
Semantic Warnings and Feature Interaction in
Call Processing Language on Internet Telephony

Masahide Nakamura1, Pattara Leelaprute2, Ken’ichi Matsumoto1 and Tohru Kikuno2

1Graduate School of Information Science, Nara Institute of Science and Technorogy, Japan
fmasa-n, matumotog@is.aist-nara.ac.jp

2Graduate School of Information Science and Technology, Osaka University, Japan
fpattara, kikunog@ist.osaka-u.ac.jp

Abstract

The Call Processing Language (CPL in short, RFC2824)
is an XML-based language, which provides a flexible mean
to create end-user services in the Internet Telephony (VoIP).
However, the service description by non-experts does not
always guarantee reliable services, thus, could be a cause
of system faults.

This paper first proposes six classes of the semantic
warnings within the CPL scripts. For a given CPL script,
the semantic warnings identify the sources of ambiguities,
redundancies and inconsistencies, even though the script
is syntactically well-formed with respect to the Document
Type Definition.

Next, we address the problem of Feature Interaction (FI,
in short) between multiple CPL scripts, which is a kind of
inconsistent conflict between services. We characterize the
FIs as the semantic warnings over the multiple CPL scripts.
Then, we propose a new FI detection method to combine
the multiple CPL scripts and to detect script-to-script inter-
actions. We also discuss architecture to detect achieve the
run-time detection of FIs.

1 Introduction

As the Internet is widely spread in society, various ser-
vices are implemented and deployed on the Internet, such
as Video on Demand, e-learning, on-line banking and Web
services. Thus, the Internet services are now required to
be guaranteed-quality, despite the fact that the Internet is a
best-effort network.

Among various Internet services, this paper especially
focuses on the Internet telephony[7], which is also called
Voice over IP (VoIP, in short). The Internet telephony has
been widely studied and standardized at the protocol level
(i.e., H323[13] by ITU-T, SIP[8] by IETF). The concern is

recently shifting to the service level; how to provide sup-
plementary services (e.g., call forwarding, call screening,
voice mail, etc.) on the Internet telephony.

One of the major issues is the programmable service,
which allows users to define and create their own supple-
mentary services. The Call Processing Language [4, 5]
(CPL, in short), based on XML, is recommended as a ser-
vice description language in RFC2824 of the Internet En-
gineering Task Force (IETF) [4]. By just putting a CPL
script on a local VoIP server, a user can easily deploy a cus-
tom service. Thus, the programmable service significantly
improves range of user’s choice and flexibility in supple-
mentary services on the Internet telephony. Moreover, the
creation of the value-added services is also opened to third
parties.

There are, however, two major drawbacks of the pro-
grammable service with respect to reliability. The first thing
is reliability in each single service. The service description
by non-expert users cannot always achieve high quality. Al-
though the syntax of the CPL is defined by the Document
Type Definition (DTD), compliance with the DTD is not
a sufficient condition for correctness of a CPL script[5].
There are enough rooms for the non-expert users to make
semantical mistakes in the service logic, which could lead
to serious system down. As far as we know, there exists no
concrete guideline on how to create reliable services with
the CPL.

The second thing is reliability over multiple services.
Even if each single service works correctly, combined use
of multiple services results in unexpected behaviors against
user’s intension, due to functional conflicts between the ser-
vices. This is known as Feature Interaction (FI, in short).
The FI has been considered a major obstacle to the introduc-
tion of new features and the provision of reliable services.
Therefore, much research has been conducted to tackle this
problem (See survey [3] and books [11]). However, most
of the research focus on FIs in the conventional telephony.

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

There are few research to address FIs in the Internet tele-
phony. Lennox et al. address the problem of FIs in the
Internet telephony, and present a brief categorization of the
FI [4, 6]. However, no method to detect and resolve FIs
has been shown yet. Smirnov [9] defined FIs as network
resource conflicts in a programmable service environment.
However, it is primarily aimed at FIs among network com-
ponents, but not FIs among end-user services.

