
Evaluating Semantic Warnings in VoIP Programmable Services with
Open Source Environment

Pattara Leelaprute�, Masahide Nakamura�, Ken-ichi Matsumoto� and Tohru Kikuno�
�Graduate School of Information Science and Technology, Osaka University, Japan

�pattara, kikuno�@ist.osaka-u.ac.jp
�Graduate School of Information Science, Nara Institute of Science and Technology, Japan

�masa-n, matumoto�@is.aist-nara.ac.jp

Abstract

The programmable service for Internet telephony (VoIP)
allows end-users or third parties to define their own cus-
tomized services. However, it imposes a serious drawback
that service description created by end-users is likely to
contain problems that are semantically ambiguous or in-
consistent. To cope with this problem, we have so far pro-
posed semantic warnings, which are the guidelines to guar-
antee the semantic correctness for the CPL (Call Process-
ing Language) programmable service environment.

In this paper, we evaluate the proposed semantic warn-
ings with practical VoIP system, VOCAL (Vovida Open
Communication Application Library). In the experiment,
the proposed warnings revealed a semantic redundancy in
a ready-made feature of VOCAL. It is also shown that cus-
tomized features containing the semantic warnings often led
VOCAL to problematic situations. Thus, the proposed warn-
ings can help feature provisioning system to detect seman-
tic flaws in programmable service environment.

1. Introduction

Internet telephony (VoIP) has been extensively studied at
the network protocol level. Based on the standard protocols
(i.e., SIP [4] and H.323 [8]), many companies have already
released the commercial services. Internet telephony has the
great advantage of low cost, since various tasks, which had
been processed by expensive switching hardware and ded-
icated lines so far, can be performed by software and the
Internet. In fact, Internet telephony is about to win the po-
sition of traditional POTS (Plain Ordinary Telephone Ser-
vice).

As the quality of the network level improves, the concern
is shifting to the service level, that is, how to provide value-
added features in Internet telephony. For this, there are two

complementary approaches. The first one is to use features
in the traditional IN/PSTN networks from IP networks[9].
Although this is quite challenging, it is beyond this paper.

Another approach, which is interesting for us here,
is the programmable service[3]. It allows end-users
or third parties to define and create their own fea-
tures. The Call Processing Language [2] (CPL, in short),
based on XML, is recommended as a service descrip-
tion language in RFC2824 of the Internet Engineering
Task Force (IETF). By just putting a CPL script on a lo-
cal server, a user can easily deploy a customized service.
Thus, the programmable service significantly improves the
range of user’s choice and flexibility in supplementary ser-
vices.

However, there is a major drawback. Since not all users
are experts in telephony features, the service description
is very likely to contain ambiguity and inconsistency. Al-
though the syntax of CPL is defined by the Document Type
Definition (DTD), DTD cannot guarantee the semantic cor-
rectness of a CPL script.

In order to cope with this problem, we have previously
proposed a notion of semantic warnings [5][6][7] for the
CPL programmable service environment. Focusing on the
structure of CPL and semantic aspects of telephony fea-
tures, we have identified eight classes of warnings. The
warnings are supposed to be a certain guideline by which
the users can improve the semantic correctness for their own
CPL script. However, we have not yet evaluated the pro-
posed warnings with practical VoIP systems.

The goal of this research is to examine the applicability
of the semantic warnings with the practical VoIP systems.
For this, we chose an open-source VoIP system, VOCAL
(Vovida Open Communication Application Library)[10], as
the target test-bed. We applied the semantic warnings to
the ready-made features of VOCAL. Also, we wrote cus-
tomized CPL scripts with the semantic warnings, and had
them run on the VOCAL system.

In the result of the experiment, the proposed warnings

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

reveals a semantic redundancy in a ready-made feature of
VOCAL. It is also shown that customized features contain-
ing the semantic warnings often lead VOCAL to problem-
atic situations. Thus, the proposed warnings can help fea-
ture provisioning system to detect semantic flaws in CPL
programmable service environment.

The rest of the paper is organized as follows: In Section
2, we review CPL briefly with an example. Section 3 sum-
marizes the proposed semantic warning. Section 4 conducts
an experimental evaluation with VOCAL. Finally, we con-
clude this paper with future work in Section 5.

