Electronics and Communications in Japan, Part 3, Vol. 89, No. 1, 2006
Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J87-A, No. 6, June 2004, pp. 755-767

A Software Protection Method Based on Instruction Camouflage

Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken’ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan

SUMMARY

This paper presents a method in which program
analysis by a malicious user (attacker) is made difficult by
camouflaging (hiding) a large number of instructions con-
tained in the program. In the proposed method, an arbitrary
instruction (target) in the program is camouflaged by a
different instruction. Using the self-modification mecha-
nism in the program, the original instruction is restored only
in a certain period during execution. Even if the attacker
attempts an analysis of the range containing the camou-
flaged instruction, it is impossible for him to correctly
understand the original behavior of the program unless he
notices the existence of the routine that rewrites the target
(restoring routine). In order to make the analysis a success,
the range containing the restoring routine must be analyzed,
and the attacker is forced to analyze a wider range of the
program. The proposed method can easily be automated,
and the number of targets can be specified arbitrarily ac-
cording to the required degree of protection and the accept-
able degradation of execution efficiency. © 2005 Wiley
Periodicals, Inc. Electron Comm Jpn Pt 3, 89(1): 47-59,
2006; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/ecjc.20141

Key words: copyright protection; software protec-
tion; program obfuscation; program encryption; self-modi-
fication.

1. Introduction

With the spreading use of networks, there has been
remarkable progress in the flow configuration of programs

47

and digital content. Accompanying this, there is an increas-
ing demand for techniques which can prevent internal
analysis and tampering with programs by end users. In
programs containing digital rights management (DRM), for
example, it is necessary to prevent interception of the
internal decryption key [3, 24]. In a program built into the
hardware of portable phones and set-top boxes, it is also
required to prevent analysis or tampering by the user [23].
An example of the problems caused by analysis is the
phenomenon in which a decryption tool for DVD data was
disseminated [6, 22]. This tool was based on an analysis of
a DVD playback program, and greatly facilitated illegal
copying of DVDs.

By analysis in this paper is meant an attempt to
acquire secret information (such as a secret key or algo-
rithm) in a program. Typically, such an action is assumed
to involve the following steps. First the attacker disassem-
bles the program and tries to understand the resulting as-
sembly program [17]. However, a tremendous amount of
labor and time is required to understand the entirety of a
large-scale program, which is not realistic. Consequently,
the attacker restricts the range to be considered (the range
which seems to be related to the secret information), and
tries to understand only that range [1, 2]. The restriction and
understanding of the range is repeated until the desired
secret information is acquired.

This paper proposes a method in which a large num-
ber of instructions in the program are camouflaged (hidden)
in order to make it difficult to analyze an assembly language
program accompanied by such range restriction. In the
proposed method, an arbitrary instruction (target) in the
program is camouflaged by a different instruction. By using
a self-modification mechanism in the program, the original
instruction is restored only in a certain period during exe-
cution [15]. Even if the attacker attempts an analysis of the

© 2005 Wiley Periodicals, Inc.

range containing the camouflaged instruction, it is impos-
sible for him to correctly understand the original behavior
of the program unless he notices the existence of the routine
that rewrites the target (restoring routine). In order make
the analysis a success, the range containing the restoring
routine must be analyzed, and the attacker is forced to
analyze a wider range of the program. The proposed method
can easily be automated, and the number of targets can be
specified arbitrarily. By distributing a large number of
targets and a large number of restoring routines in the
program, it is likely that analysis by range restriction will
be made very difficult.

Below, Section 2 proposes a systematic method
which camouflages a large number of instructions in the
program by self-modification. Section 3 discusses attacks
on the proposed method, and analyzes the difficulty of the
attack and its prevention. Section 4 reports a case study
using the proposed method. Section 5 describes related
studies. Section 6 gives conclusions and describes the prob-
lems remaining.

2. Method of Software Protection by
Instruction Camouflage

2.1. Attacker model

In this paper, the attacker model is assumed to be as
follows.

e The attacker has a disassembler and the ability to
perform static analysis including range restriction
by using the disassembler.

e The attacker has a debugger with a break-point
function. By (manually) setting the break-point at
an arbitrary point in the program, a snapshot at an
arbitrary execution time (i.e., the content of the
program which is the object of analysis loaded in
the memory) can be acquired. However, he does
not have tools by which a snapshot can be acquired
automatically or by which dynamic analysis using
the acquired snapshot history can be automated.
He also lacks the ability to construct such a tool.

The above attacker corresponds to the “level 2 at-
tacker” in the graded attacker model of Monden and col-
leagues [18].

Assuming the above attacker model, the mechanism
of program protection must satisfy the following require-
ments.

e The protection mechanism is not easily invali-
dated by static analysis using a disassembler.

48

e The protection mechanism is not easily invali-
dated by an attack using (a few) snapshots.

In the following sections, a protection method satis-
fying the above properties is proposed.

2.2. Central idea

The proposed method makes it difficult for the at-
tacker to understand the program by camouflaging program
instructions. By camouflage is meant hiding the existence
of the original instructions from the attacker by overwriting
the instructions by false instructions with different content.

Figure 1 shows an example of camouflage.” Consider
the situation in which the instruction jne L10 in the
assembly program to be protected is camouflaged. First, a
dummy instruction for jne L10, that is, an instruction
with different content, is constructed. Suppose that jmp
L7 is constructed as the dummy instruction. Then, over-
writing with jmp L7 is performed at the position of jne
L1o0.