To cope with the above two drawbacks, this paper ad-
dresses two major issues: semantic warnings and Feature
Interaction in the context of the CPL programmable service.
Firstly, we propose six classes of the semantic warnings for
individual CPL scripts. As seen in many programming lan-
guages, the warnings are not necessarily errors. However,
they could cause ambiguity, redundancy and inconsistency,
which are often the major source of errors. We believe that
the proposed warnings will help users to improve the qual-
ity of the CPL scripts. Secondly, we define the FIs between
multiple scripts by using the semantic warnings for the sin-
gle script. The key idea is to characterize the FIs as the
semantic warnings over the multiple CPL scripts, each of
which is semantically valid. To achieve detection of the
FIs, we propose a combine operator, which merges multiple
CPL scripts into a single one. Then, we propose a new al-
gorithm to detect FIs among all scripts involved in a call at
run time.

2 Programmable services in the Internet tele-
phony

2.1 Call processing language (CPL)

The CPL is an XML-based language to allow end users
to describe and control their own signaling services. The
signaling services involve user location, call delivery, be-
havior when end systems are busy and the like, and are in-
dependent of a particular end system.

Just putting a service description in the CPL (called a
CPL script) on the local signaling server, a user can control
his/her incoming and outgoing calls passing through the sig-
naling server. The CPL is meant to be simple, extensible,
easily edited, and independent of operating system or sig-
naling protocol (e.g., H.323 or SIP). To prevent users from
executing complex operations and cracking, the CPL has no
variables, loops, or ability to run external programs.

First of all, we present a brief review of the CPL def-
inition. The full specification can be found in RFC 2824
[4]. A CPL scripts is composed of mainly four types of
constructors: top-level actions, switches, location modifiers
and signaling operations.

Top-level actions: There are four kinds of actions invoked
when a CPL script is executed: outgoing (or in-

coming) specifies a tree of actions taken on the
user’s outgoing call (or incoming call, respectively).
subaction describes a sub routine to increase re-
usability and modularity. ancillary provides addi-
tional information for a CPL extension.

Switches: Switches represent conditional branches in CPL
scripts. Depending on types of conditions spec-
ified, there are five types: address-switch,
string-switch, language-switch, time-
switch and priority-switch.

Location modifiers: The CPL has an abstract model,
called location set, for locations to which a call is to
be directed. The set of the locations is stored as an
implicit global variable during call processing action
by the CPL. For the outgoing call processing, the loca-
tion is initialized to the destination address of the call.
For the incoming call processing, the location set is
initialized to the empty set. During the execution, the
location set can be modified by three types of modi-
fiers: location adds an explicit location to the cur-
rent location set; lookup obtains locations from out-
side; remove-location removes some locations
from the current location set.

Signaling operations: Signaling operations trigger signal-
ing events in the underlying signaling protocol for
the current location set. There are three operations:
proxy forwards the call to the location set currently
specified; redirect prompts the calling party to
make another call to the current location set, then ter-
minates the call processing; reject causes the server
to reject the call attempt and then terminates the call
processing.

2.2 Describing services in CPL

Let us first describe a simple service, Originating Call
Screening (OCS, in short), with the CPL. Suppose the fol-
lowing situation: Alice (alice@instance.net) wants
to block any outgoing calls to Bob bob@home.org from
her end system. Figure 1 shows an implementation of Al-
ice’s script sa.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<outgoing>

