
Deriving Interaction-Prone Scenarios in Feature Interaction
Filtering with Use Case Maps

Masahide Nakamura
Informedia and Education Devision

Cybermedia Center
Osaka University, JAPAN

masa-n@cmc.osaka-u.ac.jp

Pattara Leelaprute and Tohru Kikuno
Dept. of Informatics and Mathematical Science

Graduate School of Engineering Science
Osaka University, JAPAN

fpattara, kikunog@ics.es.osaka-u.ac.jp

Abstract

Feature interactions (FIs, in short) occur when features
of different communication services interfere with each
other. The FI filtering is a pre-processing before the FI
detection, which roughly identifies FI-prone service com-
binations based on simple indications of the FIs. We have
previously proposed an FI filtering method at requirements
stage using Use Case Maps (UCMs). This method identi-
fies FI-prone service combinations by focusing on changes
in user’s scenarios before/after the service composition, but
does not tell which scenarios in the compound services have
a potential of FIs.

In this paper, as an extension of the previous method, we
propose a new method to derive FI-prone scenarios from the
FI-prone combinations obtained by the previous method.
From many practical FIs, we first make the following two
observations: (a) FI tends to occur in scenarios where both
services are activated, and (b) FI tends to occur in scenar-
ios where a service bypasses a feature of the other service.
Then, based on the observations, we propose heuristics on
the UCM scenario paths to derive FI-prone scenarios. An
experimental evaluation demonstrates that the derived sce-
narios successfully cover all scenarios that lead to actual
FIs.

1 Introduction

Recent advancement of networks, such as Advanced In-
telligent Network (AIN), mobile and IP networks, enables
functional enrichment of communication services. A va-
riety of services from the conventional telecommunication
services to multimedia services is being developed and de-
ployed on the network.

The flood of services introduces a new problem, called
Feature Interactions (FIs, in short) [9]. The FI is generally

referred as a functional conflict between multiple services,
which is never expected from services in isolation. This
problem is known as a serious obstacle for rapid creation
of new services, and should be detected and resolved. To
tackle the problem, many formal methods to detect FIs have
been proposed so far (See survey [3]). However, to detect
all possible FIs exactly is generally an expensive task, due
to combinational explosion in the numbers of service com-
binations, global states, scenarios, and so on.

In order to cope with the problem, a new notion of FI
filtering is emerging recently [4]. The FI filtering is a pre-
processing before the FI detection, which roughly identifies
FI-prone service combinations based on simple indications
of the FIs. Though the FI-prone combinations identified do
not always cause actual FIs, the FI filtering narrows the ser-
vice combinations to be investigated with a small cost. This
enables a large cost reduction in the FI detection process.

We have previously proposed an FI filtering method
at requirements stage [6], using Use Case Maps (UCMs)
[1, 2], which is a graphical notation based on scenario paths
(use cases). This method identifies FI-prone service com-
binations by focusing on changes in user’s scenarios be-
fore/after the service composition, and outputs one of the
following verdicts: (1) FI occurs, (2) FI does not occur, or
(3) FI-prone. However, the method gives only the verdict to
each service combination, but does not tell which scenarios
in the compound services have a potential of FIs. Therefore,
for each FI-prone combination, all possible scenarios have
to be examined in the FI detection process.

In this paper, as an extension of the previous method, we
propose a new method to derive FI-prone scenarios for the
FI-prone combinations. From many practical FIs, we first
make the following two observations: (a) FI tends to occur
in scenarios where both services are activated, and (b) FI
tends to occur in scenarios where a service bypasses a fea-
ture of the other service. Then, based on the observations,
we propose heuristics on the UCM scenario paths to derive

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

FI-prone scenarios.
An experimental evaluation through the FI detection

contest held in the year 2000 [5] demonstrates that the de-
rived scenarios successfully cover all scenarios that lead to
actual FIs. Also, it is shown that the proposed method can
improve quality of FI filtering. As a result, the proposed
method adds sophisticated information to the previous FI
filtering method, which achieves more efficient FI detec-
tion.