Then a self-modification routine is added. By self-
modification is meant the process of modifying the content
of instructions in the program during execution. There are
two kinds of self-modification routines. One is a routine
that rewrites the camouflaged instruction to the original
content (RR in Fig. 1). This routine assures the execution of
the original content of the program. In the case of Fig. 1, it
is the routine to rewrite the camouflaged instruction as jne
L10.

The other is a routine that again rewrites an instruc-
tion which has been returned to the original instruction by
RR as the dummy instruction (HR in Fig. 1). This routine is
intended to hinder an attacker who has a snapshot acquisi-
tion capability from determining the original instruction. In
the case of Fig. 1, it is a routine that automatically rewrites
the instruction to be camouflaged as jmp L7.

The dummy instruction takes the form of the original
instruction only between the execution of RR and the exe-
cution of HR. Consequently, it is difficult for the attacker
to determine that the original instruction is overwritten by
the dummy instruction jmp L7 by simply observing the
neighborhood of the camouflaged instruction. Even if the
snapshot of the program after execution of HR is acquired,
it is impossible to determine the original instruction from
the obtained snapshot.

The above instruction camouflage is repeated several
times on the assembly program to be protected, in order to
make the program difficult to understand. Figure 2 shows
conceptually the program obtained after instruction camou-

“This paper assumes an Intel x86 type CPU as an example for description.
The assembly language instructions are based on the AT&T syntax.

@D

movl %eax, %ebp movl %eax, %ebp
movl___$10_, %ebp | Camouflage | oy g1 oebp
{ine L10 Hez \jmp L7 o
nop nop

Original Program Camouflaged Program

Fig. 1. Example of camouflage.

flaging has been repeated many times. It is evident that a
large number of instructions in the program have been
overwritten by dummy instructions before execution (® in
Fig. 2). For each dummy, there exists a routine that rewrites
the instruction to the original instruction (before it was
overwritten by the dummy instruction) (Min Fig. 2), and the
routine that during execution takes the instruction rewritten
to the original instruction by the above routine and rewrites
it again as the dummy instruction (A in Fig. 2).

If the part of the program which the attacker attempts
to analyze contains a dummy instruction, he cannot cor-
rectly determine the original behavior of the program by
examining only that part. In order to understand the pro-
gram correctly, he must know that rewriting is performed,
and determine the content of each dummy instruction in the
part to be understood before it was overwritten. In order to
obtain this information, however, he must locate the routine
that rewrites the instruction to the original instruction
within the whole program, which requires a tremendous
effort.

2.3. Definitions

The terminology in the proposed method is defined
as follows. The original program O is the program before
camouflaging is to be applied. The target instruction is the

B
avessusfBusvasns

vese@snenssAes
selene@eesn @ Restoring routines (RR)
Y - N A Hiding routines (HR)

Asefressfrarns
sessa@uaunsAns

@ Dummy instructions (dummy)

Fig. 2. Image of a camouflaged program.

49

instruction which is the target of camouflaging in O. A
dummy instruction is an instruction which is written over
the target instruction in order to camouflage the target
instruction. When the user defines multiple target instruc-
tions, the i-th target instruction is written as target; and the
instruction used to camouflage target; is written as dummy,.

The restoring routine is a routine (a series of instruc-
tions) that rewrites an instruction camouflaged by the
dummy instruction, thus restoring the original target in-
struction. The restoring routine that rewrites dummy; to
target, is denoted as RR;. The hiding routine, on the other
hand, is a routine that rewrites the target instruction to the
dummy instruction. The hiding routine that rewrites target,
to dummy; is denoted as HR,;. The restoring routine and the
hiding routine are together called self-modification rou-
tines.

A camouflaged instruction is an instruction whose
content is changed (to rarget; or dummy;) during execution.
A camouflaged program M is an assembly program which
contains camouflaged instructions. In the following sec-
tions, a systematic method is presented for deriving the
camouflaged program M from the original program O.

2.4. Construction of camouflaged program M
M is constructed by the following steps 1 to 6.

(Step 1) Determination of the target instruction and
the position of the self-modification
routines

target; and the positions of RR; and HR; in the pro-
gram are determined. Below, the positions of RR; and HR,
are denoted as P(RR,) and P(HR,), respectively. First, target,
is determined at random from among the instructions com-
posing M. Or, the program developer may specify the target
instruction directly. We consider a control flow graph (di-
rected graph) with each instruction in the assembly program
as anode. P(RR,) and P(HR,) are chosen so that the follow-
ing four conditions are satisfied. The conditions are in-
tended to assure that dummy, is certain to be rewritten as
target, before it is executed, and is certain to be rewritten
again as dummy, before the program ends.

[Condition 1] P(RR) exists on any path from start to
target,.

[Condition 2] P(HR,) does not exist on any path from
P(RR) to target,.

[Condition 3] P(RR) exists on any path from P(HR)
to target,.

[Condition 4] P(HR)) exists on any path from rarget,
to the end of the program.

Figure 3 shows an example of P(RR) and P(HR)
satisfying conditions 1 to 4.

Fig. 3. Example of target;, P(RR;), and P(HR;) that
satisfy four conditions.

Then, a procedure for choosing P(RR) and P(HR))
satisfying conditions 1 to 4 is presented.

(1) The set T, of paths (routes without node duplica-
tion) from start to target, is determined.

(2) In the nodes that are common to all paths t € T,
determined in (1), the set N, whose incoming and outgoing
orders are both 1 is determined. It is assumed that
target, 2 N,. If N, = (), define target; anew and go back to
().

(3) Anoden, e N, is selected at random. The incom-
ing or outgoing edge of n, is defined as P(RR;). Similarly,

(4) The set T, of paths (route without node duplica-
tion) from target, to end is determined.

