
Vol. 46 No. 8 IPSJ Journal Aug. 2005

Regular Paper

Quantitative Analysis of Information Leakage in

Security-Sensitive Software Processes

Yuichiro Kanzaki,† Hiroshi Igaki,† Masahide Nakamura,†

Akito Monden† and Ken-ichi Matsumoto†

This paper presents a method to evaluate the risk of information leakage in software pro-
cesses for security-sensitive applications. A software process is modeled as a series of sub-
processes, each of which produces new work products from input products. Since a process
is conducted usually by multiple developers, knowledge of work products is shared among
the developers. Through the collaboration, a developer may share with others the knowledge
of products that are not related to the process. We capture the transfer of such irrelevant
product knowledge as information leakage in a software process. In this paper, we first for-
mulate the problem of information leakage by introducing a formal software process model.
Then, we propose a method to derive the probability that each developer d knows each work
product p at a given process of software development. The probability reflects the possibility
that someone leaked the knowledge of p to d. We also conduct three case studies to show
the applicability of leakage to practical settings. In the case studies, we evaluate how the
risk of information leakage is influenced by the collaboration among developers, the optimal
developer assignment and the structure of the software process. As a result, we show that the
proposed method provides a simple yet powerful means to perform quantitative analysis on
information leakage in a security-sensitive software process.

1. Introduction

Information leakage is a serious problem in
today’s advanced information society. Many
incidents have been reported recently, in-
cluding leakage of user accounts and pass-
words 11), medical records 13), and product
source codes 4). Because of its impact on trust
and security, minimizing the risk of information
leakage is now a social responsibility for every
organization.

Although information leakage occurs in many
domains, this paper focuses especially on the
leakage in a software development process. The
development of a complex and large-scale soft-
ware system requires the collaborative effort of
many people with an elaborate software pro-
cess 8). A (whole) software process is com-
posed of partially-ordered sub-processes (sim-
ply called processes) such as design, coding and
testing. Each process has work products (sim-
ply products) as either the input or output of
the process.

Typically, a number of developers includ-
ing manages, designers and programmers, par-
ticipate in a common process. Given input
products, the developers collaborate with each

† Graduate School of Information Science, Nara Insti-
tute of Science and Technology

other, and produce output products. Through
the collaboration, they usually share their
knowledge of the products in order to achieve
the process efficiently. Thus, when multiple de-
velopers participate in a process, certain knowl-
edge transfer may occur in the process. From
the viewpoint of efficiency, knowledge transfer
should be improved, since it helps developers
to acquire a similar understanding of the pro-
cess 9).

However, in the development of security-
sensitive software such as DRM applica-
tions 3),10), the transfer of product knowledge
is not always encouraged. To understand this
better, we introduce a simple example.

Figure 1 shows a software process consisting
of two processes P1 and P2. P1 is a design pro-
cess conducted by developer Alice, where Alice
produces a product Specification from two given
products, Requirement and SecretInfo. Here we
assume that SecretInfo is confidential informa-
tion (e.g., device keys or S-BOX of CPRM sys-
tems 1)) that only Alice is authorized to see,
and that must appear in Specification in a cer-
tain encoded form. P2 is a coding process in
which Alice, Bob, and Chris participate. The
three developers collaborate with each other
and produce Code from Specification. Since Al-
ice knows Specification, Alice may explain it
to Bob and Chris in the collaboration. This

2129

2130 IPSJ Journal Aug. 2005

Fig. 1 Security-sensitive software process.

knowledge transfer is reasonable, since Specifi-
cation is necessary for Bob and Chris to per-
form P2 together. Even if Alice does not give
any explanation, Bob and Chris must know
Specification. On the other hand, both Require-
ment and SecretInfo are irrelevant to P2, since
they are not directly connected to P2. However,
what happens if Alice tells Bob or Chris the
knowledge about SecretInfo in P2? In this case,
Bob or Chris gets to know SecretInfo, which ru-
ins the security scheme.

From the above observation, we believe that
in a security-sensitive software process, the
knowledge transfer with any such irrelevant
products should carry a warning such as infor-
mation leakage. Note that the risk of informa-
tion leakage varies, depending on the structure
of the software process and the assignment of
developers to each process. For example, in
Fig. 1 if Alice is not assigned to P2, no leak-
age occurs.

The goal of this paper is to propose a frame-
work to evaluate quantitatively the risk of in-
formation leakage for a given software process.
To achieve this, we first formulate the problem
of information leakage by introducing a formal
software process model. The model is based on
the conventional process-centered software engi-
neering environment 5),7). Our contribution is
to formulate product knowledge of each devel-
oper on top of the model, focusing on the pro-
cess structure and the developer assignment.

Next, assuming that the knowledge of the
irrelevant products can be transferred (i.e.,
leaked), we present a method to compute the

probability of each developer knowing each
product. The probability reflects the risk that
someone leaked the product to the developer.
We derive the probability from the given soft-
ware process model using a recurrence formula.

To show applicability to practical or actual
settings, we conduct three case studies. The
first case study demonstrates how the informa-
tion leakage varies depending on the assignment
of developers. In the second case study, we
present an application to find an optimal as-
signment of developers for a constrained soft-
ware process. In the last case study, we investi-
gate the relationship between the process struc-
ture and the information leakage. The proposed
method provides a simple but powerful means
to perform quantitative analysis on information
leakage in a security-sensitive software process.

The rest of this paper is organized as follows:
In Section 2, we give definitions of the software
process model. Section 3 describes the pro-
posed method for characterizing the dynamics
of information leakage. In Section 4, we con-
duct the case studies. In Section 5, we have
two discussions: setting probability of leakage
among developers, and leakage in a determin-
istic manner. We also review the related work
in the section. Finally, Section 6 concludes the
paper and presents directions for future work.