2. CPL programmable services in VoIP

2.1. Call Processing Language (CPL)

We review definition of the CPL briefly. The full spec-
ification can be found in [2][3]. A CPL script is com-
posed of mainly four types of constructors: top-level ac-
tions, switches, location modifiers and signaling operations.

Top-level actions: Top-level actions are firstly in-
voked when a CPL script is executed: outgoing

(or incoming) specifies a tree of actions taken on
the user’s outgoing call (or incoming call, respec-
tively). subaction describes a sub routine to increase
re-usability and modularity.

Switches: Switches represent conditional branches in
CPL scripts. Depending on types of conditions spec-
ified, there are five types: address-switch,
string-switch, language-switch,
time-switch and priority-switch.

Location modifiers: The CPL has an abstract model,
called location set, for locations to which a call is to
be directed. For the outgoing call processing, the lo-
cation set is initialized to the destination address of
the call. For the incoming call processing, the loca-
tion set is initialized to the empty set. During the ex-
ecution, the location set can be modified by three
types of modifiers: location adds an explicit lo-
cation to the current location set; lookup obtains
locations from outside; remove-location re-
moves some locations from the current location
set.

Signaling operations: Signaling operations trigger signal-
ing events in the underlying signaling protocol for the
current location set. There are three operations: proxy
forwards the call to the location set currently speci-
fied; redirect prompts the calling party to make an-
other call to the current location set, then terminates
the call processing; reject causes the server to reject
the call attempt and then terminates the call process-
ing.

2.2. Example of CPL programmable services

Let us consider the following requirements. A user Chris
(chris@example.com) wants to:

� receive calls from domain example.com at office
chris@office.example.com.

� reject any call from malicious crackers belonging to
crackers.org.

� redirect any call from clients within instance.net

to Bob’s home at bob@home.org.

� proxy any other calls to his voicemail at
chris@voicemail.example.com.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>

<subaction id="voicemail">
<location url="sip:chris@voicemail.example.com">

<proxy />
</location>

</subaction>

<incoming>
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:chris@office.example.com">

<proxy />
</location>

</address>
<address subdomain-of="crackers.org">

<reject status="reject"
reason="No call from this domain allowed" />

</address>
<address subdomain-of="instance.net">

<location url="sip:bob@home.org">
<redirect />

</location>
</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 1. Example of a CPL script

Figure 1 shows an implementation of Chris’s script.
The portion surrounded by <subaction>

</subaction> defines a subaction called from the
main-routine. <incoming> specifies actions activated
when Chris receives an incoming call.

Next, in <address-switch>, a condition for
the switch is extracted from the host address of
the caller (field="origin" subfield="host").
If the domain matches example.com (<address
subdomain-of="example.com">), then the location is
set to chris@office.example.com, and the call is prox-
ied to his office (<proxy />). If the domain matches
crackers.org, the call is rejected by <reject />.
Else if the domain matches instance.net, the loca-
tion is set to bob@home.org. Then, the call is redirected
to Bob. Otherwise, the subaction voicemail is called. In

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

the subaction voicemail, the location is set to the voice-
mail at chris@voicemail.example.com, and then the
call is proxied there.

3. Semantic Warnings in CPL

As seen in the previous example, the CPL provides a
flexible means of service creation to the end-users. How-
ever, naive CPL description causes semantic inconsistency
of the service logic. To detect the source of such semantic
flaws in individual CPL scripts, we have proposed the con-
cept of semantic warnings in our previous research. Note
that we use the term warnings instead of errors, since such
flaws are not necessarily errors depending on the intention
of the users.

Focusing on constraints of CPL and semantic aspects of
telephony features, we have identified eight types of warn-
ings so far. Due to limited pages, we present their definitions
and effects only. The example scripts are found in [5][6][7]
or subsection 4.4.

Multiple forwarding addresses (MFAD):
Definition: The execution reaches <proxy> or
<redirect> while multiple addresses are con-
tained in the location set.
Effects: By design, CPL allows calls to be proxied
(or redirected) to multiple address locations by cas-
cading <location> tags. However, if the call is redi-
rected to multiple locations, then the caller would
be confused where the next call should be placed.
Or, if the call is proxied, a race condition might oc-
cur depending on the configuration of the proxied
end systems. As a typical example, if a user simul-
taneously sets the forwarding address to his cell
phone phone and voicemail that immediately an-
swers the call. Then the call never reaches his cell
phone.