(5) In the nodes contained in common to all paths ¢ €
T, determined in (4), the set NV, of paths whose incoming and
outgoing orders are both 1 is determined. It is assumed that
target, & N,. If N, = (), define rarget; anew, and go back to
(1).

(6) Anode n; € N, is selected at random. The incom-
ing or outgoing edge of n is defined as P(HR,).

(Step 2) Determination of dummy instruction

An arbitrary instruction with the same instruction
length as target, is selected and is defined as the dummy
instruction dummy,. An example is presented below in
which the operation code composing target,, or one of the
operands, is modified for 1 byte, and is used as dummy;.
Consider the following target,.

50

(hexadecimal machine language 03 5D F4

representation)
(assembly language representation) addl -12 (%ebp),
gebx

By modifying operation code 03 to 33 in this farget,, the
following dummy; is composed.

(hexadecimal machine language 33 5D F4
representation)

(assembly language repre- xorl

sentation) -12 (%ebp), %ebx

By modifying the operand F4 to FA in farget,, the
following dummy; is produced:
(hexadecimal machine language 03 5D FA
representation)

(assembly language representation) addl
-6 (%ebp), %ebx

(Step 3) Generation of self-modification routine

The self-modification routines RR; and HR; are gen-
erated by the following procedure.

(1) Label L, is inserted immediately before targeti.*
Using label L, farget; can be referred to indirectly.

(2) Using L,, a series of instructions for the rewriting
of dummy, to target, is constructed and is defined as RR,.

(3) Using L,, a series of instructions for the rewriting
of target; to dummy; is constructed and is defined as HR,.

An example is presented below. addl -12 (%ebp) ,
$ebxisdefined astarget, and xorl -12 (%ebp), %ebx
is defined as dummy,. Label L1 is inserted into farget,.

Ll:addl -12(%ebp), %ebx

Next, RR; is generated. RR; has the function of modi-
fying the first Byte 33 of the instruction at L1 to 03:

movb $0x03, L1

The effect of this small assembly routine composed
of the above instruction is that the content of the address
indicated by L1 is to be overwritten by the immediate value
03 (hexadecimal). When RR; is executed, dummy, is rewrit-
ten as rarget,.

Similarly, HR; is generated. HR,; has the function of
modifying the first Byte 03 of the instruction at L1 to 33.

movb $0x33, L1

*A label is a name in assembly language which indicates the position of
the instruction (memory address) in the program.

When HR; is executed, target, is rewritten as dummy;.

(Step 4) Write-in of dummy instruction and
insertion of self-modification routine

The dummy instruction dummy, generated in Step 2
is written over farget; determined in Step 1. By this process,
the program before execution enters a state in which target,
is camouflaged by dummy, Then the self-modification
routines RR; and HR; which were generated in Step 3 are
inserted into P(RR)) and P(HR)), respectively.

(Step 5) Complication of self-modification routine

The self-modification routine has the property that
the address of target, in the program area is indicated by the
label (immediate value address), and the content is rewrit-
ten. Consequently, there is a danger that an attacker may
ascertain the position through the (static) analysis, and may
identify the position of target,. Consider, for example, the
case in which the movb instruction in the program contains
the immediate address indicating the program area as the
second operand. Then, that movb instruction may be in-
ferred to be a self-modification routine.

In order to make static analysis difficult, the self-
modification routine is complicated. For example, the fact
that there is no write-in into the program area may be
disguised by operating on the label. Or, the identification
of the self-modification routine by the static pattern is made
more difficult by the use of conventional techniques such
as obfuscation of machine language instructions [20] and
mutation [11]. An example of the modification of movb
$0x03, L1 is as follows:

movl $L1 + 1250, Jeax
subl $1250, %eax
movb $0x03, (%eax)

L1 does not appear in the binary program obtained
by assembling the above assembly routine (the value ob-
tained by adding 1250 to L1 appears). This makes it diffi-
cult to identify the address L1 (the position of farget;) by
static analysis. The address obtained by adding 1250 to L. 1
does not necessarily indicate the program area. Further-
more, the second operand of the movb instruction is not the
immediate address, but the address indicated by the register
$eax. Itis difficult to determine its value by static analysis.
By combining the above processing with obfuscation and
mutation, an attack by pattern matching and address analy-
sis will be made more difficult.

(Step 6) Iteration of above steps

The processes from Step 1 to Step 5 are repeated. The
number of camouflaged instructions is increased by each
iteration. As will be discussed in Section 4, the increase in
the number of camouflaged instructions and degradation of
the execution efficiency are in a trade-off relation. It is thus
desirable to specify the number of iterations with reference
to the required degree of protection and the acceptable
degradation of execution efficiency.

2.5. Construction example of camouflaged
program M

Figure 4 shows an example of a camouflaged pro-
gram. (a) is the original program and (b) is the camouflaged

movl -8(%ebp), %eax
movb $0, (%eax)

movl 8(%ebp), Yeeax
movl %eax, (%esp)

movi 16(%ebp), Y%eeax
movi %eax, 4(%esp)

call _strcat

movi 8(%ebp), %edx
movi -8(%ebp), %eax
subl %edx, %eax

movi %eax, %ebx
Caddl” T 12(%ebp). S%ebx]
movl 12(%ebp), %eax
mov! %eax, (Yoesp)

call _strlen

leal (Y%eeax,%ebx), %edx
movi 8(%ebp), %eax
mowv! Y%eaXx, (Joosp)

movi Y%edx, 4(%esp)

(a) Original Program

movi $L24+0x824+2, %eax| [RR
subl $0x824, %eax 2
movb $0x03, (%eax)
movl $L1 -0x12, %eax RR1
addi $0x12, %eax
L2: {movb____"$0xda, (%eax) © dummy,
movi %eax, 4(%esp)
call _strcat
movi 8(%ebp), Y%edx
mov! -8{%ebp), Y%eax
subl %edx, %eax
movi %eaXx, %ebx
L1: ixorl " -12(%ebp), %ebx_ 1 ® dummy,
movi 12(%ebp), %eax
movi %eax, (%esp)
call _strlen
leal (%e?x,%ebx), Y%edx
movi SL1 +0x120, %eax | A HR,
subl $0x120, %eax
movb $0x33, {%eax)

(b) Camouflaged Program

Fig. 4. Example of a camouflaged program.