2 Feature interactions (Practical examples)

Let us see practical examples of FIs, using the following
three services. In the following, x, y, z and A, B, C denote
variables and actual users, respectively.

Terminating Call Screening (TCS): This service allows a
subscriber to screen incoming calls based on a screen-
ing list. Suppose that a user x registers y in the screen-
ing list. Then any call from y to x is screened.

Call Forwarding on Busy (CFB): A subscriber of this
service can forward incoming calls to other pre-
determined number when the subscriber is busy. Sup-
pose that a user y is setting the forwarding number to
z, and that y is busy. If x dials y, then the call is for-
warded to z and x is connected to z.

Voice Mail (VM): This service allows a subscriber to redi-
rect incoming calls to a voice mail center while the
subscriber is busy. Suppose that a user y subscribes to
the VM, and that y is busy. If x dials y, x can record a
voice message after the announcement, instead that x
receives busytone 1 .

Then, the following FIs occur. Note that these FIs do not
occur if the services are used in isolation.

FI-(a) - Interaction CFB & VM: Suppose that B sub-
scribes to both CFB and VM, and that B is busy. At
this time, if A dials B, then a non-deterministic behav-
ior occurs: should the call be forwarded by CFB or be
redirected to voice mail center by VM?

FI-(b) - Interaction TCS & CFB: Suppose that C sub-
scribes to TCS and puts A in the screening list, and
that B subscribes to CFB and sets the forwarding ad-
dress to C. Now, if A dials B when B is busy, then CFB
forwards the call to C. As a result, A can call C, which
is a violation of TCS’s feature.

1In general, VM works also when the subscriber does not answer the
phone. However, for simplicity, we suppose in this paper that VM is acti-
vated only when the subscriber is busy.

3 FI filtering with UCMs

This section presents a brief review of the previous FI
filtering method [6].

3.1 Use Case Maps

Use Case Maps (UCMs, in short) is a requirements nota-
tion method based on a scenario path structure [1, 2]. UCMs
visually describe causal relationships between responsibili-
ties of one or more use cases.

Figure 1 shows an example of UCMs. In UCMs, sce-
nario paths are depicted by wiggly lines. A path starts at a
starting point (depicted by a circle) and ends at an end point
(shown as a bar). Responsibilities, depicted by crosses with
labels, are abstract activities that can be refined in terms of
events, tasks, functions, etc. Tracing a path from the start to
the end explains a scenario (use case) by a causal sequence
of events. Fork and join are used to make scenarios branch
off and merge together in one diagram. A fork may be as-
sociated with a guard, which represents a condition for the
path selection. A guard is described by a text with brackets.

Next, a dynamic stub, depicted by a dotted diamond,
specifies a place in scenarios, where the details of the sce-
narios are explained by other UCMs, called submaps. The
dynamic stub allows UCMs to have hierarchical structure
and dynamic behavior. A UCM in the top hierarchy is called
root map. A submap can be plugged into a stub by binding
entries and exits of the stub with starting and end points of
the submap, respectively. It is also possible to plug multiple
submaps into a dynamic stub. The selection of the submaps
are done at run time by a selection policy, which is usually
specified in pre-conditions of the submaps.

The primary purpose of the UCM notation is to bridge
the gap between requirements and design specification.
Since details of system are usually not determined at re-
quirements stage yet, UCMs do not have such strict for-
malism as seen in formal description techniques (FDTs).
UCMs only specify path structure and causal relation-
ships between responsibilities. Other things such as labels,
guards and conditions do not have formal meanings. They
are just used to help human understanding.

