
INTRODUCING DYNAMIC NAME RESOLUTION MECHANISM FOR
OBFUSCATING SYSTEM-DEFINED NAMES IN PROGRAMS

Haruaki Tamada† Masahide Nakamura‡ Akito Monden† Ken-ichi Matsumoto†

†Graduate School of Information and Science,
Nara Institute of Science and Technology,

Ikoma-shi, Nara, Japan,
email: {harua-t, akito-m, matumoto}@is.naist.jp

‡Graduate School of Engineering,
Kobe University,

Kobe-shi, Hyogo, Japan,
email: masa-n@cs.kobe-u.ac.jp

ABSTRACT
Name obfuscation is a software protection technique,

which renames identifiers in a given program, to protect
the program from illegal cracking. The conventional meth-
ods replace names appearing in the declaration part with
the meaningless ones. Therefore, the methods cannot be
used to obfuscate names declared in system libraries, since
changing such system-defined names significantly dete-
riorates the program portability. This paper presents a
new name obfuscation method, which can hide appear-
ance of the system-defined names. In the proposed method,
the system-defined names are statically encrypted, and the
original names are resolved during run time using the re-
flection. An experimental evaluation on the Java platform
showed that the run-time overhead for the obfuscated pro-
gram was 1.74 times larger than the one for the original.

KEY WORDS
copyright issue, obfuscation, reflection, program transfor-
mation

1 Introduction

A lot of incidents of software cracking have been reported
in the whole world. From the viewpoint of protecting intel-
lectual properties, the software cracking gives serious dam-
ages to the software industries.

The program obfuscation [1, 3, 12] is a technique to
protect the program from the cracking. Intuitively, the ob-
fuscation is to convert a given program p to a function-
ally equivalent one p′ that is quite difficult to be analyzed.
Many obfuscation methods have been proposed so far to
obfuscate different aspects of the program, e.g., control
flows, data flows, program layouts, names, etc. In this pa-
per, we especially focus on the name obfuscation, which
hides meaningful names in the program.

The names in a program (i.e., identifiers) are typi-
cal clues for the cracking, since a name usually charac-
terizes a feature of the program [2]. For example, a pro-
gram module that authenticates users may have a method
named authenticate. An adversary who wants to nul-
lify the authentication would first search the program by
the string authenticate. Then, he or she would start

detailed analysis around the matched portion. The goal of
the name obfuscation is to hinder the adversary from ana-
lyzing and understanding the program based on the names.

The previous name obfuscation methods [1, 12] stat-
ically modify names in the program. That is, the methods
replace every name appearing in the declaration part with a
meaningless one, which can hide any user-defined names.
However, the previous methods cannot obfuscate the use of
system-defined names (e.g., System.out.println()
of Java), which are usually declared in system or third
party’s libraries. This is because changing such system-
defined names significantly deteriorates the program porta-
bility.

In this paper, we propose a new method that can hide
the use of any system-defined names in an object-oriented
program. Our key idea is to introduce a mechanism called
dynamic name resolution (DNR, for short). Specifically,
we first encrypt system-defined names in a program. Then,
during runtime, for every reference of the encrypted name,
the DNR first decrypts it to the original name, then re-
solves the name and execute an appropriate action using
the reflection mechanism. We propose the DNR that can
resolve system-defined names appearing as; (a) references
of classes, (b) invocation of methods, (c) references and
assignments of the field variables.

We have implemented the proposed method for the
Java platform, and conducted a case study. It was shown
that the run-time overhead for the obfuscated program was
1.74 times larger than the one for the original.

2 Preliminary

2.1 Program Obfuscation

This section formulates the notion of program obfuscation.
We start with the definition of the program understanding,
since the obfuscation prevents crackers from understanding
the program.

Definition 1 (Program understanding) Let p be a given
program, and X be a given a set of information included in
p. When a user can extract X from p by a certain method,
then we define that the user has understood p about X . For
this, we denote a cost of the understanding as cost(p,X) in
an abstract manner.