<address-switch field="destination" >
<address is="sip:bob@home.org">

<reject status="reject"
reason="No call to Bob is permitted" />

</address>
</address-switch>

</outgoing>
</cpl>

Figure 1. A CPL script sa of OCS

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

example.com

chris@voicemail.
example.com

chris@office.example.com

bob@home.org

colleagues@example.com

client@instance.net

anonymous@crackers.org

anybody@somedomain.com
proxy

proxy
reject

redirect

Figure 2. Requirements for CCF

In Figure 1, the first two lines are for declaration of
XML and DTD (Document Type Definition). The tag
<cpl> means the start of a body of the CPL script. The
top-level action <outgoing> has subsequent actions ac-
tivated when Alice makes a call. Next, <address-
switch> specifies a conditional branch. In this exam-
ple, the condition is extracted from the destination ad-
dress of the call (field= "destination"). If the des-
tination address matches bob@home.org (<address
is= "bob@home.org">), the call is rejected (<re-
ject status... />). If it does not match, the call
will be proxied to the destination address (This is done by
default behavior of the CPL, although the proxy operation
is not explicitly specified. See Section 3.2).

The next example is a bit complicated, let it say
Conditional Call Filtering (CCF). Suppose a user Chris
(chris@example.com) and the following requirements,
which are also depicted in Figure 2.

� Chris wants to receive calls from
domain example.com at office
chris@office.example.com.

� Chris wants to reject any call from malicious crackers
belonging to crackers.org.

� Chris wants to redirect any call from clients within
instance.net to Bob’s home at bob@home.org.

� Chris want to proxy any other calls to his voice mail at
chris@voicemail.example.com.

Figure 3 shows an implementation of Chris’s script sc.
The portion surrounded by <subaction> </subac-
tion> defines a subaction, which is a sub-routine called
from the main-routine. <incoming> tag specifies actions
activated when Chris receives an incoming call.

Next, in <address-switch>, a condition for
the switch is extracted from the host address of the
caller (field= "origin" subfield=host). If
the host’s domain matches example.com (<address

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<subaction id="voicemail">

<location url="sip:chris@voicemail.example.com">
<proxy />

</location>
</subaction>

<incoming>
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:chris@office.example.com">

<proxy />
</location>

</address>
<address subdomain-of="crackers.org">
<reject status="reject"

reason="No call from this domain is permitted" />
</address>
<address subdomain-of="instance.net">

<location url="sip:bob@home.org">
<redirect />

</location>
</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 3. A CPL script sc of CCF

subdomain-of= "example.com">), then the loca-
tion is set to sip:chris@office.
example.com, and the call is proxied to his office
(<proxy />). If the domain matches crackers.org,
the call is rejected by <reject />. Else if the do-
main matches instance.net, the location is set to
bob@home.org. Then, the call is redirected to Bob
and the caller places a new call to Bob. Otherwise,
the subaction voicemail is called. In the subac-
tion voicemail, the location is set to the voicemail at
chris@voicemail.example.com, and then the call
is proxied there.

3 Semantic warnings for single CPL script

3.1 Proposed warnings

There are many ways to make a CPL script semantically
complex, ambiguous and inconsistent. Here we propose six
classes of semantic warnings, which capture the source of
the semantical flaws.

3.1.1 Multiple forwarding addresses (MF)

Definition: After multiple addresses are set by <loca-
tion> tags, <proxy> or <redirect> comes.

Effects: The CPL allows calls to be proxied (or redirected)
to multiple address locations by cascading <loca-
tion> tags. However, if the call is redirected to mul-
tiple locations, then the caller would confuse to which
address the next call should be placed. Or, if the call is

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

proxied, a race condition might occur depending on the
configuration of the proxied end systems. As a typical
example, if a user simultaneously sets the forwarding
address to his handy phone and voice mail that imme-
diately answers the call. Then the call never reaches
his handy phone.

3.1.2 Identical switches with the same parameters (IS)

Definition: After a switch tag with a parameter, the same
switch with the same parameter comes.

Effects: The CPL has no variables or no loop. So, a condi-
tion evaluated in the former switch tag never changes
in the latter switch tag. Hence, the conditional branch
specified in the latter switch is in vain, since the con-
dition must have been evaluated already. This would
increase the ambiguity of the CPL script.

