
Exploiting Self-Modification Mechanism for Program Protection

Yuichiro Kanzaki Akito Monden Masahide Nakamura Ken-ichi Matsumoto
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, 630-0192, JAPAN
{yuichi-k, akito-m, masa-n, matumoto}@is.aist-nara.ac.jp

Abstract

In this paper, we present a new method to protect soft-
ware against illegal acts of hacking. The key idea is to add a
mechanism of self-modifying codes to the original program,
so that the original program becomes hard to be analyzed.
In the binary program obtained by the proposed method,
the original code fragments we want to protect are camou-
flaged by dummy instructions. Then, the binary program
autonomously restores the original code fragments within
a certain period of execution, by replacing the dummy in-
structions with the original ones. Since the dummy instruc-
tions are completely different from the original ones, code
hacking fails if the dummy instructions are read as they
are. Moreover, the dummy instructions are scattered over
the program, therefore, they are hard to be identified. As a
result, the proposed method helps to construct highly invul-
nerable software without special hardware.

1 Introduction

Software cracking has posed a serious problem for copy-
right protection of the software. A typical scenario is that a
cracker analyzes a checking routine of copy protection, and
then modifies the program so that the routine is nullified.
Another scenario would be that, by analyzing a program of
a business rival, one steals ideas and methods in the pro-
gram. Crackers, who perform such illegitimate acts, have
been creating a serious threat to the software industry so
far.

In addition to the conventional stand-alone software, the
cracking can cause a significant loss to the latest networked
software technology. For example, [2] reports a risk of at-
tack from crackers on the latest digital contents distribution
system. Figure 1 shows an example of the system. The
server sends compressed and encrypted digital contents to
the client through the Internet. The client program that runs
on a user’s computer receives and saves encrypted data. The
data is decrypted and decompressed when the user plays a

Compression

Encryption

Transmission

Digital Contents

Reception

Decryption

Decompression

Internet

Server Client User

Figure 1. An example of digital contents dis-
tribution system

content. If a cracker succeeds in obtaining secret informa-
tion(such as secret keys, special algorithm of decryption)
by analyzing the decryption program, contents can be used
illegally without authentication. Thus, the necessity of pre-
venting acts of cracking is increasing, and the technology
of software protection is a pressing issue to many software
developers.

Binary Program

cmpl $12, %ebp
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax
movl $1, %esp
jmp L11

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

Shorter Assembly Program
Included Checking Routine

Assembly Program

Narrow the Range of
Analysis

Disassemble

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

Understand
Clues to Nullify the
Checking Routine

Figure 2. A scenario of obtaining clues to nul-
lify the password checking routine

It is difficult to clearly answer how software is cracked,

since there are many ways to crack software programs.
However, it is sure that a cracker has tounderstanda pro-
gram in order to obtain clues to crack programs success-
fully.

Figure 2 shows a scenario, where a cracker obtains clues
to nullify the password checking routine. First, the cracker
disassembles the binary program into an assembly program
to make it easy to understand. Then, the cracker often nar-
rows the range of analysis to reduce costs for understanding
the program, referring to resources of the program or some-
thing. Then, a program fragment containing the checking
routine is identified and understood by the cracker. As a re-
sult, the checking routine may be canceled or cropped, then
the program may be used illegally. As seen in this exam-
ple, whenever a program is cracked, there must be a process
where a cracker reads the program and tries to understand
the program for obtaining clues to crack.

An effective solution to protect software against illegal
acts of hacking is to increase costs for understanding the
program. In this paper, we present a new method to increase
the cost of understanding programs for protecting software.
The key idea is to add a self-modification mechanism to
the original program. By using the self-modification mech-
anism, we can camouflage the original instruction with a
dummy instruction. If a cracker reads the camouflaged part
as it is, he fails to understand the original instruction. We
believe that the program protected by our method is quite
hard to be understood, and that it is difficult for crackers
to cancel the protection, since the dummy instructions are
scattered over the program.