3.2 Describing services with UCMs

3.2.1 Basic call

Figure 1 shows scenarios for simplified basic call model
(default service). The root map in the figure describes core
scenarios commonly used by all services. Two submaps
def1 and def2, shown in the lower part, are respectively
plugged into the stubs 1 and 2 in the root map, which com-
plete the scenarios of the basic call. The submaps are called

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

1

[Y is busy]

[Y is idle]

idle

busy
offhookA

onhookA
dialAY

2
out21in21

out22

onhookA
onhookA

out11
in11

out12
onhookAtalk

Root map

respondY

rootA

onhookA

out11in11

out12def1

[Y does not respond] out21in21 busytoneA

def2

Pre-condition: Default.
Post-condition: As is.

Pre-condition: Default.
Post-condition: As is.

Submaps (defaults)

Figure 1. Use Case Maps for simplified basic call

default submaps, in the sense that they are for the default
service.

The UCMs explain scenarios that a user A calls other
user Y (here, we assume that Y is variable, i.e., the actual
callee is determined at run time). Let us explain some sce-
narios. First A offhooks and dials Y. If the callee Y is busy,
A receives busytone and onhooks to disconnect the line. If
the callee Y is idle and responds to the call, A and Y can
talk. Finally A onhooks to disconnect.

3.2.2 Supplementary services

Supplementary services (e.g., TCS, CFB, VM in Section
2) extends the basic call (default service) by adding special
features. In this sense, we call the supplementary services
simply features in the following. Adding features to the ba-
sic call is achieved easily in terms of the dynamic stubs.
Instead of the default submaps, feature submaps, which de-
scribe scenarios specific to the feature, are plugged in the
dynamic stubs in the root map. The prug-in operation is
performed dynamically, according to the subscription con-
ditions specified in pre-conditions of the feature submaps.

Figure 2 shows the feature submaps. Let us add CFB to
the basic call. Suppose that B subscribes to the CFB and
forwards the call to user C. For convenience, we introduce
a notation Fu to denote a feature subscription where user u
subscribes to feature F . In the root map in Figure 1, con-
sider A’s call scenarios when B is busy. First, A offhooks
and dials B (now the variable Y is regarded as B). Since
B is busy, the scenario proceeds to the stub 2. The feature
submap cfbBC2 in Figure 2 has a pre-condition Y = B.
Since the pre-condition matches the scenario that the callee

Y is B, cfbBC2 is plugged into the stub 2 instead of def2.
In cfbBC2, the call to B is forwarded to C by forwardBC.
Next, if C is idle and responds to the call, the scenario pro-
ceeds to out22. The callee Y is regarded as C in the follow-
ing scenario, as specified in the post-condition for out22.
The scenario goes back to the root map and A and C talk.
For the stub 1 in the root map, def1 is reused.

Similarly, tcsC1 is plugged into stub 1, if C subscribes
to TCS andA calls C. Also, vmB2 is plugged into stub 2, if
B subscribes to VM andA callsB. Note in the example that
if the callee Y does not subscribe to any feature, def1 and
def2 are used. Using dynamic stubs and feature submaps, a
feature (with a subscriber) can be roughly characterized by
a stub configuration, i.e., allocation of submaps to stubs in
the root map.

3.3 FI filtering (Previous method)

Researchers agree on an informal proposition of FI: FI
occurs iff the combined use of multiple features changes
the requirements properties of each feature in isolation.
Though many researches have been conducted so far, there
is no universal strict definition of FIs. In general, different
frameworks adopt different definitions. In the FI filtering
method we proposed in [6], we briefly characterize FIs by
the following conditions.

Condition C1 (Necessary condition for FIs): If an FI oc-
curs, then composition of features changes some user’s
call scenarios in an individual feature

Condition C2 (Sufficient condition for special FIs): If a
composition of features enables different call scenar-

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

������� �	
����
�

�����

����

����������

��	
���	���	�����
�

�����������

��	��	������
�
����

��
��������������� ��!

�����������������"����!

���������

�
������#"

$�%&'(%

��
��������������� �%!

����������������"����!

�������

�����

����

������	�%�&

	��)���%�

��	��	�
���

�*%%�

��
��������������� �%!

