
DESIGN AND EVALUATION OF THE HOME NETWORK
SYSTEMS USING THE SERVICE ORIENTED ARCHITECTURE

Hiroshi Igaki, Masahide Nakamura, Ken-ichi Matsumoto
Graduate School of Imformation Science, Nara Institute of Sciense and Technology, 8916-5 Takayama-cho, Ikoma, Nara

Japan
Email: hiro-iga@is.naist.jp, masa-n@is.naist.jp, matumoto@is.naist.jp

Keywords: Web Services, Service-oriented architecture, Home network, distributed system

Abstract: In the conventional home network systems (HNS), a powerful centralized server controls all electric home
appliances connected to provide value-added integrated services. However, when the number of the
appliances increases and the appliances become more sophisticated, the conventional architecture would
suffer from problems in superfluous resources, flexibility, scalability and reliability. This paper proposes
alternative architecture for HNS, which exploits the service-oriented architecture with Web Services. In the
proposed architecture, each appliance is controlled by a Web service in a de-centralized manner. Then, the
services autonomously collaborate with each other to achieve the integrated service scenarios. To evaluate
the HNS at the design process, we also present four kinds of evaluation metrics: reliability, load,
complexity, and coupling. Using these metrics, we conduct a comparative study among the proposed and
the previous HNS architectures.

1 INTRODUCTION

Recent advancement in computer network
technology enables electric home appliances to be
connected in a network. The appliances, such as an
air-conditioner, door sensors, lights, a TV and a
DVD player, are connected with each other. The
system consisting of such networked home
appliances is generally called a Home Network
System (HNS for short). Several commercial HNS
products are already on the market (e.g., LG E,
2004; Samsung, 2004; Hitachi, 2004).
The appliances in HNS are controlled together to
provide integrated services, which add more value
and convenience to the daily life of home users.
Typical integrated services include;
If the user comes home, the lights and the air-
conditioner are automatically turned on.
When the user starts to watch DVD movies, the
lights becomes dark and the volume on the TV is
adjusted.
The current HNS mainly adopts the server
centralized architecture (we call it SCA in the
following), where a powerful and intelligent server
(called Home Server) controls all the dumb
appliances connected. In general, each appliance

does not have advanced intelligence, and it just
receives (a sequence of) commands from the server
with a low-level and light-weight network adapter.
Since SCA is quite simple architecture, it is
relatively easy to apply SCA to the HNS consisting
of the conventional home electric appliances.
However, in the near future, the SCA-based HNS
will be faced with the following problems.
Since SCA generally requires proprietary middle-
ware, it is difficult to achieve the interoperability
among products from different vendors.
All the appliances heavily rely on the centralized
Home Server. Therefore, the server suffers from the
scalability problem when the number of appliances
becomes large. Also, the server requires
considerably high reliability, because all the
integrated services stop when the server fails.
Even if the appliances come to have more intelligent
processors and network devices, the HNS cannot
make flexible use of the resources as the Home
Server takes the main control. Thus, the quality of
the integrated services is limited to the features
implemented in the server.
This paper presents alternative architecture for HNS.
Specifically, we propose to apply the service
oriented architecture (SOA, for short) (Hao, 2003)
with Web services to HNS. SOA is basically

62

architecture to integrate distributed self-contained
services using loose coupling and well-defined
interfaces. In this paper, we assume the next-
generation home electric appliances, which are
intelligent enough to process Web service
transactions with own processors and network
devices.
Our key idea is to export features of each appliance
as methods of Web service, and to make the features
directly available from other appliances in an open
and standard manner (i.e., SOAP/XML). Thus, the
appliances can autonomously collaborate with each
other to build the integrated services in the HNS.
Since the proposed SOA-based HNS does not
require any centralized server, it is expected to be
more scalable and fault-tolerant. Also, more
sophisticated and flexible integrated services can be
developed.
In this paper, we conduct the architectural design of
a practical HNS example using the SOA framework.
Then, we propose a graph-based method to evaluate
the design quantitatively, from the viewpoints of
reliability, workload, functional complexity and
coupling. These methods are applied to two different
HNSs with SOA and SCA, in order to see the
difference.