51

program. The procedure for deriving (b) from (a) is as
follows.

In the first camouflaging process, the instruction
[add -12 (%ebp), %ebx] in the dotted frame in Fig.
4(a) is selected as target,, and is overwritten by dummy,
(xorl -12(%ebp), %ebx), as shown in Fig. 4(b).
Then, the self-modification routines RR, and HR, for tar-
get, are generated and inserted. In the second camouflaging
process, one of the instructions composing RR; [movb
$0x03, (%eax) at the end of the first camouflaging
process] is selected as target, and is overwritten by dummy,
[movb $0x4a, (%eax)] asshown in Fig. 4(b). Then,
the self-modification routines RR, and HR, for target, are
generated and inserted.

In this case, part of RR, is rewritten by dummy,.
Consequently, in order to ascertain the original instruction
for dummy, not only RR, but also RR, must be found. In
the Appendix a simple program containing a conditional
branch is presented, together with a listing of the camou-
flaged program.

3. Discussion of Difficulty of Analysis

3.1. Assumed analysis procedure

Consider the case in which the attacker described in
Section 2.1 attempts an analysis of the secret part C(M) of
M. The following attack procedure is assumed. The goal of
the analysis is defined as understanding C(M) correctly. In
order to understand C(M) correctly, the original instruction
corresponding to each of the dummy instructions contained
in C(M) must be ascertained. For this purpose, the restoring
routine for each dummy instruction contained in C(M) must
be found from the whole program.

There are two methods of analysis that the attacker
can apply, static analysis and dynamic analysis. Static
analysis is a method of analysis without running the pro-
gram which is the object of analysis. A typical approach is
to restrict the range of C(M) by keyword retrieval, pattern
matching, and other techniques, so as to understand C(M).
Since the analysis is concentrated on C(M) without consid-
ering the whole of program M, the cost of analysis is
generally lower than that of the dynamic analysis discussed
later, and the method is widely applied. The first objective
of the proposed method is to make static analysis difficult.

On the other hand, dynamic analysis is performed
while running the program which is the object of analysis.
The attacker runs M using tools such as a debugger, and
tries to identify and understand C(M) based on the output
information from the tool. By dynamic analysis, the at-
tacker can completely track the execution of M. However,
since the analysis depends on the input and the whole

52

program M must be run, the cost of analysis increases very
rapidly as the scale of M is enlarged.

Furthermore, debugging information is generally de-
leted from commercial programs, or features such as the
inhibition of unintentional execution are included. Conse-
quently, it is not necessarily true that dynamic analysis can
be applied to any program. It is possible at relatively low
cost to preserve a snapshot at an arbitrary point of the
executed program, that is, the content of the object program
loaded into memory at any point during execution, in order
to facilitate static analysis. For this purpose, there must be
a mechanism to prevent the invalidation of protection even
if several snapshots are acquired.

The next section discusses the security of M against
each method of analysis.

3.2. Security against static analysis

In order to investigate the security of M against static
analysis, the probability that the attacker can correctly
understand the secret part C(M) is formulated.

Consider the situation in which M contains only one
dummy instruction dummy,. In order for the attacker to
correctly understand an arbitrary code block D(M) of length
m in M, the following event E; must apply.

E;: dummy; does not exist in D(M), or dummy; exists
in D(M) and RR; exists in D(M).

When dummy; does not exist in D(M) (i.e., there is no
camouflage at all), the attacker can directly track D(M) and
can easily understand the original behavior of D(M). When
dummy, is present in camouflaged form in D(M), but its
restoring routine RR; also exists in D(M), target; can be
identified by analysis of RR;, and the original behavior of
D(M) can be discovered.

Let the number of instructions in M be L. When
dummy; and RR, are selected at random in M, the probability
P(E) that E, is valid is expressed as follows:

L-m m _m
P(E;) = Tt T X7
_(L-m)*’+Lm
= 13

Then, consider the case in which n dummy instruc-
tions (dummy,, . . . , dummy,) are contained in M, and E,
must be valid for any i(1 <i < n). The probability P(Suc-
cess, D) that the analysis of D(M) succeeds is roughly
expressed as follows:

(L —m)? +Lm)"

P(Success, D) = (77

Figure 5 shows the curve representing the relation
between P(Success, D) and n. The horizontal axis is the
number of camouflaged instructions n in M, and the vertical

1.0

)

w

8

S o8 |

o

Q

2

»n

%* 06 [

c

©

@

B

o

‘5 04 +

[

3

8

=]

(2]

s 02

£

3

[1]

Q

[¢]

& 00 : ' '
0 20 40 60 80 100

The number of camouflaged instructions 7

Fig. 5. Probability of success of code analysis
(m =100).

axis is the probability of successful analysis P(Success, D).
The number of instructions m in D(M) is set as 100. The
number of instructions in M is varied as 1000, 2000, and
3000. The result for each of these is shown. It is evident
from Fig. 5 that as the number of dummy instructions n is
increased (and thus the extent of camouflage is raised), the
probability of successful analysis for D(M) approaches 0.