�����������������

�������"����!

�������������
����
���+��!

��	��	�����

��	
���	���	�����
�

���+���
"

Figure 2. Submaps for supplementary features

ios to be performed under the same conditions, then a
non-deterministic FI [8] occurs.

Although these seem to be a bit loose conditions, the fil-
tering method does not need such strict definitions as seen in
FI detection. This is by the nature of FI filtering. Based on
these conditions, we explain the previous filtering method.

We first duplicate the root map for all possible users as-
sumed. For example, consider again the root map in Figure
1. Here, if we assume three users A, B and C in FI filtering,
then three copies are created as shown in Figure 3. Let us
consider the stub configurationCFBB shown in a rectangle
in Figure 3(a). WhenB subscribes to CFB, andA orC calls
B, CFB may be activated. Thus, B’s subscription to CFB
affects scenarios of A and C. Hence, the submap cfbBC2

(in Figure 2) may be plugged into the stubs 2 in the root
maps of A and C (i.e., rootA and rootC). Similarly, other
features respectively form their own stub configurations un-
der the root maps of all assumed users.

Once a feature is characterized by a stub configura-
tion, the method combines stub configurations of two fea-
tures2. Then, according to the following simple checking,
the method outputs one of the following verdicts: (1) FI oc-
curs, (2) FI does not occur, or (3) FI-prone.
FI Filtering Procedure:

Step 1: By the composition, if feature submaps of different
features conflict in the same stub, then we conclude (1)
FI occurs (non-determinism).

Step 2: For each user’s root map, if the stub configuration
does not change before/after the feature composition,
then we conclude (2) FI does not occur.

2Strictly speaking, the composition � is defined by a matrix operation
[6].

Step 3: Otherwise, we conclude (3) FI-prone.

Let us see how the filtering method works using Figure 3.
Figure 3(a) shows a case with the verdict FI occurs. Here,
B subscribes to both CFB and VM. Therefore, as explained
in Section 3.2.2, CFB uses cfbBC2 in stub 2, while VM
puts vmB2 in the stub2 also. Composition of two features
causes a conflict of the two feature submaps at stub 2. So,
by Step 1, this combination is concluded to be “FI occur”,
which reflects the example FI-(a) in Section 2. This verdict
is justified by Condition C2.

Next, Figure 3(b) shows a case with the verdict FI-prone.
Here, C subscribes to TCS and B subscribes to CFB. By
the composition, there is no conflict of feature submaps.
However, a new stub configuration appears in rootA after
the composition. So, Step 3 concludes that this combination
is “FI-prone”. The new configuration in rootA indicates
that some scenarios of user A may be changed. Hence, ac-
cording to Condition C1, FI may occur. This feature com-
bination actually causes an FI explained in FI-(b) in Sec-
tion 2. However, the filtering method cannot tell the strict
answer at this time, just concluding FI-prone. The further
analysis is left to the subsequent FI detection process.

Thus, by using simple checking, the previous filtering
method conducts a rough and quick evaluation for the ten-
dency of FIs. However, the method only gives a verdict for
a combination, but does not provide concrete scenarios in
which a potential FI may occur. Especially, as for FI-prone
combinations, it is essential to know which scenario has a
high possibility of FIs. If we have the FI-prone scenario, it
greatly helps the subsequent FI detection process, since the
scenario narrows the scope of FI detection.

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

�����
1

2

1

2

1

2

�����

�����

����

�����
1

2

1

2

1

2

�����

�����

���

⊕

�����
1

2

1

2

1

2

�����

�����

����⊕���

=

�����
1

2

1

2

1

2

�����

�����

���	

�����
1

2

1

2

1

2

�����

�����

����

⊕

�����
1

2

1

2

1

2

�����

�����

����⊕����

=

��

�

Figure 3. FI filtering (a) FI occurs (b) FI-prone

4 Deriving FI-prone scenarios

As an extension of the previous filtering method, we pro-
pose a new method to derive FI-prone scenarios for feature
combinations with the verdict FI-prone.