2. Preliminaries

2.1 Software Process Model
We start with a definition of a software pro-

cess model. The model is based on the con-
ventional process-centered software engineering
environment 5),7), where the software develop-
ment is modeled by partially-ordered activities
(processes) operating with given or intermedi-
ate working products. In addition to the con-
ventional model, our model involves the as-
signment of developers to specify explicitly who
participates in each process.

Definition 1 (Software Process Model)
A software process model is defined by P =
(U, WP, PC, I, O, AS), where:
• U is a set of all developers participating in

the development.
• WP is a set of all work products.
• PC is a set of all processes.
• I is an input function PC → 2WP that

maps each process p ∈ PC onto a set
IP (⊆ WP) of input products of p.

• O is an output function PC → 2WP that
maps each process p ∈ PC onto a set OP (⊆

Vol. 46 No. 8 Quantitative Analysis of Information Leakage in Software Processes 2131

(a) Software Process Model (b) Petri-Net Representation

Fig. 2 Process model example.

WP) of output products of p.
• AS is an developer assignment function

PC → 2U that maps each process p ∈ PC
onto a set of developers participating in the
process p.

Figure 2 (a) shows an example of the soft-
ware process model, which simplifies an imple-
mentation stage of a security-sensitive applica-
tion. The model contains five developers, eight
work products, and six processes. The scenario
assumed in the model is briefly explained as fol-
lows:

Example Scenario: The implementation
stage produces an object code from a given
design specification. In this stage, the de-
sign specification is revised by a review pro-
cess. Next, by applying a security analysis to
the reviewed specification, all security-sensitive
information is isolated from the specification.
The rest of the specification is called Module-
Spec. From the security information, autho-
rized developers design a specification, called a
S-ModuleSpec for an independent security mod-
ule in which the raw security information is en-
coded. A main module and the security module
are coded respectively from ModuleSpec and the
S-ModuleSpec. Finally, these two modules are
integrated as the object code.

In Fig. 2 (a), let us consider the process Re-
view. This process models the review of the
design specification. Review takes DesignSpec
as an input product, and outputs a reviewed
specification (Rev-Spec). In this example, only
developer A is responsible for conducting the
process. Next, we consider the process SecAnal-

ysis. This process takes Rev-Spec as an input,
and outputs ModuleSpec and SecretInfo. Two
developers A and B participate in the process.
Through a similar discussion, we can see how
the process model achieves the example sce-
nario.

By definition, each process has a set of input
products and a set of output products. This
definition allows us to draw a given process
model by a Petri net 12), by associating WP
with places, PC with transitions, and by con-
necting a place and a transition with an arc
according to I and O. Figure 2 (b) shows a
schematic representation of the example pro-
cess with Petri net. Also, we associate a set
of developers with each corresponding transi-
tion based on AS, as depicted in the left of the
transition. Note that the use of the Petri net is
just for better comprehension of the overview
of the process structure, but is not essential to
our methodology.

2.2 Order among Processes
Suppose that P = (U, WP, PC, I, O, AS) is

given. For p ∈ PC, w ∈ I(p) and w′ ∈ O(p),
we use a triple (w, p, w′) to represent a product
dependency of process p, where a work prod-
uct w′ is produced from w via p. The product
dependencies implicitly specify a partial order
between processes, since a process needs input
products that have been previously generated
by other processes.

Definition 2 (Order of Processes) For
processes p and p′, we say that p is executed be-
fore p′ (denoted by p < p′) iff there exists a se-
quence (w0, p, w1) (w1, p1, w2) ... (wn−1, p

′, wn)
of product dependencies. For processes q and

2132 IPSJ Journal Aug. 2005

q′, if any < is not defined between q and q′, we
say that q and q′ are independent.

Let us consider the previous example. As de-
picted in Fig. 2 (b), we can see the order among
the six processes, i.e., Review < SecAnalysis <
Coding1 < Integrate, and Review < SecAnaly-
sis < S-Design < Coding2 < Integrate. Note
that the order is partial at this moment. In-
deed, no order between Coding1 and S-Design
(or Coding2) is defined, thus they are indepen-
dent. The independent processes can be exe-
cuted in any order, even concurrently.

2.3 Assumption on Software Process
Model

In this paper, we use the following two as-
sumptions for a given process model P =
(U, WP, PC, I, O, AS).
Assumption A1: There exists no sequence

(w0, p0, w1) (w1, p1, w2) ... (wn−1, pn, wn)
of product dependencies such that w0 =
wn.

Assumption A2: For any pair of indepen-
dent processes p and p′, if AS(p)∩AS(p′) �=
φ, then an order between p and p′ must be
given.

Assumption A1 states that the product depen-
dencies never form a loop. This is quite rea-
sonable for general software processes. Indeed,
it is unrealistic to assume that a work product
newly obtained can be used as the input of the
processes that have been completed previously.
By this assumption, we have a consistent par-
tial order among processes for a given sequence
of product dependencies.

Assumption A2 states that independent pro-
cesses p and p′ must be ordered when the same
developer is assigned to both p and p′. This
assumption is based on the observation that a
developer cannot engage in more than one pro-
cess simultaneously. Let us consider the pro-
cess model in Fig. 2. In this example, processes
Coding1 and S-Design are independent. How-
ever, they cannot be executed simultaneously,
since the same developer A is assigned to both
processes (i.e., AS(S-Design)∩AS(Coding1) =
{A}). Hence, we need to give an order between
these processes, for instance, S-Design < Cod-
ing1, so that A conducts S-Design first.

By these assumptions, if we fix a developer u,
then the processes in which u participates are
totally-ordered.