The rest of this paper is organized as follows: In Section
2, we review the related work. Section 3 describes the pro-
posed method with an example. In Section 4, we examine
how much overhead on the program size and the execution
time is imposed by the proposed method. Finally, Section 5
concludes the paper with discussion and future work.

2 Related Work

Many methods for protecting software have been pro-
posed so far. We categorize them into three types:program
obfuscation, program encryption, andprogram fragmenta-
tion. All methods aim to effectively increase cost for under-
standing the program.

Developers

Program easy to
understand

Input Output

Obfuscator
Users

Program hard to
understand

Figure 3. Program Obfuscation

Program obfuscation is to transform of a program into
another program that is harder to understand. The expres-
sions and procedures in the obfuscated program are much
more complex than original one.

Figure 3 shows a basic concept of program obfuscation.
When a developer inputs a program to an obfuscator, it
transforms the program into one that is functionally iden-
tical to the original one. But, the resulting program is much
more difficult for users to understand. A developer can re-
duce a risk of attack to his program by using an obfuscator.
However, it is not easy to implement an obfuscator that uni-
versally works well for any kind of attacks. Many different
approaches have been proposed. These include the use of
complicating control structures [13] [18], replacing a high-
level instruction with the combination of low-level instruc-
tions [17] , inserting dummy codes which does not affect the
result [6] [7], transforming the data structures [8], chang-
ing method names in a program [23], changing reference or
substitution of arrays and pointers [21] [24], etc.

Developers

Program easy to
understand

Input Output

Encryption
Tool Users

Program hard to
understand

Decoding
Module

Encrypted
Code

Figure 4. Program Encryption

Program encryption is a technique, which makes pro-
gram code harder to understand with encryption. Figure 4
shows a basic concept of program encryption. When a de-
veloper inputs a program to an encryption tool, he can ob-
tain an encrypted program. The encrypted program consists
of two parts: the encrypted code and (non-encrypted) de-
coding modules which decode the program at run-time. A
cracker is almost unable to understand the encrypted code.
However, there is a risk that protection can be canceled
easily by analyzing and modifying the decoding modules.
The concrete methods for program encryption have been
described in [1] [5] [10] [12] [14] [22], etc.

Developers

Program easy to
understand

Input Output

Fragmentation
Tool Users

Program hard to
understand

Controlling
Module

・・・・・・・・・・・・

Program Fragment

Figure 5. Program Fragmentation

Program fragmentation is a technique, which divides the
program into many fragments and controls the execution se-
quence of them. Figure 5 shows a basic concept of program

2

fragmentation. When a developer inputs a program to an
fragmentation tool, he can obtain a fragmented program.
The fragmented program consists of two parts: fragments
of the the original program and modules which control the
execution sequence of them at run-time. It is difficult to
understand the program for a cracker by reading the frag-
ments. However, there is a risk that protection can be nulli-
fied by cracking the module. The concrete methods for pro-
gram fragmentation have been described in [3] [4] [15] [20]
, etc.

These previous work are promising under some attack
models. However, we can say there is no conclusive
method , and problems about software cracking are increas-
ing [9][16][19]. Therefore, we propose a method based on
a new approach to improve the present circumstances.

3 Protecting software by replacing instruc-
tions at run-time

3.1 Key idea

The key idea of the proposed method is to adda self-
modification mechanismto the original program, to increase
the cost of understanding the original program. In the self-
modification mechanisms, an instructionp in the program
replaces another instructionq in the same program with a
different instructionr at run-time.

:

movb $0x03,L1

:

subl %edx,%eax

movl %eax,$ebx

L1:

addl (%ebp),%ebx

movl (%ebp),%eax

:

:

movb $0x03,L1

:

subl %edx,%eax

movl %eax,$ebx

L1:

addl (%ebp),%ebx

movl (%ebp),%eax

:

:

movb $0x03,L1

:

subl %edx,%eax

movl %eax,$ebx

L1:

xorlxorlxorlxorl (%(%(%(%ebp),%ebxebp),%ebxebp),%ebxebp),%ebx

movl (%ebp),%eax

:

self-modifying instruction p

overwritten with a
different instruction r

the target instruction q

self-modification

P.C.
P.C.