Example CPL: Figure 4 shows an example. When a call
arrives the user, this script will check the originator’s
host name. If it matches home.org, the call will be
proxied to pattara@home.org. On the other hand,
the originator’s host name will be checked again if it
matches home.org or not. If yes, this script tries to
proxy the call to pattara@mobile.net. But in
fact this proxy is never executed. The second switch is
redundant and meaningless.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<incoming>
<address-switch field="origin" subfield="host">

<address subdomain-of="home.org">
<location url="sip:pattara@home.org">
<proxy />

</location>
</address>
<otherwise>

<address-switch field="origin" subfield="host">
<address subdomain-of="home.org">

<location url="sip:pattara@mobile.net">
<proxy />

</location>
</address>
<otherwise>

<location url="sip:pattara@office.com">
<proxy />

</location>
</otherwise>

</address-switch>
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 4. Example CPL script of IS

3.1.3 Call rejection in all paths (CR)

Definition: All execution paths terminate at <reject>.

Effects: No matter which path is selected, the call is re-
jected. No call processing is performed, and all ex-
ecuted actions and evaluated conditions are nullified.

This is not a problem only when the user wants to re-
ject all calls explicitly. However, complex conditional
branches and deeply nested tags will make this prob-
lem difficult to be found, on the contrary to user’s in-
tention.

3.1.4 Address set after address switch (AS)

Definition: When <address> and <otherwise> tags
are specified as outputs of <address-switch>, the
same address evaluated in the <address> is set in
the <otherwise> block.

Effects: The <otherwise> block is executed when the
current address does not match the one specified in
<address>. If the address is set as a new current ad-
dress in <otherwise> block, then a violation of the
conditional branch might occur. A typical example is
that, after screening a specific address by <address-
switch>, the call is proxied to the address, although
any call to the address must have been filtered.

Example CPL: Figure 5 shows an example. When the
user make an outgoing call, this script will check the
destination of the call. The call should be rejected if
the destination address is pattara@example.com,
according to the condition specified in <address>.
However, in the <otherwise> block, the call is
proxied to pattara@example.com, which must
have been rejected.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<outgoing>

<address-switch field="destination">
<address is="sip:pattara@example.com">

<reject status="reject"
reason="I don’t call Pattara" />

</address>
<otherwise>

<location url="sip:pattara@example.com">
<proxy/>

</location>
</otherwise>

</address-switch>
</outgoing>

</cpl>

Figure 5. Example CPL script of AS

3.1.5 Unused Subactions (US)

Definition: Subaction <subaction id= "foo" >
exists, but <subaction ref= "foo" > does
not.

Effects: The subaction is defined but not used. The de-
fined subaction is completely redundant, and should
be removed to decrease server’s overhead for parsing
the CPL script.

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

3.1.6 Overlapped Conditions in Switches (OS)

Definition: The condition is overlapped among the multi-
ple output tags of a switch.

Effects: According to the CPL specification, if there exist
multiple output tags for a switch, then the condition is
evaluated in the order the tags are presented, and the
first tag to match is taken. If the conditions specified
in the outputs are overlapped (or identical), then the
former tag is always taken. In extreme cases, the latter
tag is never executed, which is a redundant description.

Example CPL: Figure 6 shows an example. When a call
reaches the subscriber, this script will check the des-
tination of the call. If the destination’s address con-
tains pattara, the call will be proxied to his home
telephone address. However, if the destination’s ad-
dress is pattaraleelaprute, this script tries to
proxy the call to his mobile phone. But in fact, if
the proxy to pattara has already occurred, proxy to
pattaraleelaprute will never occur.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>

<incoming>
<address-switch field="destination" >
<address contains="pattara">
<location url="sip:pattara@home.example.com">

<proxy />
</location>

</address>
<address is="pattaraleelaprute">
<location url=

"sip:pattaraleelaprute@home.example.com">
<proxy />

</location>
</address>

</address-switch>
</incoming>

</cpl>

Figure 6. Example CPL script of OS

Note that the above six warnings can occur even if the
given CPL script is syntactically well-formed and valid (in
the sense of XML).