Proposition 1 Let P = (U, WP, PC, I, O,
AS) be a given process model with Assump-
tions A1 and A2. For a developer u ∈ U , let

PCu = {p|p ∈ PC ∧ u ∈ AS(p)} be a set of all
processes to which u is assigned. Then, PCu is
totally-ordered.
Consider the process model in Fig. 2 with S-
Design < Coding1. Then, the processes to be
conducted by each user are ordered as follows:

PCA : Review < SecAnalysis < S-Design
< Coding1

PCB : SecAnalysis < S-Design < Cod-
ing2

PCC : Coding1 < Integrate
PCD : Integrate
PCE : Integrate

Since PCu are totally-ordered, any process in
PCu has at most one immediate predecessor.

Definition 3 (Predecessor of Process)
Let pu1 , pu2 , ..., puk

be all processes in PCu such
that pu1 < pu2 < ... < puk

. For pui
∈ PCu,

we call pui−1 immediate predecessor of pui
with

respect to u, which is denoted by predu(pui
).

Also, we define predu(pu1) to be ε (empty).
In the above example, we have predA(Coding1)
= S-design, which means that A participates
in S-design immediately before Coding1. Also,
we have predC(Coding1) = ε meaning that
Coding1 is the first process that C engages in.

3. Characterizing Dynamics of Infor-
mation Leakage

3.1 Product Knowledge of Developers
To perform a process p, developers engag-

ing in p must know all the input products of
p. Based on the input products, they develop
the output products. Hence, when finishing p,
developers should be acquainted with the out-
put products as well. Thus, when a process
is performed, the developers acquire knowledge
about the related (i.e., input/output) products.
For each developer, the knowledge is accumu-
lated in the sequence of completed processes.
This dynamics depends on the given process
model, specifically, I, O, and AS.

For example, consider the example in Fig. 2.
Developer A participates in process Review.
Hence, when Review is finished, A must know
the products DesignSpec and Rev-Spec. Sim-
ilarly, the completion of SecAnalysis provides
the knowledge of Rev-Spec, ModuleSpec, and
SecretInfo for both A and B. Thus, when A
completes SecAnalysis, A knows four products;
DesignSpec, Rev-Spec, ModuleSpec, SecretInfo.

Definition 4 (Product Knowledge) Let
P = (U, WP, PC, I, O, AS) be a given software
process model. For u ∈ U and p ∈ PC, we

Vol. 46 No. 8 Quantitative Analysis of Information Leakage in Software Processes 2133

Table 1 Know(u, Integrate) (u ∈ {A, B, C, D, E}).
u DSpc RSpc SInfo MSpcSSpc MMo SMo OCd
A 1 1 1 1 1 1 0 0
B 0 1 1 1 1 0 1 0
C 0 0 0 1 0 1 1 1
D 0 0 0 0 0 1 1 1
E 0 0 0 0 0 1 1 1

define a set of working products Know(u, p)
(⊆ WP) s.t.

Know(u, p) =
⋃

u∈AS(p′)∧p′≤p

(I(p′) ∪ O(p′))

Know(u, p) is called the product knowledge of
developer u at the completion of process p.
We use the term “knowledge” in an abstract
sense, which can be refined in terms of, for
instance, the essential idea or mechanism, the
product’s document itself, or the access method
to the product.

Let us compute Know(B, Coding2) with
Fig. 2. Before Coding2, B has participated
in SecAnalysis and S-Design. Hence, accu-
mulating the input/output products of these
three processes, we have Know(B, Coding2)
= { Rev-Spec, SecretInfo, ModuleSpec, S-
ModuleSpec, SecurityModule }.

For convenience, we represent Know(u, p)
with a binary vector. Let w1, w2, ..., wn be
all work products in WP . Then, we denote
Know(u, p) = [wp1, wp2, ..., wpn], where wpi =
1 iff wi ∈ Know(u, p), otherwise wpi = 0.
Then, the product knowledge of all users at the
completion of the last process (i.e., Integrate)
can be represented in Table 1.

3.2 Leakage of Product Knowledge
Now suppose a situation such that a devel-

oper may share his/her product knowledge to
other developers sharing the same process.

As an example, consider Coding1 in Fig. 2.
This process is shared by A and C. Assum-
ing an order S-Design < Coding1, the product
knowledge of A and C at Coding1 are computed
as follows:

DS RS SI MS SS MMSM OC

Know(A,Coding1) = [1 1 1 1 1 1 0 0]
Know(C,Coding1) = [0 0 0 1 0 1 0 0]

Coding1 is the first process that C partici-
pates in. Hence, at this moment, C is supposed
to know only ModuleSpec and MainModule. C
does not need to know all the rest of the prod-
ucts. On the other hand, A has more product
knowledge than C, because A has previously
participated in three other processes.

Assume now that during Coding1, A tells C
the product knowledge that C does not know,
for example SecretInfo, with some probability.
As a result, C learns SecretInfo although C has
never directly touched it before. Once C knows
SecretInfo, the knowledge would be propagated
to D and E, since C shares the subsequent pro-
cess, Integrate, with D and E. As a result,
the isolation of security information would be
in vain.

Thus, when multiple developers work in the
same process, the product knowledge can be
spread from the developer who knows the prod-
uct to developers who do not know. We regard
this as information leakage in the software pro-
cess, which is specifically defined as follows.

Definition 5 (Leakage) For developers u,
u′ ∈ D, a work product w ∈ WP and a process
p ∈ PC, we say that u may leak w to u′ at p iff
{u, u′} ⊆ AS(p) and both w ∈ Know(u, p) and
w �∈ Know(u′, p).