P.C.

Figure 6. Self-modification mechanism

Figure 6 shows assembly codes to demonstrate self-
modification 1 . P.C. represents a program counter. In
this example, instructions “movb $0x03,L1 ”, “ addl
(%ebp),%ebx ” and “xorl (%ebp),%ebx ” corre-
spond to the abovep, q and r, respectively. “addl
(%ebp),%ebx ” is a target instruction to be modified. This
is overwritten with “xorl (%ebp),%ebx ” at run-time
by executing “movb $0x03,L1 ”. Since the dummy in-
structions are completely different from the original ones,
code hacking fails if the dummy instructions are read as they
are.

1 All assembly codes appeared in this paper are written in AT&T syntax.

Our approach primarily consists of two parts: Firstly, we
camouflage many of the original instructions by dummy in-
structions. Secondly, to assure the correctness of the orig-
inal program, we add self-modifying instructions that re-
place the dummy instructions with the original ones within
a certain period of execution.

an instruction which is the
target of camouflage

a routine which writes the
original instruction at run-time

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

a routine which writes the
dummy instruction at run-time

Figure 7. Concept of a program obtained by
the proposed method

Figure 7 conceptually describes a program obtained by
the proposed method. Multiple instructions in the program
are selected as targets of camouflage(depicted by●). They
are overwritten with dummy instructions before execution.
In the program, there are routines which write the original
instruction at run-time(depicted by■) and there are also
routines that write back the dummy instructions(depicted by
▲). These pairs of routines are prepared exactly as many as
the targets of camouflage. The original instruction in each
target of camouflage is restored as the original instruction
during an interval from a routine■ to a routine▲.

Thus, by using the self-modification mechanism, we can
camouflagethe original instruction with a dummy instruc-
tion. If a cracker reads the camouflaged part as it is, he fails
to understand the original instruction. We believe that the
program protected by our method is quite hard to be under-
stood, and that it is difficult for crackers to cancel the pro-
tection, since the dummy instructions are scattered over the
program. The protection will be much more invulnerable
by using the proposed method together with other methods,
such as program obfuscation, program encryption, program
fragmentation.

3.2 Preliminary

Before explaining the proposed method, we give some
definitions related to the self-modifying program. Theorig-
inal codeO is an assembly program to be protected, which
is given by the user.

A target instructionis an (original) instruction inO that
the user wants to hide using the self-modification mecha-
nism. Since the user can specify multiple target instructions
to be camouflaged, lettargeti be thei-th target instruction.

3

For targeti, dummyi denotes adummy instruction
which overwritestargeti as its camouflage.

A restoring routineis a set of instructions which un-
camouflage an original target instruction hidden by a
dummy instruction. On the contrary, ahiding routineis a set
of instructions which camouflage a target instruction with a
dummy instruction. Specifically, a restoring routineRRi

is a set of instructions that replacedummyi with targeti at
run-time. On the other hand, a hiding routineHRi is a set of
instructions that replacetargeti with dummyi at run-time.

Our key idea can be explained as follows. First, the user
select a set of target instructionstargeti’s from O. For each
targeti, decide a certaindummyi, and overwritetargeti
with dummyi. Then, fordummyi, makeRRi and insert
it at some position inO, so thatRRi is executed before
dummyi. Similarly, makeHRi and insert it at some posi-
tion in O, so thatHRi is executed afterdummyi. By do-
ing this,targeti appears instantly within a period between
RRi andHRi. In any other periods,targeti is hidden by
dummyi.

A self-modifying codeM is the resulting program ob-
tained by applying the above procedure for alltargeti’s in
O. A camouflaged instructionis an instruction inM which
is modified bytargeti anddummyi.

For targeti, there are basically several ways to deter-
mine dummyi, RRi and HRi. The decision can be left
to the users, or can be implemented by a random selection
from appropriate candidates.