4.1 Heuristics to identify FI-prone scenarios

In the previous method, the verdict FI-prone is derived
by Condition C1, i.e., some user’s scenarios in the root
maps have been changed by the feature composition. What
we have to consider next is how the scenarios change and
which scenarios have a potential of FIs. In many practical
examples, we have had the following observations of FIs.

Observation 1: FI tends to occur in the scenarios where
two different features are activated.

Observation 2: FI tends to occur in the scenarios where
execution of the one feature bypasses execution of the
other feature.

For example, consider again the examples FI-(a) and FI-
(b) in Section 2. FI-(a) occurs in a scenario, where B sub-
scribes both CFB and VM and, A (or C) calls B while B
is busy. In this scenario, both two services CFB and VM
are activated (though this combination is concluded to be
(1) FI occurs by the previous method). So, Observation 1
is justified. Next, FI-(b) occurs in a scenario, where B sub-
scribes to CFB, C subscribes to TCS, and A calls B when B
is busy. In the scenario, a feature of TCS, which checks C’s
screening list, is bypassed by CFB. From this, we can see
that Observation 2 is also reasonable.

dialAY
dialAB

dialAC

def f def

f

(a)

(b)
[default][cond.]

[cond.]

[default]

Figure 4. Expanding dynamic elements

According to Condition C1, the FI-prone scenarios must
be contained in a root map in which the stub configuration
is modified by feature composition. For instance, let us see
Figure 3. For the composition (a), rootA and rootC include
FI-prone scenarios. For (b), if an FI occurs then the FI must
be in a scenario in rootA. Consequently, in order to derive
FI-prone scenario, we have to do the following two steps:

Step 1: Identify root maps that may contain FIs.

Step 2: Examine scenarios of the root maps in which the
FIs tends to occur.

Step 1 is easily done by looking at stub configuration of
the root maps. To achieve Step 2, we propose heuristics on
the UCMs based on the Observations 1 and 2, as presented
in the following subsections.

4.2 Expansion of dynamic elements in scenarios

In order to derive scenarios satisfying Observations 1
and 2, we eliminate dynamic elements in the root map sus-
pected in Step 1. The dynamic elements in our root maps
are responsibilities with variables and dynamic stub. The
dynamic elements help the UCMs to describe dynamic sce-
narios, i.e., the detailed conditions of the scenarios are de-
termined and interpreted at run time. For the efficiency of
the scenario derivation, we expand the dynamic scenarios
into static ones. This is done by replacing the dynamic ele-
ments by branches (fork, join) of all the possible scenarios.

For responsibilities with variables, we use a fork to de-
scribe a possible branch with respect to range of the vari-
able. For example, Figure 4(a) shows the case of a respon-
sibility “dialAY”, where callee Y is a variable. Assume
that the range of Y includes B and C. Then two subsequent
scenarios are possible, where A calls B or A calls C. So,
“dialAY” is expanded into two (static) responsibilities “di-
alAB” and “dialAC”.

Next, the dynamic stub can have multiple submaps to be
plugged into. The selection of the submaps is determined
at run time by a selection policy that is usually specified in
pre-conditions of the submaps. The dynamic stub can be

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

(H1) (H2)

f
g

f
g

Figure 5. Heuristics H1 and H2

also expanded into a branch of the static stubs (denoted by
solid diamonds). Let us see Figure 4(b). In the figure, two
submaps def and f can be plugged into the dynamic stub,
thus, there are two possible scenarios. So, we expand the
scenario into two using a branch with guards (taken from
the pre-conditions of the submaps). Then for each scenario,
we put a static stub in which a submap f or def is plugged.
Also, for the submaps that have post-conditions modifying
conditions in a scenario (e.g., cfbBC2), it might be neces-
sary to merge some expanded scenarios. For this situation,
we use a join.