The above definition of leakage might be a
bit broad. Indeed, this definition covers a case
such that a security product w is known to an
unauthorized developer u′. On the other hand,
someone may say that it is not leakage if w
is not a security-sensitive product, or if u and
u′ work for the same company. However, for
simplicity and generality of the model, we keep
this broad definition. A more detailed criteria
of the leakage should be tuned depending on
the target software process.

3.3 Stochastic Product Knowledge
Now, let us take the leakage of product knowl-

edge into account in our model. Specifically, we
introduce the following assumption for a given
process model P = (U, WP, PC, I, O, AS):
Assumption A3: For u, u′ ∈ U and w ∈

WP , let leak(u, w, u′) be the probability
that u leaks w to u′. We assume that
leak(u, w, u′) is given for any u, u′ and w.

Then, in a process p, a developer u may
happen to know a product w such that w �∈
Know(u, p), since someone could leak w to u
with a certain probability. This motivates us
to deal with product knowledge in a stochastic
manner.

Let us consider a probability that a developer
u knows a work product w at the completion of
process p, which we denote Pkn(u, p, w). When
u knows w at the completion of p, two cases can
be considered.
Case C1: w ∈ Know(u, p), or
Case C2: w �∈ Know(u, p) and some devel-

2134 IPSJ Journal Aug. 2005

Pkn(u, p, w) =

1.0 (· · · if w ∈ Know(u, p))

Pkn(u, predu(p), w) + C(u, p) ∗ (1 − Pkn(u, predu(p), w))
∗[1 − ∏

ui∈AS(p)−{u}{1 − Pkn(ui, predui
(p), w) ∗ leak(ui, w, u)}]

(· · · if w �∈ Know(u, p))

Fig. 3 Probability that a developer u knows a work product w at the
completion of a process p.

opers leak (or leaked) w to u.
Case C1 means that w is already counted in
u’s product knowledge. For this case, we have
Pkn(u, p, w) = 1.0. Case C2 can be further
divided into two sub-cases.
Case C2a: u knew w before p (via someone

else), or
Case C2b: [u ∈ AS(p)] and [u did not know

w before p] and [in p some developers shar-
ing p with u leak w to u].

The probability that Case C2a holds is
P (C2a) = Pkn(u, predu(p), w)

which means that u knew w in the predecessor
process. Next, the probability for Case C2b can
be formulated by

P (C2b) = C(u, p) ∗ (1 − Pkn(u, predu(p)
, w)) ∗ Pleak

where C : U × PC → {0, 1} such that
C(u, p) = 1 iff u ∈ AS(p); otherwise C(u, p) =
0, and Pleak is the probability that some devel-
opers sharing p leak w to u.

Next, we formulate Pleak. Let u1, u2, ..., uj

be developers who share p with u (i.e.,
{u1, u2, ..., uj} = AS(p) − {u}). In order for
ui to leak w in p, two conditions are required:
(1) ui needs to have known w before p, and (2)
ui leaks w to u. Therefore, the probability that
ui leaks w to u in p is

Pkn(ui, predui
(p), w) ∗ leak(ui, w, u)

Moreover, u knows w iff at least one of
u1, u2, ..., uj leaks w to u in p, which is the com-
plement of “none of u1, u2, ..., uj leaks w to u
in p”. Hence,

Pleak = 1 −
∏

ui∈AS(p)−{u}
{1 − Pkn(ui,

predui
(p), w) ∗ leak(ui, w, u)}

Combining all formulas together, we finally de-
rive Pkn(u, p, w), which is the probability that
u knows w at the completion of p, in Fig. 3.

Note that Pkn(u, p, w) is specified as a re-
currence formula with respect to the process p.
According to Assumptions A1 and A2, the set

Table 2 PKnow(u, Integrate) (u ∈ {A, B, C, D, E}).
u DSpc RSpc SInfo MSpc SSpc MMo SMo OCd
A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
B 0.0199 1.0 1.0 1.0 1.0 0.0 1.0 0.0
C 0.01 0.01 0.01 1.0 0.01 1.0 1.0 1.0
D 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0
E 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0

of processes that u participates in is totally-
ordered. Hence, predu(p) is uniquely obtained.
Also, by Assumption A3, leak(ui, w, u) is given.
Therefore, the value of Pkn(u, p, w) can be cal-
culated deterministically.

Pkn(u, p, w) is now defined as stochastic
product knowledge.

Definition 6 (Stochastic Product
Knowledge) Let P = (U, WP, PC, I, O,
AS) be a given software process model with As-
sumptions A1, A2 and A3. Let w1, w2, ..., wn be
all work products in WP . For u ∈ U , p ∈ PC,
we define a vector PKnow(u, p) s.t.

PKnow(u, p) = [Pkn(u, p, w1), Pkn(u, p, w2),

..., Pkn(u, p, wn)]

PKnow(u, p) is called stochastic product knowl-
edge of u at the completion of p.

Consider the example in Fig. 2 with S-Design
< Coding1. For the sake of simplicity, let us
assume a fixed probability leak(u, w, u′) = 0.01
for all u, u′ ∈ U and w ∈ WP . Therefore, the
stochastic product knowledge of all users at the
completion of the last process (i.e., Integrate)
can be obtained as shown in Table 2.

4. Case Studies

To show the applicability of the proposed
method to practical software processes, this sec-
tion conducts three case studies.

We have implemented a software tool which
automatically derives the stochastic product
knowledge. The tool is written in C++, com-
prising about 600 lines of codes. The tool com-
putes the stochastic product knowledge from a
given text file, which includes software process
model and values of leak(u, w, u′) in a text for-

Vol. 46 No. 8 Quantitative Analysis of Information Leakage in Software Processes 2135

mat. As for the performance, the tool required
0.07 seconds to compute the result for our ex-
ample process shown in Fig. 2, on a Pentium 4
PC (3.60GHz).