When the secret part C(M) agrees with (or is con-
tained in) the code block D(M) which is arbitrarily selected
by the attacker, this implies that the static analysis of M is
a success. Since the identification of C(M) depends on the
skill of the attacker, formulation by the theory of probability
is difficult. Letting, as an assumption, the probability that
C(M) is contained in D(M) be X, the probability of success-
ful analysis P(Success) is expressed as

P(Success) = X x P(Success, D)

_ ((L—m£j+Lm>" x

Based on the above formulation, it is evident that in
order to increase the probability of successful static analysis
by the attacker, it is necessary for him either to increase X
by skillfully locating C(M), or to enlarge the size m of the
analyzed part D(M). On the other hand, the user of the
proposed method can easily control P(Success) by increas-
ing the number of camouflaged instructions r.

In the above discussion, P(Success) increases with
the size of L. This is because dummy, is chosen at random
in the formulation of the event £, which can prevent dum-

53

my; from being contained in C(M). However, when the user
knows the position of C(M) beforehand, P(E;) can be de-
creased by inserting dummy, into C(M), or by increasing the
distance between RR; and dummy; so that it is larger than
the expected m. Thus, the probability of successful analysis
can be decreased.

On the other hand, when the user does not know
exactly the position of C(M), or wants to decrease the
probability X that the attacker can locate C(M), it will be
effective to divide M into L/m blocks and to insert a constant
number of camouflaged instructions in each block. This
measure makes the analysis difficult, no matter which block
D(M) the attacker subjects to analysis, since the camou-
flaged instructions are distributed uniformly.

3.3. Security against dynamic analysis

When M is stopped at a point during execution with
a debugger, some of the dummy instructions in C(}) may
be in the state of being rewritten as the original instructions.
If the attacker acquires a snapshot and observes the part
corresponding to C(M) in the program loaded in memory,
some of the original instructions can be determined. This
poses a danger that C(M) may be correctly understood.

However, in this process it is difficult to know the
original content of all dummy instructions present in C(M).
The reason is as follows. Since the restoring routine used to
rewrite the dummy instruction in C(M) is scattered over the
whole program, various parts of the program must be
executed in order to execute all of these routines. Unless the
whole program is understood, this process has a high cost.
Furthermore, when the hidden routine is executed, the
instruction that was present in the original content is again
overwritten by the dummy instruction. Consequently, even
at the point immediately before the end of the program, the
attacker cannot acquire a snapshot in which most of the
instructions have been restored to the original instructions.

However, especially when fewer dummy instructions
are present in C(M), dynamic analysis can be an effective
mode of attack. Consequently, it is desirable to use other
techniques to make dynamic analysis difficult by prevent-
ing the operation of a debugger that uses interrupts and
other instructions. This will improve the security of M
against dynamic analysis.

4. Case Studies

4.1. Outline

This section describes the measurement process and
the results for the following three items when the proposed
method is applied to software.

(1) The distance between the target instruction and
the restoring routine

(2) The change of the file size (size overhead)

(3) The change of the execution time (performance
overhead)

We used the tool ccrypt, which encrypts and de-
crypts files, as the software with which to test the proposed
method. This program is open-source software under the
GPL license.”

The authors experimentally constructed a system in
which the program was camouflaged by the proposed
method [14]. Using that system, the proposed method was
applied to the target program by the following procedure.

(1) The source file s, s,, . . ., s, in the C language
was compiled and the original assembly file a,, a,, . .., a
was obtained.

(2) Each of ay, a,, . . ., a, was camouflaged, and the
camouflaged assembly file aj, a5, . . ., a, was obtained.

n

3)al, da’, ..., a’ were assembled and the execution
1 2 n
modules o0y, 0,, . . . , 0, were obtained.
4)o0,,0,,...,0, arelinked and the executable file
1092 n p

is obtained.

In each trial, it is verified that the executable file p
operates correctly.

In executable files running under Windows (such as
the Microsoft Portable Executable format), enabling/dis-
abling of writing to the code area is controlled by a flag in
the section header in the file [16]. When the proposed
method is applied, it is necessary to make the code area
rewritable during execution by setting the flag beforehand.

The computer used in the experiment had Windows
XP as the OS, a main memory size of 512 Mbyte, and a
Pentium 4 CPU (clock frequency 1.5 GHz, primary trace
cache 12kuOps, primary data cache of 8 kbyte, secondary
cache 256 kbyte).

4.2. Distance between target instruction and
restoring routine

Figure 6 shows the distribution of the dummy instruc-
tion and the restoring routine for a camouflaged assembly
language file. The file has 1490 lines and 947 instructions
before camouflaging. One hundred thirty instructions are
camouflaged. The vertical axis of the figure is the line
number, and the horizontal axis is the line number modulo
30. By adding the value on the horizontal axis to the value
on the vertical axis, the line number containing the instruc-
tion or the restoring routine is obtained. It is evident from

*http://quasar.mathstat.uottawa.cafselinger/

54

Line number (modular 30)

0 6 12 18 24 30
Y soll®ee
| ‘ame o
200 o o o -o! .' g N I
* o me i
e W mem ¢ o
400 }
‘é', GOOI: .!... oo ¥ ':o.
3
. o o
§ 8o | ® me
3 esee ° e
L n$ o n oeme
1000 | o e g, me o
. = .
.::.. ‘o.'..' . ® me
1200 Hmes o
.o n® 5 ee®°®
mn eoponm © ne
1400

® Target instructions (dummy)
Restoring routines (RR)

Fig. 6. Distribution of target instructions and restoring
routines.