2 SERVICE-ORIENTED
ARCHITECTURE (SOA) AND
WEB SERVICES

SOA is an architectural style whose goal is to
achieve loose coupling among interacting
autonomous software agents. A service is a unit of
tasks done by a service provider to achieve desired
end results for a service consumer. The interface of
a service is strictly typed so as to be processable by
software agents of the service consumers. Through
the interface, features of the service are exported to

the network as methods. Since the interface is
supposed to be unchanged, the consumer can use the
service from a remote place, as if it were just an
ordinary method invocation, without knowing
internal logic or protocol message formats. This is
known as the loose coupling. Using this concept, a
service can autonomously collaborate with other
services, which enables more sophisticated
integrated services.
A Web service (Ethan, 2002; W3C, 2004) provides
an open and standard means to implement the SOA-
based system. The interface of a Web service is
described by XML-based format, specifically
WSDL. Other systems interact with the Web service
in a manner prescribed by its description using
SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other
Web-related standards.
Figure 1 shows an example of SOA using Web
service. The client application (Client) accesses the
first Web Service A through its exported method.
Web Service A internally calls a method of Web
Service B. Web Service B returns the result to Web
Service A, and finally Client gets the end result. The
interface of the exported methods is described by
WSDL, and Client and Web Services are loosely
coupled by SOAP/XML. As a result, Client uses the
integrated service consisting of Web Service A and
Web Service B (depicted by a large oval in the
figure).

3 DESIGNING HOME NETWORK
SYSTEM (HNS) WITH SOA

3.1 Key Idea

Considering today's evolution of network
technology, it is reasonable to assume that the next-
generation home electric appliances can be
autonomous nodes with software control, supported
by own processors and network devices (DHWG,
2004).
Our key idea is to apply SOA to such autonomous
home electric appliances. Specifically, each
appliance has a software layer (we call it service
layer) from which its end device (hardware) can be
controlled. Then, we implement an interface of the
control in the service layer as a Web service, and
export it to the network. By doing this, multiple
appliances can autonomously collaborate with each
other at the service layer. This enables to develop
more interoperable and flexible integrated HNS
services.

Figure 1: Service-Oriented Architecture

DESIGN AND EVALUATION OF THE HOME NETWORK SYSTEMS USING THE SERVICE ORIENTED
ARCHITECTURE

63

For instance, suppose that a Web service of room
lights provides "SwitchON" method to the network.
Then, a door sensor can collaborate with the lights
by executing the method, so that the lights are turned
on when the user opens the door. Note that this
integrated service does not require any centralized
server. Also, the communication between the sensor
and the lights is done in terms of a standardized
manner of Web services.
In the following subsections, we demonstrate how a
practical HNS can be designed based on the
proposed architecture with SOA and Web services.

3.2 Target Home Network System

As a practical example, in this paper, we try to
design an HNS consisting of the following 9 home
electric appliances: a DVD player, a TV, a speaker,
a light, an illuminometer, a door, a telephone, an air-
conditioner and a thermometer. In this HNS, we
achieve the following eight service scenarios
(denoted by SS) as the integrated services. These
scenarios are taken from actual commercial products
(ECHONET, 2004; Samsung, 2004).
SS1: The brightness of the light is automatically
adjusted based on the current intensity of
illumination with the illuminometer.
SS2: If the user enters a room from the door, the
light are turned on.
SS3: When the user turns on the DVD player, the
light becomes dark. Then, the TV and the speaker
start in the DVD mode.
SS4: When the user watches the TV, the speaker is
turned on.
SS5: While the user is watching the TV, if the
telephone rings, then the volume of the speaker
becomes small.
SS6: The air-conditioning is optimized based on the
thermometer.
SS7: If the user enters the room, the air-conditioner

starts and adjusts the temperature to a comfortable
degree.
SS8: When the user goes out or goes to bed, all the
appliances are shut down and the door is securely
locked up.