4.1 Case Study 1: Impact of Collabo-
ration among Developers

The aim of this case study is to demonstrate
how the collaboration among developers influ-
ences the risk of information leakage. Here, we
further investigate the software process model
shown in Section 2.1 (see Fig. 2). We compute
the stochastic product knowledge with varying
AS on some processes.

Let us recall the scenario of the process
model. In the scenario, a work product Se-
cretInfo is assumed to be confidential. We also
suppose that only developers A and B are au-
thorized to access SecretInfo. When S-Design
is completed, A and B are the only developers
that know SecretInfo.

Our interest is to evaluate the risk that Se-
cretInfo is leaked to unauthorized developers C,
D or E. For this evaluation, we vary the devel-
opers assignment AS in the subsequent three
processes Coding1, Coding2 and Integrate.

For convenience, we first define the following
parameters:
• Uaut = {A, B}: authorized developers.
• Uuaut = {C, D, E}: unauthorized develop-

ers.
• PCtgt = {Coding1, Coding2, Integrate}:

target processes where the developers as-
signment is varied.

The risk of the leakage depends heavily on
how the authorized developers (A, B) collabo-
rate with the unauthorized ones (C, D, E) in
the target processes (PCtgt). To characterize
the collaboration, we define the following pa-
rameter for a process p:

Col(p) = |Uaut ∩ AS(p)| ∗ |Uuaut ∩ AS(p)|
Also, we define

Col =
∑

p∈PCtgt

Col(p)

Col(p) represents the number of combinations
of authorized and unauthorized developers in
a process p. This intuitively characterizes the
degree of collaboration where an authorized de-
veloper interacts with an unauthorized one in
p. For example, if AS(p) = {A, B, C, D}
with Uaut = {A, B}, Uuaut = {C, D}, then
Col(p) = 4, which implies that there are 4 pat-
terns where an authorized A or B interacts with

Fig. 4 Computation result of Risk.

an unauthorized C or D. Col is the total num-
ber of such interactions in the target processes.
Hence, with the greater value of Col, the more
the authorized developers can collaborate with
the unauthorized ones.

For a fixed developers assignment as =
[AS(Coding1), AS(Coding2), AS(Integrate)],
the risk that SecretInfo is leaked to unautho-
rized developers is formulated by:

Riskas =
∑

u∈Uuaut

Pkn(u, integrate, SecretInfo)

Riskas is characterized as the expected
number of unauthorized developers knowing
SecretInfo.

Using the developed tool, we have computed
Riskas for all possible assignments as ∈ 2U ×
2U × 2U . In the computation, we assume a
fixed probability leak(u, w, u′) = 0.01 for every
u, u′ ∈ U and w ∈ WP .

Figure 4 depicts the result. In this scat-
tered plot, the horizontal axis represents Col,
while the vertical axis plots Riskas. Table 3
shows the average value of Riskas with respect
to Col ☆.

As seen in the result, the risk that SecretInfo
is leaked grows as Col increases. This increase
implies that more collaboration among autho-
rized and unauthorized developers causes the
higher risk of information leakage. In this case
study, each probability that a developer u leaks
a product w to another u′ is relatively small
(i.e., leak(u, w, u′) = 0.01 = 1%). However, if
the developers share many processes, the total
probability of the leakage becomes significantly
large. For Col = 18 where all of five developers
are assigned to every target process, the risk

☆ Due to the structure of the given process model,
there is no developer assignment such that Col = 17.

2136 IPSJ Journal Aug. 2005

Table 3 Average of Risk w.r.t. Col.

Col Risk
0 0.000000000
1 0.010040352
2 0.020082816
3 0.030094976
4 0.040112381
5 0.050125019
6 0.060119186
7 0.070156853
8 0.080101327
9 0.090217868
10 0.100071167
11 0.110321914
12 0.120011146
13 0.130566804
14 0.139962521
15 0.151329923
16 0.160040993
17 —–
18 0.180650505

becomes as large as 18%.
4.2 Case Study 2: Optimal Developers

Assignment
This case study demonstrates how the pro-

posed method can be used to find an optimal
assignment of developers. For a software pro-
cess model (with certain constraints), we say
that an assignment of developers AS is optimal
if the risk of the leakage is minimized by AS.

In this case study, we use a software pro-
cess model P = (U, WP, PC, I, O, AS), where
U , WP , PC, I and O are the same as those in
Fig. 2 and AS is not determined yet. We also
assume the same security scheme as the one in
the previous case study. In general, a software
process has certain constraints with respect to
human resources, developing time, etc. As a
typical example, we impose the following con-
straints on P :
• All processes in WP must be performed by

the effort of the total 10 developers (with
overlaps).

• At most two developers can conduct each
process.

• Both SecAnalysis and S-Design must be
done only by the authorized developers
(Uaut = {A, B}).

• leak(u, w, u′) = 0.01 for all u, u′ ∈ U , and
w ∈ WP .

With the above constraints, we compute the op-
timal assignment, where the risk that SecretInfo
is leaked is minimized.

The computation is rather straightforward.
For every possible assignment as that satisfies
the constraints, we compute Riskas (see Case

Study 1). The optimal assignment is shown in
Fig. 5 (a). In this assignment, there is no risk
that SecretInfo is leaked (i.e., Riskas = 0.0000).
For a just comparison, we also compute the
assignment where Riskas is maximized within
the constraints. Figure 5 (b) shows one of such
cases, where Riskas is as large as 0.0300).

We can see in the optimal assignment
(Fig. 5 (a)) that after S-design there is no pro-
cess involving authorized (A, B) and unau-
thorized developers (C, D, E), simultane-
ously. In contrast, as for the risky assignment
(Fig. 5 (b)), in every process after S-design ei-
ther A or B shares the process with an unau-
thorized developer.