Definition (Semantically Safe): We say that a CPL script
is semantically safe iff the script is free from the semantic
warnings.

3.2 Default behaviors of CPL

When an execution of a CPL in a signaling server
reaches an unspecified condition or an empty signaling op-
eration, the execution follows the default behavior, implic-
itly determined by the server’s policy and/or the underlying
signaling protocol (See Section 11 of [4] for more details).
Here are some examples:

� If no signaling operation is reached in an outgoing ac-
tion, then the call should be proxied to the destination
of the call. If it is in the case of an incoming operation,
the server tries to connect the call to an end device of
the owner the script.

� If location modifier exists but no signaling operation is
specified, the call is proxied or redirect the call to the
location, based on the server’s standard policy.

These default behaviors can be simulated deterministi-
cally for each signaling server. So, even if a CPL execution
dares to take a default behavior due to absence of some in-
formation, we do not regard the absence as semantic warn-
ings.

Definition (Complete Script): We say that a CPL script
is complete iff all possible default behaviors are explicitly
specified in the script.

We assume that every CPL script on a signaling server can
be transformed into a completed script, using auxiliary in-
formation on the signaling server. The followings are guide-
lines to achieve the transformation.

(a) Make all conditional branches complementary. For in-
stance, <otherwise> block must be added to every
switch, if it is not present.

(b) Based on the server’s standard policy, add an appro-
priate signaling operation to every terminating node of
the script, if it is not explicitly specified.

As an example, consider again the CPL script in Figure 1.
This script is not complete, since there is no action speci-
fied when the destination address is not bob@home.org.
Based on the default behavior and the guidelines above, the
script can be transformed into a complete one as shown in
Figure 7. In the following sections, we assume that all given
scripts have been completed with appropriate transforma-
tion, unless especially specified.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<outgoing>

<address-switch field="destination" >
<address is="sip:bob@home.org">

<reject status="reject"
reason="No call to Bob is permitted" />

</address>
<otherwise>

<proxy />
</otherwise>

</address-switch>
</outgoing>

</cpl>

Figure 7. A complete CPL scriptsa of OCS

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

4 Feature Interactions in CPL scripts

4.1 Characterizing Feature Interactions by se-
mantic warnings

Even if each individual service works correctly, another
problem arises when multiple scripts are executed simulta-
neously, which is called Feature Interaction (FI, in short).

The FI can occur also in the Internet telephony[4, 6]. Es-
pecially for third parties operating the Internet telephony in
a business basis, it would be a serious obstacle. The FI in
the Internet telephony is not necessarily the same as the one
in the conventional telephony. In the programmable service
framework, the users can create, add, delete and modify
their custom services at any time. This means that it is im-
possible to enumerate all possible services. Therefore, we
cannot perform FI detection and resolution by off-line anal-
ysis. Also, the services are distributed in different servers.
This makes FI analysis more difficult and complex.

According to a categorization presented in [4], FIs dis-
cussed in this paper can be classified in script-to-script in-
teractions. We present an example of FI below.

Interaction between OCS & CCF: Let us recall two
services OCS and CCF in Section 2.2, imple-
mented as sa in Figure 7 and sc in Figure 3,
respectively. Now, consider a call scenario where
Alice (alice@instance.net) calls Chris
(chris@example.com). First, Alice’s script sa is
executed. Since Chris is not screened in sa, the call is
proxied to Chris. Next, Chris’s script sc is executed.
Since Alice belongs to a domain instance.net,
the call is redirected to Bob (bob@home.org). As
a result, Alice makes a call to Bob, although this call
must have been blocked in sa. Thus we can say that
sa and sc interact.