Unused subactions (USUB):
Definition: Subaction <subaction id= "foo" >

exists, but <subaction ref= "foo" > does not.
Effects: The subaction is defined but not used. The de-
fined subaction is completely redundant, and should
be removed to decrease the server’s overhead for pars-
ing the CPL script.

Call rejection in all execution (CRAE):
Definition: All execution paths terminate at
<reject>.
Effects: No matter which path in the script is se-
lected, the call is rejected. No call processing is
performed, and all executed actions and evalu-
ated conditions are nullified. If the user wants to
reject all calls explicitly, this is not a problem. How-
ever, complex conditional branches and deeply nested

tags make this problem difficult to find, on the con-
trary to the user’s intention.

Address set after address switch (ASAS):
Definition: When <address> and <otherwise>

tags are specified as outputs of <address-switch>,
the same address evaluated in the <address> is set in
the <otherwise> block.
Effects: The <otherwise> block is executed when
the current address does not match the one speci-
fied in <address>. If the address is set as a new cur-
rent address in <otherwise> block, then a violation
of the conditional branch might occur. A typical ex-
ample is that, after screening a specific address by
<address-switch>, the call is proxied to the ad-
dress, although any call to the address should have
been filtered.

Overlapped conditions in single switch (OCSS):
Definition: Let � be a switch, and let ������ and
������ (arranged in this order) be conditions speci-
fied as output tags of �. Then, ������ is implied by
������.
Effects: According to the CPL specification, if there
exist multiple output tags for a switch, then the condi-
tion is evaluated in the order that the tags are presented,
and the first tag to match is taken. By the above defini-
tion, whenever ������ becomes true, ������ is true.
So, the former tag is always taken and the latter tag is
never executed, which is a redundant description.

Identical actions in single switch (IASS):
Definition: The same actions are specified for all con-
ditions of a switch.
Effects: No matter which condition holds, the same
action is executed. Therefore, the conditional branch
specified in the switch is meaningless. In such case,
this switch should be eliminated to reduce the com-
plexity of the logic.

Overlapped conditions in nested switches (OCNS):
Definition: Let � and � be switches of the same type,
and let ����� and ����� be the conditions of � and
�, respectively. Then, [� is nested in �’s condition
block] and [����� implies �����].
Effects: This warning is derived by the fact that CPL
has no variable assignment. So, any condition that is
evaluated to be true (or false) remains true (or false, re-
spectively) during the execution. Assume that �����
implies �����. �’s condition block, in which � is
specified, is executed only when ����� is true. So,
by the assumption, ����� always becomes true when
evaluated. Thus, �’s condition block is uncondition-
ally executed. Also, if � has an otherwise block, then
the block cannot be executed. As a result, the switch �
is completely redundant and should be removed.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

Incompatible conditions in nested switches (ICNS):
Definition: Let � and � be switches of the same type,
and let ����� and ����� be the conditions of � and
�, respectively. Then,

(�) [� is nested in �’s condition block] and [�����
and ����� are mutually exclusive], or

(�) [� is nested in �’s otherwise block] and [�����
implies �����].

Effects: Let us consider ��� first. �’s condition block,
in which � is specified, is executed only when �����
is true. However, ����� and ����� are exclusive, so
����� cannot be true at this time. Therefore, �’s con-
dition block is unexecutable. ��� is the complemen-
tary case of ���. �’s otherwise block is executed only
when ����� is false. Now that ����� must be false,
which is implied by ������ . Consequently, �’s con-
dition block is unexecutable also.

The above eight warnings can occur even if a given CPL
script is syntactically well-formed and valid against DTD.
These semantic warnings in a single script can be detected
by a simple static (thus, off-line) analysis.

We say that a CPL script is semantically safe iff the script
is free from the semantic warnings. For example, the CPL
script in Figure 1 is semantically safe, since it contains none
of the above warnings.

4. Evaluation with VOCAL Internet tele-
phony system

The main goal of this paper is to examine the applica-
bility of the proposed semantic warnings to practical set-
tings. In this section, we conduct an experimental evaluation
with one of the practical VoIP systems, VOCAL (Vovida
Open Communication Application Library)[10]. The reason
why we chose VOCAL is that: (a) it supports the CPL pro-
grammable services, and (b) since the application is open-
source, many feedbacks and comments are opened for pub-
lic. Also availability of the source codes makes our experi-
ment efficient.