Thus, the proposed method can be also used
as a powerful means to perform optimal tunings
of the process configuration.

4.3 Case Study 3: Influence of Process
Structure

The previous two case studies showed that
the assignment of developers to each process
is an essential factor for controlling the risk of
the information leakage. Our next interest is to
examine the influence of the process structure
(i.e., the shape of the Petri Net, intuitively) on
information leakage.

For this, we introduce two software process
models S1 and S2 shown in Fig. 6. The sce-
nario of S1 is summarized as follows:
• Five developers A, B, C, D, and E partic-

ipate in the software process.
• A and B first make the requirement spec-

ification (ReqSpec) from the given require-
ment document (ReqDoc) by the require-
ment analysis (ReqAnalysis).

• A and B conduct the system design (Sys-
Design) to divide the whole system into
three sub-systems: a security module and
two sub-modules.

• In SysDesign, A and B carefully isolate the
confidential information (SecretInfo) from
the rest of the system, to design the secu-
rity module. For this isolation, we assume
that only A and B are authorized to access
SecretInfo. That is, we have Uaut = {A, B}
and Uuaut = {C, D, E}.

• The two sub-modules are developed in two
concurrent processes G1 and G2 (shown as
dotted boxes in Fig. 6), each of which con-
sists of four processes (program design, de-
sign review, coding, and code review).

• The reviewed codes of the two sub-modules
are combined into one. The resultant code

Vol. 46 No. 8 Quantitative Analysis of Information Leakage in Software Processes 2137

(a) Assignment that Riskas is
(Riskas = 0.0000)

(b) Assignment that Riskas is
maximized (Riskas = 0.0300)

Fig. 5 Optimal assignment and risky assignment.

(a) Structure S1 (b) Structure S2

Fig. 6 Target software process model.

is applied to the subsequent test process.
Model S2 is almost the same as S1, but is some-
what ill structured. S1 and S2 have the same
sets of products and processes. The developers
assignment for S1 is also equal to the one for
S2. However, for S2, some processes in G1 re-
quire some products in G2 (vice versa), which
is represented by the three extra arcs between
G1 and G2. These arcs suppress the execution
order of some processes. For instance, Design-
Rev2 can be performed only after ProgDesign1
is completed.

For both S1 and S2, authorized developers A
and B share some processes with the unautho-
rized ones C, D and E. Therefore, the knowl-
edge of SecretInfo may leak. Our interest is

to see how the structural difference between S1
and S2 (i.e., the three extra arcs) impacts the
risk of the leakage. As in a similar discussion in
the previous case studies, the risk is formulated
by:

Riskstr =
∑

u∈{C,D,E}
Pkn(u, Test, SecretInfo)

Figure 7 illustrates the result, where the
horizontal axis represents the name of the
model, while the vertical axis plots Riskstr for
all possible execution orders of the processes.
As seen in the result, S2 tends to have a higher
risk of information leakage.

According to Assumption A2, we have to

2138 IPSJ Journal Aug. 2005

Fig. 7 Influence of process structure.

give an order for between any independent pro-
cesses. A simple solution is to give an order so
that Riskstr is minimized. For S1, the optimal
order of processes is:

ProgDesign2 < DesignRev2 < Coding2 <
CodeRev2 < ProgDesign1 < DesignRev1 <
Coding1 < CodeRev1
where Riskstr = 0.139052. On the other hand,
for S2, the optimal execution order of processes
is:

ProgDesign1<ProgDesign2<DesignRev2
< Coding2 < DesignRev1 < Coding1 <
CodeRev2 < CodeRev1
where Riskstr = 0.139524.

In S1, each process of G1 is completely in-
dependent of another process in G2. There-
fore, the processes in G1 can be executed with-
out concern for the progress of G2. On the
other hand, for S2, the extra arcs suppress
some execution order of the processes (for ex-
ample, we cannot assume the order Coding1
< DesignRev2). Therefore, S2 cannot take a
wide range of execution orders, which results in
a higher risk of leakage in this experiment.

Thus, the structure of the process controls
the execution order of processes, which signif-
icantly influences the risk of information leak-
age.

5. Discussion

5.1 Setting Value of leak(u, w, u′)
The proposed framework requires the user to

give absolute probability leak(u, w, u′) for every
u, w and u′. Although leak(u, w, u′) is assumed
to be given (see Assumption A3), we here dis-
cuss the idea how to determine the value in a
practical setting.

By definition, the value leak(u, w, u′) charac-
terizes the probability that a developer u leaks

the product knowledge w to another developer
u′. In reality, since this action of the leakage
involves many human factors, it would be diffi-
cult to estimate an exact value of leak(u, w, u′)
for each individual developer.

However, as we demonstrated in Section 4,
even if the user simply determines a uniform
value of leak(u, w, u′) for all u, w and u′, the
user can analyze extensively the security as-
pects of the given software process. In this
case, the user assumes that all developers are
equally likely to leak their own product knowl-
edge. Since varying the uniform value is easy,
we believe that this type of analysis is quite use-
ful to examine the process structure and devel-
oper assignment in the process planning stage.

On the other hand, if the user desires to es-
timate a more realistic value of leak(u, w, u′)
for each individual developer, we consider that
the user should refer to the profile information
of developers, products, and working environ-
ment, which are supposed to be available in the
organization. The profile information is used to
derive objective attributes for each developer
and product, involving; the age, the position,
working experience, and security awareness of
the developer, as well as organizational policies
for confidential products and the trust of com-
panies in collaboration. Based on the derived
attributes, the user would be able to estimate
leak(u, w, u′) in a more credible way.