In the following subsections, we describe a systematic
method to construct the self-modifying codeM from a
given original codeO.

3.3 Outline of the proposed method

Figure 8 shows an outline of the proposed method. First,
a user (e.g. a program developer) who uses the proposed
system prepares an assembly program (original code)O
to be protected. This is normally obtained by compiling
a source program or by disassembling a binary program.
Then, the proposed system adds the self-modification mech-
anism to the assembly program, so that the original program
becomes hard to be analyzed. Finally, assembling an assem-
bly programM , which is the output of the system, the user
can obtain a self-modifying program in binary that is func-
tionally equivalent to the original one, but which is much
more complex for crackers to analyze.

The proposed system constructs a self-modifying pro-
gram by following six steps:

(Step 1) Determining the positions of adding routines and
an instruction which is the target of camouflage

(Step 2) Generating a dummy instruction to camouflage

(Step 3) Generating routines

(Step 4) Writing the dummy instruction and inserting the
routines

(Step 5) Complicating the inserted routines

(Step 6) Repeating previous steps and constructing the
self-modifying program

3.4 Procedure of constructing a self-
modifying program

(Step 1) Determining the positions of adding routines
and an instruction which is the target of camouflage

First, we determine the positions oftargeti, RRi andHRi.
Now we define thatP (targeti), P (RRi) andP (HRi) cor-
respond to the position of instructiontargeti, the position
of insertingRRi and the position of insertingHRi, respec-
tively.

First, P (targeti) is randomly selected by the system.
Then,P (RRi) andP (HRi) are determined that they will
satisfy the following three conditions, which are necessary
for a program not to cause malfunction by adding a self-
modifying function.

1. P (RRi) must exist on every control flow path from the
program entry to theP (targeti).

2. P (HRi) must not exist on every control flow path from
P (RRi) to P (targeti).

3. P (RRi) must exist on every control flow path from
P (HRi) to P (targeti).

Figure 9 illustrates an example of determining them with
a control flow graph of a program. There are basically sev-
eral candidates for the positions of the routines. The deci-
sion is normally by a random selection.

(Step 2) Generating a dummy instruction to camouflage

We generate a dummy instructiondummyi. Let us consider
the following construction astargeti.

(Hex Representation) 03 5D F4
(Assembly Representation)addl -12(%ebp),%ebx

Now, we want to decide a dummy instruction for this.
A dummy instruction is obtained by changing the content
of targeti, so that the operation code or the operand will
be different. As for a possible candidate, we choosexorl ,
which is changed first byte from “03” to “ 33” , as shown
below:

(Hex Representation) 33 5D F4
(Assembly Representation)xorl -12(%ebp),%ebx

4

Source Program

Original Code O
(In Assembly)

Proposed System

:
i = i + 1
if(i > 10) {

x = x + 1 ;
} else {

x = x – 1 ;
}

:

Compile

Input Output

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

Self-modifying Code M
(In Assembly)

:
movb 125,%eax

:
addl $16,%esp
or $123,%eax
jne L6
jmp L4
push %eax

:

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

Binary Program

Disassemble

Self-modifying
Binary Program

Assemble

Figure 8. An outline of the proposed method

P(targeti)
P(HRi)

start

end
P(RRi)
P(targeti)
P(HRi)

start

end
P(RRi)

Figure 9. Determining the positions of an in-
struction to be camouflaged and adding rou-
tines

(Step 3) Generating routines

We generate routines,RRi andHRi. Both of them are de-
scribed in assembly to be a part of the self-modifying code
M . The role ofRRi is to transformdummyi into targeti in
P (targeti) at run-time. In contrast,HRi replacestargeti
with dummyi in P (targeti) at run-time. We define rou-
tines which perform the above as the follows:

1. Insert a labelLi just before theP (targeti).

2. Create instruction(s) to write some bytes for turning
dummyiinto targeti with Li.

3. Create instruction(s) to write some bytes for turning
targetiinto dummyi with Li.

03 5D F4

addl -12(%ebp), %ebx

33 5D F4

xorl -12(%ebp), %ebx

targeti

RRi HRidummyi

Figure 10. Restoring and hiding routines

With the example in (Step 2), the roles ofRRi andHRi

are shown in Figure 10. Specifically,RRi is to change
the first byte of the instruction inP (targeti) from “33” to
“03”, andHRi is to change the first byte of the instruction
in P (targeti) from “03” to “ 33”.