4.3 Deriving FI-prone scenarios

After eliminating the dynamic elements on the root map,
here we derive FI-prone scenarios in the suspected root
map. Note that each feature is characterized a stub con-
figuration and a set of feature submaps. Among all scenario
paths in the expanded root map, a feature is activated in a
path passing through a static stub with the feature submap.
So, scenario paths corresponding to the Observations 1 and
2 in Section 4.1 can be respectively derived by the following
heuristics on the expanded root map.

Let f and g be feature submaps of features F and G,
respectively.

Heuristic H1: Derive a scenario path that passes through
both f and g.

Heuristic H2: Derive a scenario path in which f is by-
passed by g, and vice versa.

Figure 5 illustrates Heuristics H1 and H2. As shown in
the figure, Heuristic H1 (and Heuristic H2) derives a sce-
nario path corresponding to Observation 1 (and Observa-
tion 2, respectively). Based on them, we derive FI-prone
scenario paths from the expanded root map.

As an example, let us derive an FI-prone scenario for the
combination TCSC and CFBB in Section 3.3. The previ-
ous method concludes that this combination is FI-prone (see
Figure 3). Since rootA has a new stub configuration, we
suspect that FI-prone scenarios should be in rootA. Next,
the dynamic elements of rootA are expanded as shown in
Figure 6. Finally, according to Heuristic H2, an FI-prone
scenario, depicted by a dotted line, is derived. The derived
scenario is interpreted as follows: “B subscribes to CFB for-
warded to C, and C subscribes to TCS. If A dials B when B

1

[C is busy]

[C is idle]

idle

busy
offhookA

onhookA
dialAC

2
onhookA

onhookA

onhookAtalk

Root map

respondC

rootA

onhookA

1

[B is busy]

[B is idle]

idle

busy

dialAB

2
onhookB

onhookA

onhookAtalk

respondB

onhookA

tcsC1

cfbBC2

Figure 6. Scenario derivation for TCSC and
CFBB

is busy, the call is forwarded to C. Finally A can call C with-
out checking procedure of TCS screening list”. The derived
scenario explains the situation of FI-(b) in Section 2.

Here we should note that the derived scenarios do not
guarantee the existence of actual FIs. That is, Heuristics
H1 and H2 derive just FI-prone scenarios. Hence, not all
derived scenarios contain FIs, and some of them might be
FI-free. The exact FIs will be detected in the FI detection
process, which is the next step of FI filtering. The goal of
the proposed method is to provide the FI-prone scenarios as
an essential information for efficient FI detection.

5 Evaluation

5.1 Preliminary

We have applied the proposed method to specifications
of eight features taken from the second FI detection con-
test [5]. The features include: (1) Call Forwarding on Busy
(CFB), (2) Teen Line (TL), (3) Terminating Call Screening
(TCS), (4) Reverse Charge (RC), (5) Call Number Deliv-
ery Blocking (CNDB), (6) Ring Back when Free (RBF), (7)
Voice Mail (VM), (8) Split Billing (SB).

Since the contest specifications are given by Communi-
cating Finite State Machines (CFSMs), we first construct
UCMs (root map and default/feature submaps), so that
the causal relationships among events are preserved. The
UCMs consists of a root map with eight stubs, eight default
submaps, and nine feature submaps. For each pair among
the eight features, we combined them in the following two
ways: (a) both features are allocated to the same user, and
(b) different users subscribes to different features. Then, for
each combination, we applied the previous filtering method.

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

Finally, for combinations with (3) FI-prone, we applied the
proposed method to derive FI-prone scenarios.

The evaluation is conducted from the following view-
points:

Filtering quality: how many feature combinations are fil-
tered at FI filtering process.

Scenario coverage: whether the derived scenarios cover
actual FIs or not.

As a reference of the actual FIs among the eight services,
we used FI detection results submitted by the team of Ot-
tawa University [7].