3.3 Design of the HNS with SOA

As discussed in Section 3.1, we assume that each
appliance is an autonomous intelligent node, which
can control the end device by the software. Also,
each appliance is supposed to have enough
processing power to operate own Web service to
export its control to the network.
With the assumption, we here try to conduct an
architectural design of the target HNS in Section 3.2
with SOA. Specifically, we consider what methods
must be implemented in the Web service (denoted
by WS, in the following) of each appliance, in order
to achieve all the service scenarios SS1 to SS8 in the
target HNS.
Figure 2 shows an architectural design involving a
part of the service scenarios (SS1, SS3 and SS4).
Each appliance consists of an end device and the
corresponding WS (depicted by an oval). The whole
architecture is divided into two layers: the device
layer and the service layer. In the device layer, an
end device is controlled directly by the
corresponding WS (drawn by a dotted line). On the
other hand, in the service layer, features of each
appliance are exported as methods of the
corresponding WS.
To provide the integrated service scenarios, the
appliances collaborate with each other via the
network, by autonomously executing the exported
methods. In Figure 2, a solid arrow with label L
from WS A to B means that WS A executes (uses)
the method L provided by B. Due to the limited
space, each label is represented by a number in the
form of i-j describing j-th method executed in SSi
(i=1,3,4).

Figure 2: An HNS with SOA (containing SS1, SS3, SS4)

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

64

Let us consider SS1 in Section 3.2. In Figure 2, we
can see a possible design to implement SS1, by
traversing arrows prefixed by "1-". First, the user
calls the method Light.ON to Light_WS. Next,
Light_WS turns on the illuminometer with
Illuminometer.ON, and acquires the current
illumination by Illuminometer.GetIllumination.
Finally, Light_WS sets up the optimal lighting to the
lighting devices based on the present illumination.
Similarly, by traversing the arrows prefixed by "4-",
we can see the scenario SS4, where the TV
autonomously turns on the speaker and adjusts the
speaker volume.
SS3 can be achieved by reusing SS1 and SS4. The
user first turns on the DVD player by DVD.ON.
Next, DVD_WS executes TV.ON and
TV.InputSelect for TV_WS, and calls Light.ON for
Light_WS. Then, Light_WS and TV_WS execute
the existing SS1 and SS4, respectively. Thus, the
SOA allows us to reuse and integrate the existing
scenarios to achieve a new integrated service.
An architectural HNS design containing all the
scenarios SS1 to SS8 is shown in Figure 3
The main characteristics of the SOA-based HNS are
summarized as follows. The distributed appliances
collaborate with each other to realize the integrated
service scenarios on demand from the user. Each
WS can be used as a reusable component to
construct integrated service scenarios. Since the
control of HNS is fully distributed, the

implementation of each WS is expected to be simple
and self-contained.

3.4 Design of the HNS with SCA

For the comparison purpose, we also consider the
target HNS with the server centralized architecture
(SCA), which is adopted by most of the current
commercial HNS products (Hitachi, 2004; Samsung,
2004). In these products, a light-weight adapter is
connected to the conventional home electric
appliance. The adapter relays commands from the
powerful centralized server, called Home Server (HS,
for short). The communication is performed by the
proprietary software and protocol.
Figure 4 shows the architectural design of HNS with
SCA. In this HNS, all the appliances are directly
controlled by the HS. The integrated service
scenarios are performed by cooperation of (tightly-
coupled) objects in the HS. For example, when the
user demands to execute SS3, Home Server directly
sends the proprietary commands to the DVD player,
the TV, the speaker and the lights.
Thus, in the SCA-based HNS, the architecture itself
is quite simple since HS takes the control of all
appliances. However, the implementation of HS
tends to be complex, and the workload of the HNS is
concentrated in HS. Also, all the integrated services
become unavailable if HS fails. These issues are
discussed quantitatively in the next section.