5

When a labelL1 is inserted just before theP (targeti),
RRi can be generated as below:

movb $0x03,L1

This small assembler routine means that the first byte of
code where the labelL1 is pointing is overwritten with the
immediate value “03” in hex. When this routine runs, The
instruction inP (targeti) is set totargeti from dummyi.

In the same way asRRi, HRi can be generated as below:

movb $0x33,L1

When this routine runs, the instruction inP (targeti) is set
to dummyi from targeti.

(Step 4) Writing the dummy instruction and inserting
the routines

The dummy instructiondummyi, which was generated in
(Step 2), is overwritten toP (targeti) determined in (Step
1). Also, RRi and HRi, which were generated in (Step
3), are respectively inserted into positionsP (RRi) and
P (HRi), determined in (Step 1).

(Step 5) Complicating the inserted routines

Crackers may identify the inserted routines easily since both
of the routines are described so simply. Thus, it is desir-
able that the inserted routines are transformed so that they
become more complicated. The example of complicating
routines is described in subsection 3.5. Due to page limita-
tion, we omit the description of methods for complicating
routines in this paper.

(Step 6) Repeating previous steps and constructing the
self-modifying program

Repeat from (Step 1) to (Step 5). A user can decide the
number of repetition, according to the required protection
level. It is recommended that the number is not too small,
to achieve a certain level of the protection.

3.5 Example

In this subsection, we provide an example of construct-
ing a self-modifying program according to the procedure
described above. Here, we show from (Step 1) to (Step 5),
which is one cycle of construction. Now given that original
programO which is inputted to the system is such as shown
in Figure 11.

movl -8(%ebp), %eax
movb $0, (%eax)
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx
addl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
leal (%eax,%ebx), %edx
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

...
...

Figure 11. Original Assembly Program

movl -8(%ebp), %eax
movb $0, (%eax)
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx
addl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
leal (%eax,%ebx), %edx
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

...
...

P(targeti)
P(HRi)

P(RRi)

Figure 12. Determining the positions

6

(Step 1)

First,P (targeti) is randomly selected by the system. Now
given that “addl -12(%ebp),%eax ”, the instruction on
the ninth line from the bottom, is selected asP (targeti)
(See Figure 12). Next,P (RRi) and P (HRi) are deter-
mined. In this example, they were determined such as
shown in Figure 12.P (RRi) andP (HRi) satisfy the con-
ditions described in subsection 3.4.

(Step 2)

We generate a dummy instructiondummyi by changing
some bytes oftargeti, “addl -12(%ebp),%eax ”. In
this example, we generate “xorl -12(%ebp),%eax ”
as the dummy instructiondummyi, by the same way de-
scribed in subsection 3.4.

(Step 3)

We generate routinesRRi andHRi. First, a label “L1” is
inserted just before theP (targeti). Then,RRi is gener-
ated such as “movb $0x03,L1 ”, and HRi is generated
such as “movb $0x33,L1 ”, by the same way described
in subsection 3.4.

(Step 4)

Thedummyi (“xorl -12(%ebp),%eax ”) is written to
P (targeti), where “addl -12(%ebp),%eax ” is. And
the routines which were generated in (Step 3) are inserted
into the each positions. Figure 13 shows the program after
this step.

(Step 5)

We complicate the inserted routines,RRi andHRi. In this
example, we note that the inserted routines are easy to iden-
tify since both of the routines describe the position of the
target instruction in the same way. Thus, the routines are
changed so thatRRi andHRi use different labels(“A1” and
“A2”) to point at theP (targeti). Figure 14 shows the rou-
tines after this step. By this step, inserted routines and the
target instruction become hardly to identify.