A practically reasonable solution would be to
introduce a multi-grade system with respect to
the risk of leakage. For instance, the user eval-
uates each developer according to three-grade
system: dangerous, moderate, safe. Then, the
user assigns 0.1, 0.01 or 0.001 to leak(u, w, u′)
for the dangerous, moderate or safe developer u.
Applying these settings to the proposed frame-
work, the user can simulate more realistic situa-
tion of information leakage. More sophisticated
methods and their evaluation are left as a chal-
lenging issue in our future work.

5.2 Deterministic Model
We have so far characterized the information

leakage with the stochastic model. However, we
might able to consider the leakage in a deter-
ministic manner, assuming that any potential
leakage actually occurs. Such a deterministic
model could be used to determine the safest
way to avoid the leakage.

Indeed, this deterministic model can be con-
structed within the proposed framework by set-
ting every parameter leak(u, w, u′) to be either

Vol. 46 No. 8 Quantitative Analysis of Information Leakage in Software Processes 2139

0.0 or 1.0.
The deterministic model has the great ad-

vantage of simplicity in determining the value
of leak(u, w, u′), which can be used to ana-
lyze some special cases. For example, suppose
that a software process in a company X is per-
formed by the collaboration with another ex-
ternal company Y . For every pair of developers
x and y from X and Y , respectively, we can
construct a deterministic model, assuming that
leak(x, w, y) = 1.0, and that no leakage occurs
between developers within the same company.
Then, the model can compute the set of product
knowledge that could be transfered (or leaked)
from the company X to Y .

Note, however, that the deterministic model
can capture only some special situations ac-
cording to the “always or never” basis. In the
practical software process, we believe that every
developer has a possibility of leaking his prod-
uct knowledge. The deterministic model can-
not deal with the degree of the potential leakage
that is significantly characterized by the process
structure and the developer assignment. In the
above example, as long as x and y shares at
least a certain process, the deterministic model
always concludes that the leakage occurs. This
conclusion is just by the worst-case analysis,
and is independent of the process structure and
the number of collaborations among x and y.
Thus, the deterministic model tends to omit
the detailed characteristics of the given software
process model itself.

On the other hand, based on the assumption
that every developer has a potential of leak-
age, the proposed stochastic model can quanti-
tatively derive the degree of leakage of product
knowledge, taking both the process structure
and the developer assignment into account, as
illustrated in Section 4. Although the stochas-
tic model has a difficulty in justification of the
probability setting on leak(x, w, y), it is ex-
pected to provide a reasonable and useful met-
ric for many process improvement tasks, such
as constructing optimal software process under
a constraint, and examining differences among
multiple software process models.

Finally, note again that the proposed frame-
work can deal with both the deterministic and
stochastic models. So, the user can choose ei-
ther model at his discretion.

5.3 Related Work
To our knowledge, no research study on a

software process involving the leakage of prod-

uct knowledge from one person to another ex-
ists. Chou, et al. 2) presented a model for ac-
cess control named WfACL, which aims to pre-
vent information leakage within work flows that
may execute among competing organizations.
Chou, et al. address issues related to the man-
agement of dynamic role change and access con-
trol. However, the model includes no concrete
method to evaluate the risk of leakage quanti-
tatively.

A numerical approach to compute infor-
mation leakage might be to use Generalized
Stochastic Petri Net (GSPN) 12) extensively.
We first examined this approach. To do this,
however, both the structure of process and the
dynamics of leakage must be modeled in one
GSPN. This complicates the net structure, and
the state space becomes so large that the GSPN
solver cannot compute the probability within a
reasonable time. Therefore, we decided to treat
the process description and the leakage compu-
tation separately.

In addition, much research has been focused
on different kinds of access control methods,
such as role-based access control 6),15), and task-
based access control 16). The goal of access con-
trol is to ensure that only authorized people
are given access to certain resources (i.e., prod-
ucts in our problem). However, the aim of the
proposed method is not to control the access
authority, but to evaluate the risk of leakage as
unexpected knowledge transfer among develop-
ers.

6. Conclusion

In this paper, we have presented a method
to evaluate the risk of information leakage in
the software development process. We formu-
lated the leakage as an unexpected transfer of
product knowledge among developers sharing
the same process. We then proposed a method
to derive the probability that each developer
will know each work product at any process of
software development. We also conducted three
case studies. The result of the first case study
quantitatively showed that; more collaboration
among authorized and unauthorized developers
causes a higher risk of information leakage. In
the second case study, we showed that the pro-
posed method can be also used as a powerful
means to perform optimal tunings of the pro-
cess configuration. Finally, in the third case
study, we showed that the structure of the pro-
cess controls the execution order of processes,

2140 IPSJ Journal Aug. 2005

which in turn, significantly influences the risk
of information leakage.

In addition, we discussed how to determine
the value leak(u, w, u′), which characterizes the
probability that a developer u leaks the prod-
uct knowledge w to another developer u′, in a
practical setting. More sophisticated methods
for calculating leak(u, w, u′) are left as a chal-
lenging issue in our future work. We also dis-
cussed the information leakage with a determin-
istic model, which could be used to determine
the safest way to avoid the leakage.

The proposed method is simple and generic;
therefore, it should not be limited to the
security-sensitive software process. We expect
that the proposed method is highly feasible for
other workflow-based applications, such as med-
ical work flows 14) where private information
must be protected. Investigation of the emerg-
ing application domain is also an interesting is-
sue for future research.

References

1) 4C-Entity: Policy statement on use of con-
tent protection for recordable media, (CPRM)
in certain applications (2001). (Available on-
line August 2001).