The situation in the above example is quite similar to
the semantic warning AS (See Section 3.1.4), although it
occurs within the combination of multiple scripts sa and
sc. Based on this observation, we try to define the FIs as
semantic warnings over multiple scripts. In order to reduce
the problem of FIs into the semantic warning, we need to
combine multiple scripts into a single script.

Let s and t be CPL scripts of a call originator and a call
terminator, respectively. We expand the incoming actions
of t (i.e. portion between <incoming> and </incom-
ing>), into the proxy operation of s.

Let us consider again the above example. In sa (in Figure
7), Alice’s call is proxied to Chris in <proxy /> tag. So,
actions performed next are Chris’s incoming actions in s c.
So, we replace the <proxy /> in sa with actions specified
in incoming block in sc, which yields a combined script as
shown in Figure 8.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<outgoing>
<address-switch field="destination" >
<address is="sip:bob@home.org">

<reject status="reject"
reason="No call to Bob is permitted" />

</address>
<otherwise>

<address-switch field="origin" subfield="host">
<address subdomain-of="example.com">
<location url="sip:chris@office.example.com">

<proxy />
</location>

</address>
<address subdomain-of="crackers.org">
<reject status="reject"
reason="No call from this domain is permitted" />
</address>
<address subdomain-of="instance.net">
<location url="sip:bob@home.org">

<redirect />
</location>

</address>
<otherwise>
<location url="sip:chris@voicemail.example.com">

<proxy />
</location>

</otherwise>
</address-switch>

</otherwise>
</address-switch>
</outgoing>

</cpl>

Figure 8. A combined CPL script of sa and sc

The individual scripts sa and sc are both semantically
safe. However, the combined script causes a semantic warn-
ing AS, since address bob@home.org evaluated in <ad-
dress> is set in otherwise block. This fact explains
the FI between sa and sc as a semantic warning.

Now we define a combine operator and FIs for a given
pair of scripts. In the following, let s and t be given com-
plete CPL scripts 1, and let c be a given call scenario. Be-
fore the composition, we eliminate any subaction <sub-
action id=foo> in s (or t), by expanding the subaction
in <sub ref=foo>.

Definition (Combine Operator): A combined script r =
s .c t is defined as a CPL script r obtained as follows: sub-
stitute <proxy> tag (node) in s that is executed in the call
scenario c with incoming actions of t.

Definition (Feature Interaction): We say that s and t in-
teract with respect to a call scenario c iff both s and t are
semantically safe, but s .c t is not semantically safe.

Note that the combine operator .c does not ruin the syn-
tax well-formedness of s and t. In the DTD of the CPL, both
<proxy> and the incoming actions are defined as nodes.
Therefore, substituting <proxy> with the incoming oper-
ations does not break the syntax structure of the DTD. Thus,
if both s and t are syntactically well-formed, then s .c t is
also well-formed.

1If not, transform them into completed ones.

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

s t

wr v

x

Figure 9. Multiple scripts involved in a call
scenario

4.2 Feature Interaction detection

In the previous subsection, we have defined FI between a
pair of scripts. However, a call scenario could involve more
than two scripts in general, because of successive redirect
and proxy operations.

Figure 9 shows an example of a call scenario where mul-
tiple scripts are successively executed. In the figure, a box
represents a CPL script. A solid arrow represents a proxy
operation between scripts, while a dotted arrow describes a
redirect operation. To identify FIs in this call scenario c,
we must check the semantic warnings for the following six
scripts 2: (1) s, (2) s .c t, (3) s .c r, (4) s .c r .c v, (5)
s .c r .c v .c w and (6) s .c r .c v .c x.

The problem is how to compute the set of scripts to be
checked, when a CPL script s of the originator and a call
scenario c are given. To implement our FI detection algo-
rithm, we first describe some definitions and assumptions.

A (complete) CPL script ends its execution always with
either a signaling operation or empty tag (in this case, the
default behavior connects the call to the end device). When
an execution of a CPL script is terminated, the following
information is supposed to be available.