4 Experiment

4.1 Overview of the experiment

In this section, we examine how much overhead on the
program size and the execution time is imposed by the pro-
posed method. We applied the proposed method togzip , a
well-known GNU utility for compressing and decompress-
ing files [11].

movl -8(%ebp), %eax
movb $0, (%eax)
movb $0x03, L1
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx

L1: xorl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
leal (%eax,%ebx), %edx
movb $0x33, L1
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

RRi

dummyi

HRi

...
...

Figure 13. Writing the dummy instruction and
inserting routines

movl -8(%ebp), %eax
movb $0, (%eax)
movl $A2, %eax
subl $13, %eax
movb $0x03, (%eax)
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx

A1: movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx
xorl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen

A2: leal (%eax,%ebx), %edx
movl $A1, %eax
addl $7, %eax
movb $0x33, (%eax)
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

...
...

RRi

dummyi

HRi

Figure 14. Complicated routines

7

We implemented a system based on the proposed
method. By using the system, we camouflaged instructions
in the program, and inserted restoring routines and hiding
routines togzip . Then, we measured the program size
and execution time with different number of camouflaged
instructions. The number of camouflaged instructions was
varied from 200 to 1000 with an interval of 200.

4.2 Size overhead

The graph in Figure 15 illustrates the impact of the self-
modification mechanism on program size. The horizon-
tal axis represents the number of camouflaged instructions,
while the vertical axes plot program size(depicted in a line)
and the proportion of the camouflaged instructions to the to-
tal instructions in the original program. By the proportion
of camouflaged instructions, we characterize thedegreeof
the camouflage in the program.

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Number of camouflaged instructions

P
r
o
g
r
a
m

s
i
z
e

[
K

b
y
t
e
]

0%

10%

20%

30%

40%

50%

P
r
o
p
o
r
t
i
o
n

o
f

c
a
m

o
u
f
l
a
g
e
d

i
n
s
t
r
u
c
t
i
o
n
s

Proportion of camouflaged instructions Program size

42

Figure 15. Impacts on program size

We can see, in this graph, that the program size in-
creases in proportion of the number of camouflaged in-
structions. This is because new instructions for hiding and
restoring routines are added when we camouflaged each in-
struction. Specifically, the program size increases about
4.2Kbyte as every 100 camouflaged instructions are embed-
ded. Even when the number of camouflaged instructions is
1000, where about 9% of the total instructions are camou-
flaged, the overhead in program size is as small as 42Kbyte.
Note that the overhead in program size imposed isindepen-
dentof the size of the original program, since the number of
instructions involved in the hiding/restoring routines do not
depend on the original program.

4.3 Performance overhead

Next, we measure the performance of the modified pro-
grams. In the experiment, we used a 1 Mbyte text file, and
measured the time taken for each (modified)gzip to com-
press the text file. Since the proposed system selects the
position of the hiding/restoring routines at random(see Sec-
tion 3), the execution time varies for every measurement.
Therefore, we measured the execution time ten times, and
calculated the average, minimum and maximum values.

Figure 16 illustrates the result on execution time. The
horizontal axis represents the number of camouflaged in-
structions, while the vertical axes show the execution time
(average drawn by a solid line, minimum and maximum de-
picted by dotted lines) and the proportion of the camou-
flaged instructions to the total instructions in the original
program.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 200 400 600 800 1000

Number of camouflaged instructions

P
r
o
g
r
a
m

e
x
e
c
u
t
i
o
n

t
i
m

e

[
s
e
c
o
n
d
s
]

0%

10%

20%

30%

40%

50%

P
r
o
p
o
r
t
i
o
n

o
f

c
a
m

o
u
f
l
a
g
e
d

i
n
s
t
r
u
c
t
i
o
n
s

Proportion of camouflaged instructions

Average of execution time

Minimum of execution time

Maximum of execution time

0.25

4.1

2.7

Figure 16. Impacts on program execution
time

The execution time increases in the number of cam-
ouflaged instructions. When 1000 instructions are cam-
ouflaged, the average execution time is about 4.1 sec-
onds, which is about 16 times as long as the original
(0.25 seconds). We consider that the overhead is caused
by the inserted hiding/restoring routines. Additionally, al-
though not investigated in much detail, we guess that the
self-modification mechanism imposes an extra overhead to
CPU, due to architectural issues such as incoherence of
cache memory, or failure of instruction pre-fetch.