5.2 Filtering quality

Table 1 shows the filtering result by the previous method
only. Each entry of the table represents one of the verdicts:
(1) FI occurs, (2) FI does not occur or (3) FI-prone. The
same (or diff) means that two services are allocated to the
same users (or different users, respectively), as mentioned
in Section 5.1. The shaded entries represent that the combi-
nations cause actual FIs detected in [7].

It can be seen in Table 1 that all combinations causing
FIs are covered by the verdicts (1) or (3). However, most
combinations have a verdict (3), and no concrete scenario
is available at this time. The number of combinations that
have strict answer, i.e., (1) or (2), is 14, and 50 FI-prone
combinations still have to be examined the subsequent FI
detection process. So, it can be said that the filtering quality
of the previous method only is 22.9% (=14/64).

On the other hand, Table 2 shows the filtering result, ob-
tained by using the proposed scenario derivation together
with the previous method. For the combinations with (3),
concrete FI-prone scenarios are derived by Heuristics H1
and/or H2. H1 (and H2) in the table means that the com-
bination has a scenario derived by Heuristic H1 (and H2,
respectively) 3. Other means that no scenario has been de-
rived by H1 nor H2.

It can be seen in the table that scenarios in Other do not
cause actual FIs. Therefore, if we conclude the combina-
tions with Other to be FI-free, then more combinations can
be filtered at the filtering process. Since the number of com-
binations with (1), (2) or Other is 22, and the filtering qual-
ity is improved to be 34.4% (= 22=64). Thus, by using the
proposed method, we do not only get concrete FI-prone sce-
narios, but also we can expect the improvement the filtering
quality.

5.3 Scenario coverage

Next, we conduct a scenario-wise investigation of the re-
sult obtained by the previous method with the proposed sce-

3Sometimes, multiple scenarios are derived from a combination.

H1
48

H2
6

Other
20

FI
25 (= 20(H1)+5(H2))

Figure 7. Result of scenario coverage

nario derivation. Figure 7 represents a set of all scenarios
in FI-prone combinations. Among total 74 scenarios inves-
tigated, 48 scenarios met Heuristic H1 (depicted by a set
H1 in the figure), while 6 scenarios were derived by Heuris-
tic H2 (shown by a set H2). 20 scenarios matched neither
H1 nor H2 (described by a set Other). A set FI in Figure 7
represents a set of scenarios containing actual FIs that were
identified in [7]. Out of 25 scenarios in the set FI, 20 sce-
narios were contained in the H1, and 5 scenarios were in the
H2.

From the result, it can be seen that all FI scenarios are
contained in the FI-prone scenarios derived by Heuristics
H1 and H2. None of FI scenarios belong to the set Other.
That is, it can be said that Heuristics 1 and 2 sufficiently
cover actual FI scenarios in the experiment.

6 Conclusion

This paper proposed a new method to derive FI-prone
scenarios, as an extension of the previous FI filtering
method with UCMs. Based on the two heuristics, the pro-
posed method derives FI-prone scenarios from root maps
of FI-prone service combinations. The experimental eval-
uation through the FI detection contest showed that the de-
rived scenarios successfully covered all scenarios of actual
FIs. It was also observed that, if no FI-prone scenario is
derived by the heuristics from a FI-prone combination, then
the combination did not cause actual FIs. This fact implies
that the heuristics are quite reasonable and that the proposed
method can improve filtering quality. After all, the proposed
method adds essential information to the previous method,
which allows more efficient FI detection.

Our future works are summarized as follows: It will be
necessary to establish an efficient framework to use the de-
rived FI-prone scenarios in FI detection process (e.g., test
case generation, etc). Also, we plan to apply the proposed
method to more practical services, which may reveal more
effective heuristics for FI filtering.