Figure 3: An HNS with SOA

DESIGN AND EVALUATION OF THE HOME NETWORK SYSTEMS USING THE SERVICE ORIENTED
ARCHITECTURE

65

Figure 4: An HNS with SCA

4 EVALUATION OF HNS
ARCHITECTURAL DESIGN

In this section, we propose a graph-based method to
perform quantitative evaluation of the HNS
architectural design. For a given HNS design, the
proposed method derives four kinds of metrics:
reliability, workload, functional complexity and
coupling.

4.1 Service Integration Graph

As seen in Figure 2, Fig. 3 and Figure 4, an HNS
with integrated service scenarios (we simply call
scenarios in the following) can be characterized by a
labelled directed graph, where a node represents an
HNS component (i.e., a user, an end device, a WS or
an HS), and a directed edge denotes a method
invocation among the components. By utilizing the
graph, several important characteristics of the HNS
can be mathematically derived.
A labelled directed graph G is defined by

),,(ELNG = , where N is a set of nodes, L is a set
of labels, and NLNE ××⊆ is a set of labelled
directed edges. For a given scenario s, a labelled
directed graph),,(ELNG = is called a service
integration graph for s, denoted by)(sSIG , iff G
satisfies the following conditions:
- N is a set of all components appearing in s
- L is a set of all methods appearing in s
- An edge (p, m, q) exists in E iff p uses method m
that is provided by q.

Next, we extend the service integration graph to the
set of scenarios. Let s1, s2,...,sk be a given set of
scenarios. For each i (ki ≤≤1), we have
SIG(Si)=(Nsi,Lsi,Esi,). Then, we define SIG(s1, s2,…,
sk)=(∪iNsi ,∪iLsi, ∪iEsi). If s1,s2,...,sn are all the
scenarios in the HNS, then we call SIG({s1, s2,…,
sn}) a full service integration graph, which is
denoted by FSIG. Note that for a given HNS, any
SIG is a subgraph of FSIG.
For instance, consider the scenarios SS1 to SS8 in
Section 3.2. We can see that Figure 2 represents
SIG({SS1,SS3,SS4}) and that Fig. 3 represents
FSIG (=SIG({SS1,SS2,...,SS8})).

4.2 Reliability

Assuming that each HNS component may fail, we
evaluate the system-wide reliability of HNS from a
viewpoint of the availability of the integrated
services. For a given HNS with scenarios, we define
n-reliability as the probability that at least n
scenarios are available in the HNS. The n-reliability
varies depending on the architecture as well as the
reliability of each component. Evaluating the
reliability at the design process is crucial for reliable
system implementation.
To calculate n-reliability, we apply the Sum of
Disjoint Products (SDP) approach (Hariri, 1987; Soh,
1991; Tsuchiya, 2000) to the service integration
graph. The SDP is a method to derive the network
reliability based on pathset and cutset of the graph
theory. Intuitively, when a graph G and reliability of
each node (and edge) are given, the SDP method