From the lines of the minimum and the maximum, it
can be seen the execution time varies much. For example,
with 600 instructions camouflaged, the difference is 2.7 sec-
onds. This fact implies that there could be a way to improve

8

the program performance. For instance, if we carefully in-
sert the routines into positions that are not frequently exe-
cuted(e.g. outside loops), then the overhead caused by the
routines might be significantly reduced.

5 Discussion and concluding remarks

In this paper, we have presented a new method to pro-
tect software against illegal acts of hacking. The key idea
is to add a self-modification mechanism to the original pro-
gram, to increase the cost of understanding the original pro-
gram. We believe that the program protected by our method
is quite hard to be understood, and that it is difficult for
crackers to cancel the protection, since the dummy instruc-
tions are scattered over the program.

We have also implemented a system that automates the
construction of self-modifying programs. It can be seen in
the experiment that the more we camouflage the instruc-
tions, the more expensive the program overhead becomes.
That is, the more protected program suffers from the more
overhead, which is clearly a trade-off relation.

As seen in the experiment, the self-modification mecha-
nism seems to impose a significant performance overhead
compared with the size overhead. Therefore, too much
camouflage should not be applied to such programs that re-
quire high performance or real-time properties. On the other
hand, programs that can sacrifice (a certain extent of) per-
formance but requires a strong protection have a benefit of
the high degree of camouflage. Thus, the proposed method
should be applied with a careful consideration on the target
program itself and the objective of the protection. Specifi-
cally, a user of the proposed method should adjust the num-
ber of the camouflaged instructions, according to the level
of required protection.

Finally, we summarize our future work. We need to in-
vestigate the reason why the performance overhead was so
expensive for the size overhead. For this, we plan to develop
a cleverer algorithm to determine the insertion points of hid-
ing/restoring routines. Also, we conduct experiments with
more programs, to find a reasonable application domain of
the the proposed method.

References

[1] Albert, D. J. and Morse, S. P., “Combating software
piracy by encryption and key management,”IEEE
Computer, pp.68-73, April 1984.

[2] Anazawa, T., “Mobile Music Distribution and its Se-
curity Protection,” ,IEICE(The Institute of Electron-
ics,Information and Communication Engineers) Office
System Workshop, pp.3-12, May 2001. (in Japanese)

[3] Aucsmith, D. W., “Tamper Resistant Software: An
Implementation,” In R. J. Anderson ed.Information
Hiding Workshop, Lecture Notes in Computer Sci-
ence, Vol. 1174, pp.317-333, 1996.

[4] Aucsmith, D. W. and Graunke, G. L., “Tamper resis-
tant methods and apparatus,”United States Patent, No.
5,892,899, Assignee: Intel Corporation, Apr. 1999.

[5] Best, R. M. , “Crypto microprocessor for execut-
ing enciphered programs,”United States Patent, No.
4,278,837, July 1981.

[6] Collberg, C., Thomborson, C. and Low, D., “A tax-
onomy of obfuscating transformations,”Technical Re-
port of Dept. of Computer Science, U. of Auckland,
No.148, New Zealand, 1997.

[7] Collberg, C., Thomborson, C. and Low, D., “Man-
ufacturing Cheap, Resilient, and Stealthy Opaque
Constructs,”ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages(POPL98), San
Diego, California, 1998.