Fig. 6 that the target instructions and restoring routines are
scattered over the whole program.

Table 1 shows the average, the maximum, the mini-
mum, and the standard deviation of the distance between
the target instruction and the restoring routine.

It can be seen from Table 1 that in order to ascertain
whether an instruction in the program is a camouflaged
instruction, the restoring routine, which is at a distance of
151 instructions away on average and 611 instructions away
at the maximum, must be located. Since this program is
camouflaged at a rate of 1 instruction in each 7 instructions,
a large number of camouflaged instructions will be encoun-
tered in the search for the restoring routine. It can also
happen, as was discussed in the example in Section 2.5, that
instructions constituting the restoring routines are them-
selves camouflaged. Thus, it is likely that the cost of the
analysis intended to find the restoring routine will be high.

Table 1. Distance between target instructions and
restoring routines
Dist
. ' an‘ce Average Maximum Minimum
(instructions)
Standard 151 611 1 192
deviation

Since the minimum distance is 1 instruction, it can be
seen that there is a case in which the target instruction is
adjacent to the restoring routine. Since the position of the
target instruction and the insertion position of the restoring
routine are selected at random from the candidates, such a
case can occur. It is left as a future problem to improve the
algorithm for choosing the insertion position, so that the
target instruction and the restoring routine are more than a
certain distance apart.

4.3. Size overhead

Examining the file size of the camouflaged program,
it can be seen that the file size increases in proportion to the
number of camouflaged instructions. On average, each time
the number of camouflaged instructions is increased by
100, the file size is enlarged by approximately 2.4 kbyte.
This increase in file size is due to the increase in the number
of inserted self-modification routines as the number of
camouflaged instructions is increased.

Noting that the capacity of secondary memory de-
vices is currently increasing, the enlargement of file size
will not be a serious problem. However, in an environment
where the file size is severely limited it may happen that the
increase of the file size must be minimized. It is possible to
deal with such a situation by adjusting the number of
camouflaged instructions so that the file size stays within
the permissible range.

4.4. Performance overhead

The time required for the camouflaged ccrypt to
encrypt a 100-kbyte text file was measured 10 times in each
session while varying the number of camouflaged instruc-
tions. The execution time was measured as the difference
in the elapsed time of the system clock from immediately
before the start of the camouflaged program to immediately
after the termination of the program. The elapsed time of
the system clock was acquired by using the c1ock instruc-
tion in C.

Figure 7 shows a plot of the results of execution time
measurement. The horizontal axis shows the number of
camouflaged instructions and the vertical axis shows the
average program execution time and the camouflage ratio
(indicate by the bar). The camouflage ratio is the fraction
of the program that is camouflaged.

It can be seen from Fig. 7 that the average execution
time increases with the number of camouflaged instruc-
tions. When 500 instructions are camouflaged, the average
execution time is approximately 2.9 seconds. This is ap-
proximately 48 times the execution time (approximately
0.06 second) when no instruction is camouflaged. There are
three possible reasons for this increase in execution time.

55

4.0 50%

35 1 45%
29 | | 40%

30

/\’ 1 35%

25 / 1 30%

20 25%

15 / 4 20%

15%

10%

Program execution time [seconds]

5%

The proportion of camouflaged instructions

0%

0 100 200 300 400 500

The number of camouflaged instructions

[EZZE The proportion of camouflaged instructions
—&— Average of execution time

Fig. 7. Impact on program execution time.

(1) Inserting self-modification routines increases the
number of instructions to be executed.

(2) Each time a self-modification routine writes code
cached in the CPU, the corresponding cache line is invali-
dated [10].

(3) Self-modification mechanism increases the fre-
quency of prediction failure of conditional branches in the
CPU.

Increased execution time may or may not be a disad-
vantage. Excessive camouflaging is not recommended, for
example, for an algorithm that considers the next move in
a game such as shogi or chess, or for an algorithm which
must operate in real time, such as a streaming playback
routine for speech.

For a program in which the user is restricted by means
of password authentication, on the other hand, the proposed
method may be used in order to complicate the analysis of
the password check routine. In such a case, if the method is
applied only to the password checking part of the program,
the original functioning is not degraded, except that a longer
time is required for the password check. Thus, execution
time overhead will not present a major problem. Location
and extent of camouflage should be chosen according to the
properties and purpose of the program or module to which
the proposed method is applied.

5. Related Studies

The self-modification mechanism itself has long
been known. One of its purposes is to reduce the program
size and the required memory capacity in execution [8].
Another purpose is to protect programs, as in this study, in

which a program is encrypted and decrypted by self-modi-
fication [4, 7, 12]. In the latter case, the specified range of
the program is encrypted beforehand and is decrypted by
self-modification during execution. The instructions are
encrypted again if necessary. This approach is similar to the
proposed method in the sense that the program is rewritten
during execution, but differs in the following respects.

e It is not easy to identify the position of a camou-
flaged instruction by static analysis, since it can-
not be distinguished from other instructions. On
the other hand, the range of the part of the program
which is encrypted may be easily identified, since
it has features different from the other parts (such
as the absence of instruction sequences and im-
possibility of disassembly).

e The restoring routine to resolve the camouflage is
a very ordinary short routine in main memory,
with a length of 1 to several bytes. In addition,
since such routines are scattered through the pro-
gram, it is not easy to identify their positions by
static analysis. On the other hand, the restoring
routine has a large size, and it is not easy to hide
the identification cue. In particular, when the
whole program is encrypted, the decryption starts
immediately at the start of the program execution,
which makes it easy to identify the restoring rou-
tine.