2) Chou, S.-C., Liu, A.-F. and Wu, C.-J.: Pre-
venting information leakage within workflows
that execute among competing organizations,
The Journal of Systems and Software (2004).
(Available online 4 February 2004).

3) Chow, S., Eisen, P., Johnson, H. and van
Oorschot, P.: A white-box DES implementa-
tion for DRM applications, Proc. 2nd ACM
Workshop on Digital Rights Management,
pp.1–15 (2002).

4) Conrante Tech News: Microsoft’s code leak-
age. http://www.corante.com/openmind/
archives/001884.php

5) Feiler, P.H. and Humphrey, W.S.: Software
Process Development and Enactment: Con-
cepts and Definitions, Proc. 2nd Interna-
tional Conference on Software Process, pp.28–
40 (1993).

6) Ferraiolo, D. and Kuhn, R.: Role-Based
Access Controls, 15th NIST-NCSC National
Computer Security Conference, pp.554–563
(1992).

7) Garg, P.K. and Jazayeri, M.: Process-Centered
Software Engineering Environments, IEEE
Computer Society Press (1995).

8) Jacobson, I., Booch, G. and Rumbaugh,
J.: The unified software development process,
Addison-Wesley Longman Publishing Co., Inc.
(1999).

9) Keller, F., Tabeling, P., Apfelbacher, R.,
Grone, B., Knopfel, A., Kugel, R. and
Schmidt, O.: Improving Knowledge Transfer
at the Architectural Level: Concepts and No-
tations, Proc. 2002 International Conference
on Software Engineering Research and Practice
(2002).

10) Liong, Y.-L. and Dixit, S.: Digital Rights
Management for the Mobile Internet, Wire-
less Personal Communications, Vol.29, No.1-2,
pp.109–119 (2004).

11) Mainichi Shimbun: Firms struggling to plug
customer information leaks (2004). Mainichi
Shimbun, March 2.

12) Marsan, M.A., Balbo, G., Conte, G., Donatelli,
S. and Franceschinis, G.: Modelling with Gen-
eralized Stochastic Petri Nets, John Wiley
(1995).

13) Monthly Information Security: Database of
Information Leakage Incidents. http://www.
monthlysec.net/ (in Japanese).

14) Quaglini, S., Mossa, C., Fassino, C., Stefanelli,
M., Cavallini, A. and Micieli, G.: Guidelines-
Based Workflow Systems, Lecture Notes in
Computer Science, Vol.1620/1999, pp.65–75,
Springer-Verlag (1999).

15) Sandhu, R.S., Coyne, E.J., Feinstein, H.L.
and Youman, C.E.: Role-Based Access Control
Models, IEEE Computer, Vol.29, No.2, pp.38–
47 (1996).

16) Thomas, R.K. and Sandhu, R.S.: Task-Based
Authorization Controls (TBAC): A Family of
Models for Active and Enterprise-Oriented Au-
torization Management, Proc. IFIP Workshop
on Database Security, pp.166–181 (1997).

(Received December 1, 2004)
(Accepted June 9, 2005)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.1, pp.322–334.)

Yuichiro Kanzaki received
his B.E. degree in computer and
systems engineering from Kobe
University, Japan in 2001, and
the M.E. degree in information
science from Nara Institute of
Science and Technology, Japan

in 2003. He is currently a doctoral student of
the Graduate School of Information Science at
Nara Institute of Science and Technology. His
research interests include software protection,
program comprehension and software process
security. He is a student member of the IEEE
and IEICE.

Vol. 46 No. 8 Quantitative Analysis of Information Leakage in Software Processes 2141

Hiroshi Igaki received the
B.E. degree (2000) in Depart-
ment of Electrical and Electron-
ics Engineering from Kobe Uni-
versity, Japan, and the M.E.
degree (2002) and D.E. degree
(2005) in information science

from Nara Institute of Science and Technology,
Japan. He is currently a post-doctoral fellow
of Graduate School of Information Science at
Nara Institute of Science and Technology. His
research interests include communication sup-
port in software development, web services and
service-oriented architecture. He is a member
of the IEEE and a member of the IEICE.

Masahide Nakamura re-
ceived the B.E., M.E., and
Ph.D. degree in information and
computer science from Osaka
University, Japan, in 1994, 1996,
1999, respectively. From 1999
to 2000, he has been a post-

doctoral fellow in SITE at University of Ottawa,
Canada. He joined Cybermedia Center at
Osaka University from 2000 to 2002. He is
currently Assistant Professor in the Graduate
School of Information Science at Nara Institute
of Science and Technology, Japan. His research
interests include the service-oriented comput-
ing, feature interaction problem in network ser-
vices, software validation and verification, and
software metrics and security. He is a member
of the IEEE and a member of the IEICE.

Akito Monden received the
B.E. degree (1994) in electrical
engineering from Nagoya Uni-
versity, Japan, and the M.E.
degree (1996) and D.E. degree
(1998) in information science
from Nara Institute of Science

and Technology, Japan. He was honorary re-
search fellow at the University of Auckland,
New Zealand, from June 2003 to March 2004.
He is currently Associate Professor of Grad-
uate School of Information Science at Nara
Institute of Science and Technology. His re-
search interests include software security, soft-
ware measurement, and human-computer inter-
action. He is a member of the IEEE, ACM,
IEICE, JSSST and JSiSE.

Ken-ichi Matsumoto re-
ceived the B.E., M.E., and
Ph.D. degrees in information
and computer science from
Osaka University, Japan, in
1985, 1987, 1990, respectively.
He is currently Professor in the

Graduate School of Information Science at Nara
Institute of Science and Technology, Japan.
His research interests include software measure-
ment and software user process. He is a se-
nior member of the IEEE, and a member of the
ACM and IEICE.