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

66

calculates reliability that at least one of specified set
of subgraphs of G is available (i.e., operational), by
taking the overlaps among the subgraphs into
account.
As seen in the previous subsection, each scenario in
HNS is characterized by a SIG, and a SIG is a
subgraph of FSIG. Hence, n-reliability can be
calculated by SDP in such a way that some n SIGs
are operational in FSIG. For instance, in our target
HNS, 1-reliability is calculated by SDP as a
probability at least one of SIG(SS1), ..., SIG(SS8) is
operational. Similarly, 2-reliability is derived from
SIG({SS1,SS2}),SIG({SS1,SS3}),...,SIG({SS7,SS8}
). Thus, taking all combinations from the given set
of scenarios, we can compute n-reliability with the
SDP method.
To evaluate the reliability purely relevant to the
architecture of HNS, we assume that only WS (in
SOA) and HS (in SCA) may fail. As an expected
value, we set the reliability of each WS (in SOA) to
be 0.999. We also set the reliability of the HS (in
SCA) to be 0.992 (=0.9998, since HS implements
proprietary programs for 8 scenarios). Then, we
applied the SDP method to the SOA-based HNS (in
Fig. 3) and the SCA-based HNS (in Figure 4).
 The result is shown in Figure 5. The horizontal axis
represents the number of scenarios (n), while the
vertical axis plots n-reliability. From the result, it
can be seen that n-reliability for SCA becomes equal
to the reliability of HS. This is because all scenarios
depend on the centralized HS. In other words, if the
HS fails, all the scenarios become unavailable. On
the other hand in SOA, the eight scenarios use
distributed WS. Hence, even if a WS crashes,
scenarios are partially operational. Thus, the SOA-
based HNS achieves higher fault tolerance than the
SCA-based HNS. For n=7,8, SCA achieves slightly
more reliable than SOA. This is because the
probability that all the components in SOA are
operational becomes smaller than that of SCA, since

SOA contains more components.

4.3 Workload

Our interest here is to measure a workload of each
component (WS or HS) imposed when performing
integrated services in HNS. The workload varies
depending on the usage frequency of scenarios.
Based on the given usage frequency, we characterize
the workload of each component v as a total number
of appearance of v in all scenarios. This metric
enables us to determine the deviation of workload in
HNS, so that we can change the design of HNS in
consideration of load-balancing.
Suppose that we have FSIG=(N,L,E) and scenarios
s1,...,sn. Also suppose that fi (1≤i≤n) is a given usage
frequency of scenario si. For each node v∈N, we
define an appearance function ci:N→{0,1} such
that: ci(v) = 1 iff v appears in SIG(si), otherwise
ci(v)=0. Then, a workload for the component v is
defined by

For the evaluation of our target HNS, we
interviewed 12 users (8 singles, 2 married men
without children, 2 men with a family of four). We
asked them the estimated usage frequency of the
scenarios SS1 to SS8 per week, and obtained the
average number of usage of each scenario. Based on
this, we calculate the workloads of WS (in SOA)
and HS (in SCA).
The result of the workload estimation is shown in
Table 1. The column WL(WS) shows how many
times each WS (or HS) is used per week. The result
for SOA gives important information on which
components require load-balancing. For example,
since WL(Light_WS) is large, it would be reasonable
to prepare a backup WS to share the load. Thus, in
the SOA-based HNS, it is relatively easy to perform
flexible design changes reflecting the workload. On
the other hand, from the result of SCA, we can see
that HS suffers from much heavier workload than
those of SOA. The only way to perform the load-

∑
=

×=
n

i
ii vcfvWL

1

)()(

WS WL(WS)
DVD_WS 10.7
TV_WS 29.8
Speaker_WS 29.8
Light_WS 57.4
Illumino_WS 57.4
Door_WS 18.7
Phone_WS 3.7
AC_WS 16
Thermo_WS 16
StandardDev 18.203

HomeServer WL(HS)
HS 86.2
StandardDev 86.2

Table 1: Workload
(a)SOA-based HNS (b)SCA-based HNS

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8
of Scenarios(=n)

n-
R

el
ia

bi
lit

y

SCA

SOA

Figure 5: Reliability

n 1 2 3 4 5 6 7 8
SOA 0.99999 0.99999 0.99999 0.99998 0.996 0.99302 0.99104 0.99104

SCA 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.992
Architecture
Type

DESIGN AND EVALUATION OF THE HOME NETWORK SYSTEMS USING THE SERVICE ORIENTED
ARCHITECTURE

67

balancing is duplicate the HS, which is not as
flexible as the case of SOA.