Exit point: Where in the script is the execution termi-
nated?

Next address: Where is the call directed next?

Processing type: How is the call processed (proxied, redi-
rected, rejected or connected to end system)?

Note that values of the above items vary depending on
given call scenarios. More specifically, we assume that the
following functions are available at run time for a given
CPL script s and a call scenario c.

Definition (Functions): For a CPL scirpt s and a a call
scenario c, we define the following functions.

next(s; c): returns the next CPL script following s under
c, obtained based on the next address.

type(s; c): returns a processing type: proxy, redirect, re-
ject or end (for empty signaling operation).

2By definition, .c is associative, that is, (s .c r) .c v = s .c (r .c v)

scripts Succ(script s, scenario c) f
R = s;
if (type(s; c) == ’proxy’ && :is loop(next(s; c); c)) f

foreach t 2 Succ(next(s; c); c)
R = R [(s .c t);

g else if (type(s; c) == ’redirect’) f
R = R [Succ(next(s; c); c);

g
return(R);

g

Figure 10. Algorithm Succ(s,c) for computing
a set of scripts to be checked

is loop(s; c): returns true if s appears more than once in
c. It checks if the successive signaling operations form
a undesirable loop of the call legs 3.

For example, consider the CPL script sa in Figure
7. Under a call scenario c1 where Alice calls Bob,
then next(sa; c1) = none (since call is rejected), and
type(sa; c1) = reject. Next, if we suppose a call scenario
c2 where Alice calls Chris, then next(sa; c2) = sc, and
type(sa; c2) = proxy.

For just simplicity, we assume that each script has at
most one next script, that is, next(s; c) returns exactly one
script or empty. Also, we assume that the proxy and redirect
operations always succeed.

Now we present an algorithm to compute a set of com-
bined scripts that must be checked in the FI detection. Fig-
ure 10 shows a C-like pseudo code to compute the set R
of the scripts for a given originating script s and a call sce-
nario c. The algorithm Succ first puts the given script s it-
self in the set R. Next, if the processing type is proxy, Succ
combines s with its successive scripts, which are recursively
computed by setting the proxied script as the initial script,
and put them in R. If the processing type is redirect, Succ
recursively obtains a set of scripts starting with the redi-
rected script, and then puts them in R. Finally, Succ returns
the set R. For example, consider again a call scenario c in
Figure 9. Succ(s, c) computes the six combined scripts: (1)
s, (2) s .c t, (3) s .c r, (4) s .c r .c v, (5) s .c r .c v .c w

and (6) s .c r .c v .c x.
Finally, we are ready to present the FI detection algo-

rithm. We assume that each individual script is semantically
safe.

3In [5], this function is supposed to be available in underlying signaling
protocols.

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

FI detection algorithm :

Input: A CPL script s of a call originator, and a call
scenario c.

Output: FI occurs or not.

Procedure: Compute Succ(s,c), and check if each
script in Succ(s,c) is semantically safe. If all of
the scripts are semantically safe, return “FI does
not occur”. Otherwise, return “FI occur” with the
corresponding (combined) scripts.

5 Discussion

5.1 Limitation

In this paper, we have proposed six classes of the se-
mantic warnings first, then addressed the Feature Interac-
tion problem in CPL. However, there are possibilities that
other types of semantic warnings exist. We need to investi-
gate more case studies and some quantitative evaluation to
make it clear how much FIs can be covered by the proposed
six classes. Also, we have discussed the semantic warn-
ings and FIs only in the context of the CPL programmable
service in the Internet telephony. However, since the un-
derlying protocols (H.323 and SIP) provide interfaces for
the conventional telephone network, the FI problem must
be considered in the integrated network as well [14], i.e.,
FIs between the programmable services and the ready-made
services in conventional telephony. This is a very challeng-
ing issue and our future work.