[8] Collberg, C., Thomborson, C. and Low, D., “Break-
ing Abstractions and Unstructuring Data Structures,”
IEEE International Conference on Computer Lan-
guages(ICCL’98), Chicago, IL, May 1998.

[9] Collberg, C. and Thomborson, C., “Watermarking,
Tamper-Proofing, and Obfuscation – Tools for Soft-
ware Protection,”IEEE Transactions on Software En-
gineering, Vol.28, No.6, pp.735-746, Aug. 2002.

[10] Drake, C. N., “Computer software authentication, pro-
tection, and security system,”United States Patent,
No. 6,006,328, Dec. 1999.

[11] Gailly, J. and Adler, M., “The gzip home page,”
http://www.gzip.org/.

[12] Hampson, B. E. , “Digital computer system for ex-
ecuting encrypted programs,”United States Patent,
No. 4,847,902, Assignee: Prime Computer, Inc., July
1989.

[13] Hohl, F., “Time limited blackbox security: Protecting
mobile agents from malicious hosts,” InG. Vigna ed.
Mobile Agents Security, Lecture Notes in Computer
Science, Vol. 1419, pp.92-113, Springer-Verlag, 1998.

[14] Ishima, H., Saitoh, K., Kamei, M., Shin, K., “Tamper
Resistant Technology for Software,”Fuji Xerox Tech-
nical Report, No.13, pp.20-28, 2000. (in Japanese)

9

[15] Kamoshida, A., Matsumoto, T., Inoue, S., “On
Constructing Tamper Resistant Software,”Tech-
nical Report of IEICE (The Institute of Elec-
tronics,Information and Communication Engineers),
Vol.97, No.461, pp.69-78, 1997. (in Japanese)

[16] Kanzaki, Y., Monden, A., Nakamura, M., Matsumoto,
K., “Protecting Software Programs by Replacing In-
structions at Run-time,”Technical Report of IEICE
(The Institute of Electronics,Information and Commu-
nication Engineers), Vol.102, No.511, pp.13-19, Dec.
2002. (in Japanese)

[17] Mambo, M., Murayama, T. and Okamoto, E., “A ten-
tative approach to constructing tamper-resistant soft-
ware,” In Proc. New Security Paradigm Workshop,
Cumbia, UK, 1997.

[18] Monden, A., Takada, Y., Torii, K., “Methods
for Scrambling Programs Containing Loops,”The
Transactions of the IEICE (The Institute of Elec-
tronics,Information and Communication Engineers),
Vol.J80-D-I, No.7, pp.644-652, July 1997. (in
Japanese)

[19] Monden, A. and Kanzaki, Y., “Program, apparatus and
method for adding self-modifying code,”Japan Patent
Pending, 2002-355881, Dec. 2002. (in Japanese)

[20] Nardone, J. M. , Mangold, R.P., Pfotenhauer, J. L.,
Shippy, K. L., Aucsmith, D. W. ,Maliszewski, R. L.
and Graunke, G. L., “Tamper resistant methods and
apparatus,”United States Patent, No. 6,178,509, As-
signee: Intel Corporation, Jan. 2001.

[21] Ogiso, T., Sakabe, Y., Soshi, M. and Miyaji, A., “Soft-
ware tamper resistance based on the difficulty of inter-
procedural analysis,” InProc. International Workshop
on Information Security Applications (WISA2002), pp.
437-452, August 2002.

[22] Paulini, W. and Wessel, D., “Process for securing
and for checking the integrity of the secured pro-
grams,” United States Patent, No. 5,224,160, As-
signee: Siemens Nixdorf Informations system AG,
June 1993.

[23] Tyma, P. M., “Method for renaming identifiers of
a computer program,”United States Patent, No.
6,102,966, Assignee: PreEmptive Solutions, Inc.,
Aug. 2000.

[24] Wang, C., Hill, J., Knight, J. and Davidson, J., “Soft-
ware tamper resistance: Obfuscating static analysis
of programs,”Technical Report SC-2000-12, Depart-
ment of Computer Science, University of Virginia,
Dec. 2000.

10