4.1. VOCAL System

Overview The VOCAL system, developed by an open-
source community vovida.org, is a collection of server
applications that provides VoIP telephony services.

VOCAL contains a SIP stack as its standard protocol. It
works as a SIP proxy, which can communicate with a vari-
ety of phone appliances, including SIP phones and SIP User
Agent (UA) software applications.

At the service level, VOCAL supports CPL-based fea-
ture provisioning. Upon each call setup for a user, the CPL

feature server tells the redirect server how the call should
be processed, based on the CPL script of the user.

Various other functions, such as translation of SIP-H.323
messages and marshaling to analog phones, are also sup-
ported by VOCAL. However, these issues are beyond this
paper, since our concern here is VOCAL as the CPL pro-
grammable service environment.

CPL features in VOCAL Features 1 in VOCAL system
are the enhanced functions of the phone system that en-
able users to do more than simply make and receive phone
calls. VOCAL adopts CPL for feature description. The fea-
tures are controlled by the CPL feature server. In order for
users to run own features, VOCAL provides two options.

The first way is to use VOCAL’s ready-made fea-
tures, which are originally implemented in the VOCAL
system. Using a built-in interface, called feature provision-
ing GUI, users can activate/deactivate the features, and
configure the feature setting. Based on the feature configu-
ration, the GUI automatically generates the corresponding
CPL scripts. Among various ready-made features in VO-
CAL, we focus the following five core features in the ex-
periment.

Call Blocking(CB): Figure 12 shows the script of CB.
CB prevents the user from establishing connections to spec-
ified parties such as, 1-900 numbers or 976 numbers.

Calling Party Identity Blocking (CIB): Figure 13
shows the script of CIB. CIB allows a user to con-
trol whether or not his/her name and number are deliv-
ered.

Call Forward All Calls (CFA): Figure 14 shows the
script of CFA. CFA allows a user to re-route all calls to a
specified alternative number.

Call Forward No Answer or Busy (CFB) Figure 15
shows the script of CFB. CFB allows a user to specify where
a busy or an unanswered call should be re-routed.

Call Screening (CS) Figure 16 shows the script of CS.
CS prevents incoming calls from specified parties to estab-
lish connections with the user.

Another option is to write customized features from
scratch. For this, there is no specific GUI available. The user
just carefully writes a CPL script in a designated directory.
Then, restarting the feature server makes the new script ef-
fective.

4.2. Experiment environment

We have installed VOCAL-1.4.0 on a Linux server (Vine
Linux 2.6). As a SIP client (user agent), we have chosen Mi-

1 The terms features and (supplementary) services are often used inter-
changeably in telecom domain.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

Figure 2. Screenshots of CPL checker

crosoft Windows Messenger 4.7 running on Windows XP,
and used Voice Chat for voice communication. Thus, our
test-bed consists of one Linux server (with VOCAL) and
several Windows clients (with MS Messenger).

Deployment of the ready-made features is performed by
the provisioning GUI with Web Interface on the clients. For
creation of the customized feature, we edited the CPL script
directly on the server.

We have also developed a tool, called the CPL checker
to detect the semantic warnings. The CPL checker also per-
forms syntax checking to validate the conformance to the
XML syntax and the DTD of CPL. Thus, it can be used for
debugging CPL scripts as well. Figure 2 shows a screen-
shot, where semantic warning OCSS is detected.

4.3. Semantic warnings in ready-made features

First, we apply the warnings to the five ready-made fea-
tures of VOCAL (See Section 4.1) . Specifically, for each
of the ready-made features, we check if the CPL script au-
tomatically generated from the provisioning GUI is seman-
tically safe.

Among the five ready-made features with various config-
urations, we have identified a semantically redundant case
in CS by semantic warning OCSS. CS allows a user to con-
figure multiple screening addresses. If the user sets two
screening address where the second address is implied by
the first one, the second one is always ignored.

Figure 3 shows an example script generated from the
GUI. In this script, the user specifies two screening num-

bers 40 and 400. All calls from addresses containing these
numbers are screened (rejected). However, since the address
containing 400 also contains 40, the second condition with
400 is always ignored. This case is not necessarily an er-
ror, but just a redundancy. However, if the user wants to
make a different reject action for the number 400, this re-
dundancy possibly violates user’s intension.