5.2 Architecture for run-time FI detection

In order to perform a run-time FI detection within the
context of programmable service, we would need some spe-
cial architecture. A possible solution is to deploy an FI
server in the global network. Upon every call setup, sig-
naling servers involving the call upload the relevant CPL
scripts to the FI server. Then, the FI server performs ap-
propriate combine operations and then detects FIs in the
call. The overhead of the script uploading can be reduced if
users voluntarily registers their own scripts in a global ser-
vice repository of the FI server beforehand. To implement
the architecture, we have to, of course, tackle related issues
such as security, privacy and authentication.

Once an FI is found, some resolution schemes would be
necessary. However, as mentioned in Section 4.1, it is im-
possible to list all possible CPL scripts, due to the nature of
the programmable service. Thus, we cannot prepare resolu-
tion schemes that always work well. This is the point that
the conventional run-time approaches (e.g., [10]) cannot be
applied directly. As for the resolution of FIs, it would be
natural to prompt users to make decision on how the call
should be processed. The examination of the FI resolution
schemes is also our feature research.

References

[1] C. Cooper, “The Perl extension module XML::Parser”,
http://wwwx.netheaven.com/coopercc/xmlparser/intro.html

[2] E. Derksen, “Overview of libxml-enno”,
http://www.socsci.umn.edu/ssrf/doc/xml/enno-xml-docs/
users.erols.com/enno/xml/index.html

[3] D. Keck and P. Kuehn, “The feature interaction problem
in telecommunications systems: A survey,” IEEE Trans. on
Software Engineering, Vol.24, No.10, pp.779-796, 1998.

[4] J. Lennox and H. Schulzrinne, “Call processing lan-
guage framework and requirements,” Request for Com-
ments 2824, Internet Engineering Task Force,May 2000,
http://www.ietf.org/rfc/rfc2824.txt?number=2824

[5] J. Lennox and H. Schulzrinne, “CPL:A Language for User
Control of Internet Telephony Service”, Internet Engi-
neering Task Force, Jan 2002, http://www.ietf.org/internet-
drafts/draft-ietf-iptel-cpl-06.txt

[6] J. Lennox and H. Schulzrinne, “Feature Interaction in In-
ternet Telephony”, Proc. of Sixth Int’l. Workshop on Fea-
ture Interactions in Telecommunication Networks and Dis-
tributed Systems (FIW’00), pp.38-50, May. 2000.

[7] H. Schulzrinne and J. Rosenberg, “Internet Telephony: Ar-
chitecture and protocols - an IETF perspective,” Computer
Networks and ISDN Systems, vol.31, pp.237-255, Feb
1999.

[8] M. Handley, H. Schulzrinne, E. Schooler, and J.
Rosenberg, “SIP:session initiation protocol”, Request
for Comments 2543, Internet Engineering Task Force,
Feb 2002, http://www.ietf.org/internet-drafts/draft-ietf-sip-
rfc2543bis-09.txt

[9] M. Smirnov, “Programming Middle Boxes with Group
Event Notification Protocol”, Proceedings of the Seventh
IEEE International Workshop on Object-oriented Real-time
Dependable Systems (WORDS2002), pp. 198-205, Jan
2002.

[10] S. Tsang and E. H. Magill, “Learning to Detect and Avoid
Run-Time Feature Interactions in the Intelligent Network”,
IEEE Transactions on Software Engineering, Volume 24,
Number 10, Oct 1998.

[11] “Feature Interaction in Telecommunications”, Vol. I-VI, IOS
Press (1992-2000)

[12] ITU-T Recommendations Q.1200 Series: Intelligent Net-
work Capability Set 1, ITU-T (1990)

[13] ITU-T Recommendation H.323, “Packet-Based Multimedia
Communications Systems”, February 1998.

[14] JAIN initiative, “The JAINTM APIs: Inte-
grated Network APIs for the Java Platform”,
http://java.sun.com/products/jain/

Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03)
0-7695-1872-9/03 $17.00 © 2003 IEEE