4.4 Functional Complexity

In this subsection, we estimate the functional
complexity for each component at the design stage.
Basically, the functional complexity for a
component v depends on how many methods v has
to provide and use, in order to achieve all the
integrated services. This is a key factor for
implementing v. Specifically, for each node v in
FSIG, we count the number of the labels attached to
the incident edges of v.
Let FSIG=(N,L,E) be given. An edge
(WSA,m,WSB)∈E describes that WSA uses the method
m of WSB by definition. So, the function of m should
be implemented inside WSB. In this sense, we call m
internal function of WSB. On the other hand, from
the viewpoint of WSA, WSA has to call m which is
outside WSA. Hence, m is called external function of
WSA.
For each component v∈N in FSIG, we define the
functional complexity of v as the number of internal
and external functions of v. Strictly speaking, the
number of internal functions of v is defined as
inum(v) = |{m|∃v';(v',m,v)∈E}| . Also, the number of
external functions is defined as enum(v) =
|{m|∃v';(v,m,v')∈E}|. Then, the functional
complexity of v is defined by fcomp(v) = inum(v) +
enum(v).
For example, let us take Light_WS in Figure 3. Then,
inum(Light_WS) = |{1-1:Light.ON, 2-2:Light.ON,
3-7:Light.ON, 8-4:Light.OFF}| = 2
enum(Light_WS) = |{1-2:Illuminometer.ON, 1-3:
Illuminometer.getIllumination, 2-3: Illumino-
meter.ON, 2-4: Illuminometer.getIllumination, 3-8:
Illuminometer.ON, 3-9: Illuminometer.getIllumina-
tion, 8-5: Illuminometer.OFF, LightON, LightOFF,
LightBrightnessControl}| = 6
Table 2 shows the functional complexity for all the
components of our target HNS. It can be seen that
each WS in SOA requires a smaller number of
functions than HS in SCA. This implies that the
effort taken for the implementation of WS would be
smaller than that of SCA. Also for the SOA-based
HNS, it is also possible for the designer to make the
functional complexity well-balanced, by carefully
modifying the scenario design (i.e., changing the
topology of FSIG).

4.5 Coupling

The coupling measures the degree of dependence of
a component against other components. Although
the coupling between WS (in SOA) is basically

loose (see Section 2), it provides a reasonable
guideline for robust scenario designs. If a WS v is
used by (or uses) a lot of other components, failure
of v affects these components, which dramatically
decreases availability of the service scenarios.
Let FSIG=(N,L,E) be given. For each component
v∈N, we define coupling of v as the total number of
components that v uses or are used by v. Strictly
speaking, for v∈N, let use(v) = |{v'|∃m;(v,m,v')∈E}|
and used(v) = |{v'|∃m;(v',m,v)∈E}|. Then, coupling
of v is defined by coup(v) = use(v) + used(v).
For example, let us take TV_WS in Figure 3. Then,
use(TV_WS) =|{speaker_WS, TV}|=2
used(TV_WS) =|{a user, DVD_WS, telephone_WS}
|=3. Hence, coup(TV_WS) = 5.
The coupling for all the components of our target
HNS is shown in right-half of Table 2. It can be seen
in that the coupling of all WS (in SOA) is well-
balanced. We can also see that the components in
SCA are heavily dependent on the HS. This implies
that the crash of HS is fatal, which is as discussed in
Section 4.2.

5 DISCUSSION AND
CONCLUDING REMARKS

In this paper, we proposed an application of the
service-oriented architecture to HNS. We also
presented a graph-based method to evaluate the
architectural design of HNS. With a case study, we
evaluated the HNS design using the four kinds of
metrics and discussed the difference between SOA
and SCA, quantitatively.
Of course, there are other important factors that we
could not cover in this paper; such like performance,
security, and implementation issues, etc. Therefore,
we cannot say that the proposed SOA-based HNS is
absolutely superior to the conventional SCA-based
HNS. Instead, our contribution is to show the
applicability of SOA to the HNS through
quantitative evaluation.