For the other four ready-made features, no semantic
warnings was found. Thus, it can be said that the ready-
made features are relatively safe. In fact, the current set of
the ready-made features is not very complicated. However,
in future extension, there is enough room for introducing
more semantic problems. In the next subsection, we explore
this possibility by writing new customized features.

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<subaction id="rejectcall">

<reject reason="feature activated"
status="reject"></reject>

</subaction>
<incoming>

<address-switch field="origin" subfield="user">
<address subdomain-of="40">

</address>
<address subdomain-of="400">

</address>
<address subdomain-of=";">

</address>
<otherwise>

<lookup clear="yes" source="registration"
timeout="2">
<success>

<proxy ordering="first-only"></proxy>
</success>
<notfound>

</notfound>

</lookup>
</otherwise>

</address-switch>
</incoming>
</cpl>

Figure 3. Script of CS containing OCSS

4.4. Semantic warnings in customized features

Our interest here is to observe how VOCAL behaves for
the customized features containing the semantic warnings.
For this purpose, we wrote new customized features in CPL.
In each script, we intentionally put a semantic warning.

In the following CPL scripts, we use a four-digit number
to represent a user’s name (This is due to VOCAL’s conven-
tion). Also, vocalserver.domain denotes our Linux
server.

(A) Multiple forwarding address (MFAD) Figure 4
shows the script that contains MFAD. This script is ac-
tivated when an incoming call arrives at the user. The
user sets the forwarding address to three destinations,
“1001”, “1002” and “7000” simultaneously. Users “1001”

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

and “1002” are not subscribed to any feature. How-
ever, “7000” activates the voicemail service and configures
it to answer the phone immediately.

Execution result: When this user has an incoming call, the
call is proxied to “1001”, “1002” and “7000” simulta-
neously. However, since “7000” configures voicemail
to answer the call immediately, the call never reaches
“1001” and “1002”.

Discussion: In the result, we see unreachable termi-
nal (“1001” and “1002”) when MFAD exists in
the scripts. In this script, the problem occurs be-
cause of the simultaneous ordering of <proxy>. In
fact, <proxy> can include ordering parameter—
parallel, sequential or first-only to specify the or-
dering of <proxy> (See [3] for more details). How-
ever, when the user does not describe this param-
eter explicitly, parallel which is the default action
is used. Sometimes, this action brings violated re-
sult to the user who does not notice the default action
of <proxy>. One of the solution for this is to rec-
ommend the user to describe parameter of <proxy>,
explicitly. For <redirect>, however, no reason-
able solution is available. Since <redirect> has
no parameter to specify the ordering of redirec-
tion, we should recommend the user not to use cas-
cading <location>’s with <redirect>.

(B) Unused subactions (USUB) Figure 5 shows the script
that contains USUB.

Execution result & Discussion: No problem occurs in
this script, but a subaction reject call that was de-
clared in the subaction part is not used in the body of
the script. So, the unused subaction reject call is
redundant and should be removed.

(C) Call rejection in all execution (CRAE) Figure 6
shows the script that contains CRAE.

Execution result & Discussion: No problem occurs in
this script, but by this script, any incoming call is re-
jected, no matter who the originator is. All actions and
evaluated conditions are meaningless after all.

(D) Address set after address switch (ASAS) Figure 7
shows the script that contains ASAS. When the user makes
an outgoing call, this script checks the destination of the
call. The call should be rejected if the destination address is
5000, according to the condition specified in <address>.
However, in the otherwise block, the call is proxied to
5000 who should have been rejected.

Execution result: When the user makes a call to 5000, the
call will be rejected. But when the user makes a call
to other users, the call will be automatically proxied to
5000 who should have been rejected.

Discussion: It is seen that an inconsistent destination oc-
curs when ASAS exists in the script. The solution for
this problem is to recommend user to remove one of
the action of addresses that is contradictory to each
other. (In this case, 5000 in <address> or 5000 in
otherwise block.)

(E) Overlapped conditions in single switch (OCSS) Fig-
ure 8 shows the script that contains OCSS. In this script,
the user intends to proxy the incoming call from the address
that begins with “40” and “400” to 1001 and 1002 respec-
tively. And then proxy the other incoming calls to 1003.

Execution result: All of the incoming calls comes from
the address that begin with both “40” and “400” (e.g.,
4011 or 4001) are proxied to 1001. And no call is
proxied to 1002.