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

Table 1. Filtering result (previous filtering only)
CFB TL TCS RC CNDB RBF VM SB

same diff same diff same diff same diff same diff same diff same diff same diff

CFB - (3) (2) (2) (3) (3) (3) (3) (2) (3) (1) (3) (3) (3) (3) (3)

TL - - - (2) (2) (3) (2) (3) (3) (2) (3) (3) (3) (3) (2) (3)

TCS - - - - - (3) (3) (3) (2) (3) (3) (3) (3) (3) (3) (3)

RC - - - - - - - (3) (2) (3) (3) (3) (3) (3) (1) (3)

CNDB - - - - - - - - - (2) (3) (3) (3) (3) (2) (3)

RBF - - - - - - - - - - - (3) (3) (3) (3) (3)

VM - - - - - - - - - - - - - (3) (3) (3)

SB - - - - - - - - - - - - - - - (3)

Table 2. Filtering result (previous plus scenario derivation)
CFB TL TCS RC CNDB RBF VM SB

same diff same diff same diff same diff same diff same diff same diff same diff

CFB - H1 (2) (2) Other H1 H1 H2 (2) H1 (1) H1 Other H1 H1 H2

TL - - - (2) (2) H1 (2) H1 H1 (2) H1 H1 H2 H1 (2) H1

TCS - - - - - Other H1 H1 (2) H1 Other H1 H2 H1 H1 Other

RC - - - - - - - Other (2) H1 H1 H1,H2 H1 H1 (1) Other

CNDB - - - - - - - - - (2) H1 H1 H1 H1 (2) H1

RBF - - - - - - - - - - - H1 H1 H1 H1 H1,H2

VM - - - - - - - - - - - - - H1 H1 H1

SB - - - - - - - - - - - - - - - Other

Acknowledgments

This work is partly supported by Grant-in-Aid for En-
couragement of Young Scientists (No.13780234), from
Japan Society for the Promotion of Science.

References

[1] Amyot, D., Logrippo L., Buhr, R.J.A. and Gray, T.,
“Use Case Maps for the capture and validation of dis-
tributed systems requirements,” Proc. of Fourth In-
ternational Symposium on Requirements Engineering
(RE’99), pp. 44-53, June, 1999.

[2] Buhr, R.J.A., “Use Case Maps as architectural entities
for complex systems,” IEEE Transactions on Software
Engineering, Vol.24, No.12, pp. 1131-1155, 1998.

[3] Keck, D.O. and Kuehn, P.J., “The feature interaction
problem in telecommunications systems: A survey,”
IEEE Trans. on Software Engineering, Vol.24, No.10,
pp.779-796, 1998.

[4] Keck, D.O., “A tool for the identification of
interaction-prone call scenarios”, Proc. of Fifth Work-
shop on Feature Interactions and Software Systems
(FIW’98), pp.276-290, IOS Press 1998.

[5] Kolberg, M., Magill, E.H., Maples D., and Reiff
S., “Second Feature Interaction Contest”, Proc. of
Sixth Int’l. Workshop on Feature Interactions in

Telecommunication Networks and Distributed Sys-
tems (FIW’00), pp.293-310, May 2000.

[6] Nakamura, M., Kikuno, T., Hassine, J., and Logrippo
L., “Feature interaction filtering with Use Case Maps
at requirements stage”, Proc. of Sixth Int’l. Work-
shop on Feature Interactions in Telecommunication
Networks and Distributed Systems (FIW’00), pp.163-
178, May. 2000.

[7] Nakamura M., Ding, T., Sincennes, J.,
Lu, X. and Logrippo L., “Second Fea-
ture Interaction Contest - Contest Report”,
http://lotos.csi.uottawa.ca/FI/FIW00
/Results/.

[8] Yoneda, T. and Ohta, T., “A formal approach for def-
inition and detection of feature interactions”, Proc. of
Fifth Workshop on Feature Interactions and Software
Systems (FIW’98), pp.165-171, IOS Press 1998.

[9] Feature Interaction in Telecommunications, Vol. I-VI,
IOS Press (1992-2000)

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