Table 2: Complexity and Coupling

WS/HS inum(WS) enum(WS) use(WS) used(WS)
DVD_WS 2 6 3 1
TV_WS 5 7 2 3
Speaker_WS 4 4 1 1
Light_WS 2 6 2 3
Illumino_WS 3 3 1 1
Door_WS 1 4 3 1
Phone_WS 1 2 2 1
AC_WS 2 6 2 2
Thermo_WS 3 3 1 1
HS 8 23 9 1

Complexity Coupling

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

68

In the market of home electric appliances, a shift
from dumb appliances to intelligent appliances is
imminent. More convenient and more sophisticated
integrated services will be required in the HNS such
as entrance management and apparatus operation
with user's voice. To make full use of such
intelligent appliances in the HNS, SOA is quite
promising architecture, as shown in this paper.
Another contribution is to present the concrete
evaluation method for the architectural design of
HNS. The proposed metrics provide useful
information for the HNS developers to make various
decisions on design, implementation and usability of
HNS, at the early stage of the development.
Some topics for future research present themselves.
We are currently implementing an HNS simulator
with Web services in a distributed environment. The
more practical evaluation using the simulator would
allow us to find other useful metrics for the HNS
development. In multi-user HNS, the feature
interaction problem (Michael, 2003) must be
considered, which is known as a functional conflict
among scenarios and/or appliances. Investigating
practical solution of the feature interaction problem
is also our future work.

ACKNOWLEDGEMENT

This work is partly supported by Grand-in-Aid for
COE (Center Of Excellence) and Encouragement of
Young Scientists (No.15700058), from Research of
the Ministry of Education, Science, Sports and
Culture, Japan.

REFERENCES

DHWG, (2004) Digital Home Working Group, [Online],
Available: http://www.dhwg.org/ [2004].

ECHONET, (2004) ECHONET CONSORTIUM,
[ONLINE],Available:
http://www.echonet.gr.jp/english/ index.htm [2004].

Ethan, C., (2002) Web Services Essentials, United Stated
of America: O'Reilly & Associates, Inc.

Hitachi. (2004) Horaso Network Service, [ONLINE],
Available: http://ns.horaso.com/ [2004].

LG E., (2004) Home Network, [ONLINE], Available:
http://www.lge.com/products/homenetwork/homenetw
ork.jsp [2004].

Michael, W., (2003) ‘Feature Interactions in Web
Services’, Proc. of Seventh Int'l. Workshop on Feature
Interactions in Telecommunication Networks and
Distributed Systems (FIW'03), pp.149-156.

Samsung. (2004) Home Network, [ONLINE],
Available:http://www.samsung.com/HomeNetwork/in
dex.htm [2004].

S. Hariri, and C. S. Raghavendra, (1987) ‘SYREL: A
Symbolic Reliability Algorithm Based on Path and
Cutset Methods’, IEEE Transactions on Computers,
October, pp.1224-1232.

Soh, S. and Rai, S., (1991) ‘CAREL: Computer aided
reliability evaluator for distributed computing
networks’, IEEE Trans. Parallel and Distributed
Systems, July, pp.199-213.

T., Tsuchiya, T., Kajikawa, and T., Kikuno, (2000)
‘Parallelizing SDP (Sum of Disjoint Products)
Algorithms for Fast Reliability Analysis’, IEICE
Transactions on Information and Systems, Vol.E83-D,
No.5, May , pp.1183-1186.

W3C. (2004) W3C Web Service Activity, [ONLINE],
Available: http://www.w3.org/2002/ws/ [13 Feb
2004].

Hao, H., (2003) What is Service-Oriented Architecture?,
[ONLINE], Available:
http://webservices.xml.com/pub/
a/ws/2003/09/30/soa.html [30 Sep 2003].

DESIGN AND EVALUATION OF THE HOME NETWORK SYSTEMS USING THE SERVICE ORIENTED
ARCHITECTURE

69