598-074 125

Proceedings of the IASTED International Conference
SOFTWARE ENGINEERING
February 12-14, 2008, Innsbruck, Austria
ISBN Hardcopy: 978-0-88986-715-4 / CD: 978-0-88986-716-1

1: import javax.swing.*;
2: import javax.swing.event.*;
3: public class PlainWebBrowser extends JFrame
4: implements HyperlinkListener{
5: private JEditorPane renderArea = new JEditorPane();
6: public PlainWebBrowser(java.net.URL location){
7: setLayout(new java.awt.BorderLayout());
8: add(new JScrollPane(renderArea), java.awt.BorderLayout.CENTER);
9: renderArea.addHyperlinkListener(this);

10: renderArea.setEditable(false);
11: setDefaultCloseOperation(DISPOSE_ON_CLOSE);
12: setSize(400, 600);
13: setVisible(true);
14: setPage(location);
15: }
16: public void hyperlinkUpdate(HyperlinkEvent event){
17: if(event.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
18: setPage(event.getURL());
19: }
20: private void setPage(java.net.URL newLocation){
21: try{ renderArea.setPage(newLocation); }
22: catch(Exception exception){
23: JOptionPane.showMessageDialog(this, exception.getMessage());
24: }
25: }
26: public static void main(String[] args) throws Exception{
27: new PlainWebBrowser(new java.net.URL(args[0]));
28: }
29: }

Figure 1. Sample program (a simple web browser)

The cost would be characterized by, for example, the
time taken for the analysis, efforts, the necessary knowl-
edge, devices, etc. Then, we give a general definition of
the program obfuscation.

Definition 2 (Program obfuscation) Let p be a given pro-
gram, X be a given a set of information of p, and IOp :
I → O be a input/output mapping of p. Let I be the all of
input set, and O be the all of output set. Then, the obfus-
cation of p with respect to X is to translate p into p′ with a
certain method T (i.e., p′ = T (p)), such that

Condition 1 IOp = IOp′

Condition 2 cost(p,X) < cost(p′, X)

Condition 1 means to keep input/output mapping be-
fore and after the obfuscation. This means that the obfusca-
tion must preserve the external specification of target pro-
gram. Condition 2 means that understanding p′ is signifi-
cantly more difficult than understanding p.

2.2 Name Obfuscation

A name obfuscation of a program replaces each name (i.e.,
identifier) in the program with another, to hide any infor-
mation reasoned from the name. Note that changing names
provides no effect for the program execution, since names
in a program are just identifiers for the computer.

Definition 3 (Name obfuscation) Let p be a given pro-
gram, Up be a set of all names appeared in p, and Np(⊂ Up)
be a set of names, which are target of the obfuscation. A
name obfuscation of p is to change each name n ∈ Np in
p to other name n′(= T (n)) and to obtain a obfuscated
program p′, where T is one-to-one mapping (T : Np →
Np′(Np′ ⊂ Up′))

If p is an object-oriented program, a name appears
as a class name, a method name, a field name, or a local
variable name. Also, every name appears in its definition
part (declaration) and its use part (reference).

1: import javax.swing.*;
2: import javax.swing.event.*;
3: public class a extends JFrame
4: implements HyperlinkListener{
5: private JEditorPane b = new JEditorPane();
6: public a(java.net.URL c){
7: setLayout(new java.awt.BorderLayout());
8: add(new JScrollPane(b), java.awt.BorderLayout.CENTER);
9: renderArea.addHyperlinkListener(this);

10: renderArea.setEditable(false);
11: setDefaultCloseOperation(DISPOSE_ON_CLOSE);
12: setSize(400, 600);
13: setVisible(true);
14: c(d);
15: }
16: public void hyperlinkUpdate(HyperlinkEvent e){
17: if(e.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
18: c(e.getURL());
19: }
20: private void c(java.net.URL f){
21: try{ b.setPage(f); }
22: catch(Exception g){
23: JOptionPane.showMessageDialog(this, g.getMessage());
24: }
25: }
26: public static void main(String[] h) throws Exception{
27: new a(new java.net.URL(h[0]));
28: }
29: }

Figure 2. Obfuscated program by the conventional method
(Fig.1)

2.3 Previous Name Obfuscation

The previous name obfuscation methods [1, 3] statically
change names that are declared in the definition part into
other strings.

Previous Name Obfuscation Procedure

Input: Program p, and a set of names Np

Output: Obfuscated program p′

Procedure: For each name n ∈ Np, operating following
steps. Let p′ be a resultant program.

Step 1: For each name n ∈ Np, replace n in defini-
tion part of p to other name n′.

Step 2: Replace n in use part of p to n′ obtained at
Step 1.