Discussion: The problem in this script is due to the or-
der of two implied (overlapped) conditions of “ad-
dress begins with 40” and “address begins with 400”
of <address-switch>. Because CPL evaluates the
conditions of switch in the order the tags are repre-
sented, the first tag to match is taken. When the con-
dition of “address begins with 40”(������) is im-
plied by the condition of “address begins with 400”(
�������), whenever ������� becomes true, ������ is
true. Hence, if ������ comes before �������, when the
former condition is true, the output of the former con-
dition is always taken and the latter condition is never
executed. Actually we can say that unreachable termi-
nal contains in the latter condition. This problem can
be solved by recommending users to re-arrange the or-
der of ������ and �������.

(F) Identical actions in single switch (IASS) Figure 9
shows the script that contains IASS.

Execution result & Discussion: This script has a
<address-switch> which specifies a condi-
tional branch depending on the address of the incom-
ing call. However, the same action of proxy to 1001

occurs independently in all conditional branches. So,
we can say that this <address-switch> is com-
pletely meaningless and redundant, and should be re-
moved. In this case, we can just only describe proxy to
1001, instead of describing the content of this switch.

(G) Overlapped conditions in nested switches (OCNS)
Figure 10 shows the script that contains OCNS. In this
script, if the incoming call comes from the address that be-
gins with “400”, the second address switch evaluates the ad-
dress again. If the address begins with “40”, the call is as-
sumed to be proxied to 1001. In the case that the call does
not come from the address that begins with “400”, it will be
proxied to 1002. But when OCNS exists in the script, some
of these requirements are not satisfied.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

Execution result: The incoming call from the address that
begins with “400” is proxied to 1001 but the one com-
ing from the address that begins with “40” is not prox-
ied to 1001 but proxied to 1002 instead.

Discussion: The problem in this script is due to the two
overlapped conditions of “address begins with 400”
(let it be �������) and “address begins with 40”
(������) in two address-switch. Note that �������
implies ������. Therefore, whenever ������� be-
comes true, ������ is true. If ������� comes be-
fore ������ in nested switch, when ������� is true,
������ is always true. So, the block of ������ is un-
conditionally executed. Also, in case of ������ hav-
ing an otherwise block, that block cannot be executed.
As a result, the switch of ������ is completely re-
dundant and should be removed. This problem can be
solved by recommending user to re-arrange the or-
der of ������� and ������, or remove the switch of
������.

(H) Incompatible conditions in nested switches (ICNS)
Figure 11 shows the script that contains ICNS. In this script,
if the incoming call comes from the address that begins
with “400”, the second address switch evaluates the address
again. If the address begins with “200”, the call is assumed
to be proxied to 5000, otherwise it will be proxied to 1001.
In case that the call is not coming from the address that be-
gins with “400”, it will be proxied to 1002. But when ICNS
exists in the script, some of these requirements are not sat-
isfied.

Execution result: The incoming call from the address that
begins with “400” is proxied to 1001. The one coming
from the address that begins with “200” is proxied to
1002 instead of 5000 as it is supposed to be.

Discussion: The problem in this script is due to the
two Mutual exclusive conditions of “address be-
gins with 400”(say it �������) and “address be-
gins with 200”(�������) in two address-switch’s.
������� comes before ������� in the nested switch.
Hence, whenever ������� is true, ������� will never
be executed. Therefore, we can say that ������� is un-
reachable, completely redundant and should be re-
moved. This problem can be solved by recommending
user to avoid describing nested switch with Mutual ex-
clusive condition.

As seen in the above experiment, the CPL scripts con-
taining the semantic warnings allow VOCAL to perform
unintentional behaviors. Although some of the observed re-
sults are not directly connected to the errors, these can of-
ten be potential sources of faults. Also, semantic ambigui-
ties and inconsistency characterized by the semantic warn-
ings decreases maintainability of features as well as inter-
operability with other features.

5. Conclusion

In this paper, we have evaluated the semantic warnings
for the CPL programmable service environment with the
practical VoIP system, VOCAL. Through the experiment,
it is shown that the proposed warnings can be used to de-
tect semantic problems in service logic even in practical set-
tings.

5.1. Discussion

For the ready-made features, we have found that a CPL
script of CS (Call Screening) generated from the provision-
ing GUI can contain semantically redundant portion. For
other ready-made features, no warning is detected. We think
that this is because the set of ready-made features currently
available is not very complex. In other words, the current
service provisioning GUI supports only a very limited class
of features.

