by this single formula.

Note that the length of the shortest counterexam-
ple coincides with the smallest k value at which the tra-
ditional scheme can find such a computation. This re-
sulted in large detection time of the traditional scheme,
as shown in this table.

For comparison purposes, we also applied two
other model checking tools to the same set of prob-
lems. The first one is SMV, which is a well-known
BDD-based symbolic model checker. In SMV, prop-
erties to be checked are given in the form of Computa-
tion Tree Logic (CTL). As stated before, the absence
of nondeterminism is a safety property and thus, it can
be described as AG¬fG in CTL.

Table 2 shows the results of applying SMV to inter-
action detection. Comparing with Table 1, it is clear
that the proposed method detected interaction much
more efficiently than SMV. The difference is most clear
for CW plus CF. For this case, the running time of the
proposed scheme was only three seconds, while SMV
required more than three hours to complete detection.

By enabling ‘early’ option, it is possible to force
SMV to work on-the-fly; that is, when using this option,
SMV incrementally checks whether or not the property
holds in a breadth-first manner, and terminates imme-
diately if it finds that the property can be violated.
Table 2 also shows the running time of SMV with this
option enabled. As expected, this resulted in short de-
tection time for some service combinations. However,

Table 2 Performance of SMV and SVAL for nondeterminism
detection.

SMV SMV(-early) SVAL length
CW+CF 12859.40 90473.00 17.45 10
CW+DT 82.12 410.37 3.29 8
CW+OCS 44.23 194.91 3.37 8
CW+TCS 39.28 168.28 9.65 8
CF+DT 12.51 8.21 1.83 5
CF+OCS 22.80 5.55 6.11 5
CF+TCS 27.52 5.55 2.45 5
DC+DO 1.21 0.25 0.31 2
DT+OCS 1.23 0.24 0.06 3
DT+TCS 1.66 0.24 0.11 3
OCS+TCS 1.86 0.29 0.11 2

for some cases such as CW+CF, CW+DT, CW+OCS,
or CW+TCS, it ended up with larger running time. A
common characteristic of these combinations is that the
formula representing fG is very large. Hence the reason
is thought to be that the benefit of early termination
was diminished by time consumed at each stage of the
incremental checking.

The second model checking tool is SVAL, which is
a tool which we had developed for feature interaction
detection [12]. The SVAL tool employs explicit state
enumeration with symmetry and partial order state re-
duction techniques.

As can be seen in Table 2, the proposed method
and SVAL exhibited similar performance for four
cases, namely, DC+DO, DT+OCS, DT+TCS, and
OCS+TCS. The common characteristic of these cases
is that nondeterminism occurs at a state that is very
close to the initial state. In these cases, therefore, it
is possible to detect interaction by exploring a small
number of states, thus resulting in very small detection
times of SVAL.

On the other hand, for the cases of CW+CF,
CW+OCS, CW+TCS, CF+DT, CF+OCS, and
CF+TCS, computations of relatively large length have
to be examined to conclude the existence of nondeter-
ministic states. For these cases, the proposed method
outperformed the previous method, by efficiently ex-
ploring the large state space with symbolic representa-
tion.

5.2 Invariant Violation

We consider invariant properties for four of the seven
services as follows
OCS: “If x puts y in the OCS screening list, x is never
calling y at any time” (¬OCS(x, y) ∨ ¬calling(x, y))
TCS: “If x puts y in the TCS screening list, y is never
calling x at any time” (¬TCS(x, y) ∨ ¬calling(y, x))
DO: “If x subscribes to DO, x never receives dialtone
at any time” (¬DO(x) ∨ ¬dialtone(x))
DT: “If x subscribes to DT , y is never calling x at any
time” (¬DT (x) ∨ ¬calling(y, x))

Tables 3 and 4 show the performance for bounded
model checking and SMV, respectively. SVAL is ex-
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Table 3 Performance of bounded model checking for invariant
violation detection.

k time Trad. scheme length
CW+DT 3 1.00 1318.41 10
CW+OCS 2 0.24 2795.61 10
CW+TCS 2 0.21 1744.04 10
CF+DT 2 0.01 149.74 6
CF+OCS 2 0.02 173.00 6
CF+TCS 2 0.03 1850.80 6
DC+OCS 2 0.03 3.57 3
DC+TCS 2 0.04 3.68 3
OCS+TCS 2 0.12 3.13 3

Table 4 Performance of SMV for invariant violation detection.

SMV SMV(-early) length
CW+DT 40.29 35.43 10
CW+OCS 23.51 13.41 10
CW+TCS 24.96 13.81 10
CF+DT 10.83 0.97 6
CF+OCS 22.46 1.10 6
CF+TCS 27.34 1.16 6
DC+OCS 1.83 0.32 3
DC+TCS 2.50 0.33 3
OCS+TCS 1.83 0.30 3

cluded because it does not support invariant violation
checking. Comparing with Tables 1 and 2, it can be
seen that these three methods exhibited similar ten-
dencies.

6. Conclusions

In this paper, we proposed to use bounded model check-
ing to detect feature interactions in telecommunication
services. We developed a new encoding scheme that is
tailored to this purpose and, by applying it to practical
services, demonstrated its effectiveness.

We think of examining the ordering of rules as an
interesting topic for future research. We used the same
ordering as in the given specification in the experiment;
however, the state space explored for a fixed k could be
enlarged by using an appropriate ordering technique.
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