The approach in which an instruction which has been
overwritten by a different content beforehand is replaced
by the original instruction at the time of execution has been
considered in the past for software protection. However, in
the past approach, an operator with sufficient knowledge,
technique, and assembler resources, had to handle the pro-
tection process manually. In contrast, this paper proposes
and evaluates a systematic (formulated) method of protect-
ing software by self-modification. An automatic protection
mechanism is achieved by the proposed method. It is also
made possible to flexibly adjust the trade-off (degree of
camouflaging) between the degree of protection and the
overhead.

Other methods of making program analysis difficult
have included many methods of program obfuscation [5, 9,
19-21]. Obfuscation is a technique in which a given pro-
gram is converted to a program which is more difficult to
analyze (more complex) without modifying its specifica-
tions. The behavior of the obfuscated program can be
understood correctly, even if partially, by spending a long
time. On the other hand, in a program which is protected by
the proposed method, it is difficult to determine, even
partially, when an instruction with different content from
the original instruction is present (unless the restoring
routine has been identified), even if a long time is spent.

56

This is the difference between obfuscation and the proposed
method.

The proposed method is not a technique which is
controversial with respect to encryption or obfuscation.
Consequently, the analysis of the program is made still
more difficult by combining the proposed method with
these approaches. When the method is combined with
obfuscation, for example, the result is a program which
cannot be analyzed successfully unless the following two
stages are accomplished.

(1) The uncamouflaged state is obtained.
(2) The obfuscated program is understood.

It should be noted, however, that the program size or the
execution time may be further increased by the combined
use of these approaches.

6. Conclusions

This paper has proposed a systematic method of
making program analysis difficult by camouflaging instruc-
tions. When an attacker attempts a static analysis of a part
of the program which contains camouflaged instructions,
he cannot understand the original behavior of that part
correctly unless he locates the restoring routine.

To investigate the difficulty of analysis of the camou-
flaged program, the probability that the attacker can cor-
rectly understand the secret part of the program was
analyzed. Based on the resulting equation, it is concluded
that the range of analysis must be enlarged in order to
correctly understand the camouflaged program.

As a case study, a program (ccrypt) was camou-
flaged. The distance between the target instructions and the
restoring routine, the file size, and the execution time
overhead were measured. When 130 instructions in 947
were camouflaged, the average distance between the target
instruction and the restoring routine was 151 instructions.
Since many camouflaged instructions may occur between
the target instruction and the restoring routine, it is likely
that a costly analysis will be required in order to find the
restoring routine. As regards overhead, it was found that the
file size and the overhead of execution time are increased
with an increasing number of camouflaged instructions. It
is desirable to choose the position and extent of camouflage
according to the properties and purposes of the program or
module to which the method is applied.

Problems left for the future are as follows. It will be
useful to improve the algorithm for choosing the insertion
position of the self-modification routine so that the target
instruction and the restoring routine are more than a certain
distance apart. We also plan to improve the system in order
to reduce the execution time overhead, so self-modification
is handled from the viewpoint of the pipeline function and
the branch prediction function of the CPU.

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

. Cerven P. Crackproof your software. No Starch Press;

2002.

Chang H, Atallah M. Protecting software codes by
guards. Proc Workshop on Security and Privacy in
Digital Rights Management 2001, LNCS Vol 2320, p
160-175, Springer-Verlag, 2001.

. Chow S, Eisen P, Johnson H, van Oorschot PC. A

white-box DES implementation for DRM applica-
tions. Proc 2nd ACM Workshop on Digital Rights
Management, p 1-15, 2002.

. Cohen FB. Operating system protection through pro-

gram evolution. Comput Secur 1993;12:565-584.
Collberg C, Thomborson C. Watermarking, tamper-
proofing, and obfuscation—tools for software pro-
tection. IEEE Trans Softw Eng 2002;28:735-746.
Funamoto S. Anatomy of protection technology.
Subarusha; 2002.

Grover D (editor). The protection of computer soft-
ware: Its technology and applications. Cambridge
University Press; 1989.

. Hidaka T. Mysteries of the Z80 machine. Keigaku

Shuppan; 1989.

. Hohl F. Time limited blackbox security: Protecting

mobile agents from malicious hosts. In: Vigna G
(editor). Mobile agents security. LNCS Vol. 1419, p
92-113, Springer-Verlag, 1998.

Intel Co. TA-32 Intel architecture software devel-
oper’s manual vol. 3. System programming guide.
Chapter 9, p 18, http://www.intel.co.jp/

Irwin J, Page D, Smart NP. Instruction stream muta-
tion for non-deterministic processors. Proc
ASAP2002, p 286-295.

Ishima H, Saito K, Kamei M, Shin Y. Tamper resistant
technology for software. Fuji Xerox Tech Rep, No.
13, p 20-28, 2000.

Kanzaki Y, Monden A, Nakamura M, Matsumoto K.
Prevention of program analysis by replacement of
instruction code in execution. Tech Rep IEICE
ISEC2002-98, Dec. 2002.

Kanzaki Y. Tool for program camouflage.
http://se.aist-nara.ac.jp/rinrun/

Kanzaki Y, Monden A, Nakamura M, Matsumoto K.
Exploiting self-modification mechanism for program
protection. Proc 27th IEEE Computer Software and
Applications Conference, p 170-179, Dallas, 2003.
Levine JR. Linkers and loaders. Morgan Kaufmann;
2000. p 75-83.

Linn C, Debray S. Obfuscation of executable code to
improve resistance to static disassembly. Proc 10th
ACM Conference on Computer and Communica-
tions Security, p 290-299, 2003.

57

18.