As for the customized features that contain semantic
warnings, we have observed unintentional behaviors in VO-
CAL as expected in the eight types of the semantic warn-
ings. This fact implies that we need careful consideration in
the semantic aspect of own scripts when developing more
sophisticated features.

In the context of programmable services, feature devel-
opers are users (or third parties). Therefore, not all users are
experts in telephony feature logic. Thus, the feature provi-
sioning system must possess a mechanism to validate se-
mantics of the logic. If the validation is not passed, sugges-
tion and recommendation to resolve the problem should be
given to the users. The proposed warnings are expected to
help to implement such a back-end of the provisioning sys-
tem.

5.2. Future work

In our previous research [5][6], we addressed feature in-
teraction problem[1], which is known as a functional con-
flict among features. We characterized feature interactions
as semantic warnings over multiple scripts, and proposed a
detection method. We are currently conducting evaluation
of this method with VOCAL.

It is also essential in our future work to clarify a certain
class of the semantic flaws characterized by the proposed
warnings. It is currently difficult to prove all the semantic
flaws in CPL scripts can be exhausted by the proposed eight
warnings, as the general programming languages cannot do
so. Identifying such a class makes applicability of the se-
mantic warnings clearer, and this is our challenging goal.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<incoming>

<location url="sip:1001@vocalserver.domain">
<location url="sip:1002@vocalserver.domain">
<location url="sip:7000@vocalserver.domain">

<proxy>
</proxy>

</location>
</location>
</location>

</incoming>
</cpl>

Figure 4. Example of MFAD

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<subaction id="rejectcall">

<reject reason="feature activated"
status="reject"></reject>

</subaction>
<incoming>

<location url="sip:1001@vocalserver.domain">
<proxy/>

</location>
</incoming>

</cpl>

Figure 5. Example of USUB

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<incoming>

<address-switch field="origin" subfield="user">
<address subdomain-of="1">

<reject status="reject" reason=
"I don’t accept call from subdomain of 1"/>

</address>
<address subdomain-of="2">

<reject status="reject" reason=
"I don’t accept call from subdomain of 2"/>

</address>
</address>
<otherwise>

<reject status="reject" reason=
"I don’t accept call from anyone"/>

</otherwise>
</address-switch>

</incoming>
</cpl>

Figure 6. Example of CRAE

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<outgoing>

<address-switch field="original-destination"
subfield="user">
<address subdomain-of="5000">

<reject status="reject"
reason="I don’t call 5000"></reject>

</address>
<otherwise>

<location url="sip:5000@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</outgoing>

</cpl>

Figure 7. Example of ASAS

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">

<address subdomain-of="40">
<location url="sip:1001@vocalserver.domain">

<proxy/>
</location>

</address>
<address subdomain-of="400">

<location url="sip:1002@vocalserver.domain">
<proxy/>

</location>
</address>
<otherwise>

<location url="sip:1003@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 8. Example of OCSS

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<incoming>

<address-switch field="origin" subfield="user">
<address subdomain-of="30">

<location url="sip:1001@vocalserver.domain">
<proxy/>

</location>
</address>
<address subdomain-of="40">

<location url="sip:1001@vocalserver.domain">
<proxy/>

</location>
</address>
<otherwise>

<location url="sip:1001@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>
</cpl>

Figure 9. Example of IASS

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">

<address subdomain-of="400">
<address-switch field="origin" subfield="user">

<address subdomain-of="40">
<location url=

"sip:1001@vocalserver.domain">
<proxy/>

</location>
</address>
<otherwise>
<reject status="reject"></reject>

</otherwise>
</address-switch>

</address>
<otherwise>

<location url="sip:1002@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 10. Example of OCNS

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<incoming>

<address-switch field="origin" subfield="user">
<address subdomain-of="400">

<address-switch field="origin"
subfield="user">
<address subdomain-of="200">

<location url=
"sip:5000@vocalserver.domain">
<proxy/>

</location>
</address>
<otherwise>
<location url=

"sip:1001@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</address>
<otherwise>

<location url=
"sip:1002@vocalserver.domain">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 11. Example of ICNS

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<subaction id="rejectcall">
<reject reason="feature activated"
status="reject"></reject>

</subaction>
<outgoing>
<address-switch field="original-destination"
subfield="user">
<address subdomain-of="1900">

</address>
<address subdomain-of=";">

</address>
<otherwise>

<lookup clear="yes" source="registration"
timeout="2">

<success>
<proxy ordering="first-only"></proxy>

</success>
<notfound>

</notfound>
</lookup>

</otherwise>
</address-switch>

</outgoing>
</cpl>

Figure 12. Script of CB

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<outgoing>

<lookup clear="yes" source="registration">
<success>

<remove-location
location="complete_calleridblock">
<proxy ordering="first-only"/>

</remove-location>
</success>

<notfound>
<reject status="reject"/>

</notfound>
</lookup>

</outgoing>
</cpl>

Figure 13. Script of CIB

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<location clear="yes" url="sip:1900">

<redirect></redirect>
</location>

</incoming>
</cpl>

Figure 14. Script of CFA

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<incoming>

<lookup clear="yes" source="sip:3000;user=phone">
<success>

<proxy ordering="first-only" timeout="15">
<busy>

<location clear="yes"
url="sip:1900;user=phone">

<redirect></redirect>
</location>

</busy>
<noanswer>

<location clear="yes"
url="sip:1900;user=phone">

<redirect></redirect>
</location>

</noanswer>
<failure>

<location clear="yes" url="sip:1900">
<redirect></redirect>

</location>
</failure>

</proxy>
</success>
<notfound>

<reject status="reject"></reject>
</notfound>

</lookup>
</incoming>
</cpl>

Figure 15. Script of CFB

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>
<subaction id="rejectcall">

<reject reason="feature activated"
status="reject"></reject>

</subaction>
<incoming>

<address-switch field="origin" subfield="user">
<address subdomain-of="4000">

</address>
<address subdomain-of=";">

</address>
<otherwise>

<lookup clear="yes" source="
registration" timeout="2">

<success>
<proxy ordering="first-only"></proxy>

</success>
<notfound>

</notfound>

</lookup>
</otherwise>

</address-switch>
</incoming>
</cpl>

Figure 16. Script of CS

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

References

[1] D. Keck and P. Kuehn, “The feature interaction problem
in telecommunications systems: A survey,” IEEE Trans. on
Software Engineering, Vol.24, No.10, pp.779-796, 1998.

[2] J. Lennox and H. Schulzrinne, “Call processing lan-
guage framework and requirements,” Request for Com-
ments 2824, Internet Engineering Task Force,May 2000,
http://www.ietf.org/rfc/rfc2824.txt?number=2824

[3] J. Lennox and H. Schulzrinne, “CPL:A Language for User
Control of Internet Telephony Service”, Internet Engi-
neering Task Force, Jan 2002, http://www.ietf.org/internet-
drafts/draft-ietf-iptel-cpl-06.txt

[4] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosen-
berg, “SIP:session initiation protocol”, Request for Com-
ments 2543, Internet Engineering Task Force, Feb 2002,
http://www.ietf.org/internet-drafts/draft-ietf-sip-rfc2543bis-
09.txt

[5] M. Nakamura, P. Leelaprute, K. Matsumoto, T. Kikuno, “Se-
mantic Warnings and Feature Interaction in Call Processing
Language on Internet Telephony”, The 2003 International
Symposium on Applications and the Internet (SAINT2003),
pp.283-290, Jan. 2003.

[6] M. Nakamura, P. Leelaprute, K. Matsumoto, T. Kikuno, “De-
tecting script-to-script interactions in call processing lan-
guage”, Proc. of Seventh Int’l. Workshop on Feature Interac-
tions in Telecommunication Networks and Distributed Sys-
tems (FIW’03), pp.215-230, Jul. 2003.

[7] P. Leelaprute, M. Nakamura and T. Kikuno, “Characteriz-
ing semantic warnings of service description in Call Process-
ing Language on Internet telephony”, International Technical
Conference On Circuits/Systems, Computers and Communi-
cations (ITC-CSCC2002), Vol. 1, pp. 556-559, Jul. 2002.

[8] ITU-T Recommendation H.323, “Packet-Based Multimedia
Communications Systems”, February 1998.

[9] JAIN initiative, “The JAIN�� APIs: Inte-
grated Network APIs for the Java Platform”,
http://java.sun.com/products/jain/

[10] “VOCAL: The Vovida Open Communication Application
Library”, http://www.vovida.org/

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