19.

20.

21.

22.

23.

24.

Monden A, Monsifrot A, Thomborson C. Obfuscated
instructions for software protection. Information Sci-
ence Technical Report, NAIST-IS-TR2003013,
Graduate School of Information Science, Nara Insti-
tute of Science and Technology, 2003.

Monden A, Takada Y, Torii K. Methods for scram-
bling programs containing loops. Trans IEICE
1997;180-D-1:644—-652.

Murayama T, Mambo M, Okamoto H, Uematsu T.
Obfuscation of software. Tech Rep IEICE
1995;ISEC-95-25.

Ogiso T, Sakabe Y, Soshi M, Miyaji A. Software
obfuscation on a theoretical basis and its implemen-
tation. IEICE Trans Fundam 2003;E86-A:176—186.

Okamura H. The latest cases on the cyber law. Soft-
bank Publ. Co.; 2000.

The United Kingdom Parliament. The mobile tele-
phones (re-programming) bill. House of Commons
Library Research Paper, No. 02-47, 2002.

Yamada H, Kawahara J. Current status of digital
content protection and related issues. Toshiba Review
2003;58:2-7.

APPENDIX

A simple program containing a conditional branch

and the camouflaged program are presented below

1. Original program (C language)
#include <stdio.h>
#define PASSNUM 13

int main() {
int n;
scanf ("%d," &n);
if (n!=PASSNUM) {
printf ("INVALID\n");

return -1;
}
printf ("0K\n");
return 0;
}
2. Original program (assembly)
LCO:
.ascii "Jd\o"
LC1:
.ascii "INVALID\12\0"
LC2:
.ascii "OK\12\0"
.align 2

.globl _main

_main:
pushl %ebp
movl Yesp, %ebp
subl $24, Yesp
andl $-16, %esp
movl $0, Jeax
movl Y%eax, -12(%ebp)
movl -12(%ebp), %eax
call __alloca
call ___
movl $LCO, (%esp)
leal -4(%ebp), %eax
movl Y%eax, 4(%esp)

main

call _scanf
cmpl $13, -4(%ebp)
je L10
movl $LC1, (%esp)
call _printf
movl $-1, -8(%ebp)
jmp L9
L10:
movl $LC2, (Y%esp)
call _printf
movl $0, -8(%ebp)
L9:
movl -8(%ebp), %eax
leave

ret

3. Camouflaged program

LCO:
.ascii "%d\o"
LC1:
.ascii "INVALID\12\0"
LC2:
.ascii "OK\12\0"
.align 2
.globl _main

_main:

movl $T2 + 0x824, Y%eax # RR2
subl $0x824, Y%eax # RR2

58

movb $0xeb, (Yeax)
pushl Jebp
subb $0x3d, T3 + 2
movl Y%esp, ’%ebp
subl $24, Yesp
andl $-16, Y%esp
movl $T1 - 20 + 3, Yeax
addl $20, Yeax
T3:
movb $0x4a, (%eax)
movl $0, Jeax
movl Yeax, -12(%ebp)
movl -12(%ebp), %eax
call __alloca
call ___
movl $LCO, (%esp)
leal -4(%ebp), %eax
movl Y%eax, 4(%esp)
movl $T3 - 0x08 + 2, %eax
addl $0x08, Y%eax
movb $0x4a, (%eax)
call _scanf
T1:
cmpl $7, -4(%ebp)
je L10
movl $LC1, (Yesp)
call _printf
movl $-1, -8(%ebp)
T2:
je L9
L10:
movl $LC2, (%esp)
call _printf
movl $0, -8(%ebp)
movb $0x74, T2
L9:
movl -8(%ebp), %eax
movl $T1 + 0x120 + 3, Y%eax
subl $0x120, %eax
movb $0x07, (Yeax)

leave

main

ret

RR2

RR3

RR1
RR1

RR1 target3

HR3
HR3

targetl

target2

HR2

HR1
HR1
HR1

AUTHORS (from left to right)

‘Q

Yuichiro Kanzaki (student member) received his B.S. degree in 2001 from the Department of Computer and Systems,
Kobe University, completed the first half of his doctoral program in 2003, and is now in the second half at Nara Institute of
Science and Technology. He is engaged in research on software protection. He is a student member of IEEE.

AKito Monden (member) received his B.S. degree in 1994 from the Department of Electrical Engineering, Nagoya
University, completed the second half of his doctoral program in 1998 at Nara Institute of Science and Technology, and became
aresearch associate in the Department of Information Science. He was a visiting researcher at the University of Auckland, New
Zealand, in 2003—-2004. His research interests are software protection, software metrics, and human interface. He holds a D.Eng.
degree, and is a member of the Information Processing Society, Japan Software Science Society, IEEE, and ACM.

Masahide Nakamura (member) received his B.S. degree in 1994 from the Department of Information, Osaka University,
and completed the second half of his doctoral program in 1999. He became a research associate at the Cybermedia Center in
2000. He has been a research associate in the Graduate School of Information Science, Nara Institute of Science and Technology,
since 2002. His research interests are communications software, service competition, and software protection. He holds a D.Eng.
degree, and is a member of IEEE.

Ken’ichi Matsumoto (member) received his B.S. degree in 1985 from the Department of Information, Osaka University.
Before completion of his doctoral program, he became a research associate in the Department of Information in 1989. He was
appointed an associate professor in the Graduate School of Information Science, Nara Institute of Science and Technology, in
1993, and has been a professor there since 2001. His research interests are software quality assurance, user interface, and software
protection. He holds a D.Eng. degree, and is a member of the Information Processing Society, IEEE, and ACM.

59