As for the input Np, the previous method accepts any
names which are defined by the user (developer of p). For
instance, let us obfuscate a program shown in in Fig. 1
with the conventional method. The obfuscated example is
shown in Fig. 2. In this example, we replaced the names as
follows:

T(PlainWebBrowswer) = a;
T(renderArea) = b;
T(setPage) = c;
T(location) = d;
T(renderArea) = b;
T(event) = e;
T(newLocation) = f;
T(exception) = g;
T(args) = h;

The previous method is easy to be implemented, and
it has little performance degradation. Thus, it is sup-
ported by many obfuscation tools, including Dash-O[6] and

126

ZKM[13] for the Java language, and Dotfuscator[7] for
.Net framework.

Note, however, that we could not obfus-
cate names such as setLayout, setSize,
javax.swing.event.HyperlinkListener,
javax.swing.JFrame,
java.awt.BorderLayout, since those names
are defined in Java SE[9] and should not be changed to
maintain the portability. If we replace those names to other
meaningless names, the program will fail to be compiled
in another environment. Thus, the previous method cannot
hide such system-defined names.

3 The Proposed Method

3.1 Key Idea

In order to obfuscate the use of system-defined names, we
propose to introduce a specific mechanism, called dynamic
name resolution (DNR, for short), in the program. Specif-
ically, we first encrypt every system-defined name before-
hand, while the DNR decrypts and resolves the name dur-
ing runtime.

To achieve this, the proposed method extensively uses
the reflection of the object-oriented language. In most pro-
gramming languages, all names must be statically resolved
in the compilation time. However, using the reflection,
we can create and operate an object dynamically from a
given string literal during runtime. Typically, the reflection
is used in meta-programming, such as implementation of
plug-in architecture and acquisition of runtime information
of the program itself. The proposed method uses reflection
for implementing the DNR.

3.2 Dynamic Name Resolution (DNR)

The dynamic name resolution (DNR) is to resolve a name
from a given string literal at runtime. For each system-
defined name in a program, we encrypt the name into a
string literal beforehand. During runtime, for each appear-
ance of the encrypted string literal, the DNR decrypts the
string, and restores the original operation from the string
using the reflection.

Note that we obfuscate the system-defined names ap-
pearing in the use part only, since the names in the decla-
ration part must not be changed for the portability. Thus,
each name appears as (a) a class name in the object instanti-
ation, (b) a method name (with a class name) in the method
invocation, or (c) a field name (with a class name) in the
field reference/assignment.

Due to the limited space, we describe the procedure of
the DNR for resolving the above (b) method name only. Let
nm be a system-defined method name, and nc be a system-
defined class name in which nm is defined. Then, let n′

c

and n′
m be encrypted names of nc and nm using a certain

encryption method E (i.e., n′
c = E(nc), nm = E(nm)).

Then, the procedure for resolving n′
c.n

′
m() is defined as the

following routine resolveMethod(n′
c, n′

m).

1: import javax.lang.reflect.*;
2: import javax.swing.*;
3: import javax.swing.event.*;
4: public class PlainWebBrowser extends JFrame
5: implements HyperlinkListener{
6: private JEditorPane renderArea;
7: public PlainWebBrowser(java.net.URL location){
8: // resolveClass("javax.swing.JEditorPane");
9: Class c1 = Class.forName(decrypt("kbwb/txjoh/KFeupsQbof"));

10: Object o1 = c1.newInstance();
11:
12: // resolveField("PlainWebBrowser", "renderArea");
13: Class c2 = Class.forName(decrypt("QmbjoXfcCspxtfs"));
14: Field f2 = c2.getField(decrypt("sfoefsBsfb"));
15: f2.set(this, o1);
16:
17: // resolveClass("java.awt.BorderLayout")
18: Class c3 = Class.forName(decrypt("kbwb/bxu/CpsefsMbzpvu"));
19: Object o3 = c1.newInstance();
20:
21: // resolveMethod("javax.swing.JFrame", "setLayout")
22: Class c4 = Class.forName(decrypt("kbwb/txjoh/KGsbnf"));
23: Method m4 = c4.getMethod(decrypt("tfuMbzpvu"));
24: m4.invoke(this, new Object[] o3,);

:

Figure 3. Proposed name obfuscation with dynamic name
resolution

DNR resolveMethod(n′
c, n′

m)

Step 1: Decrypt n′
c and obtain the original name nc.

Step 2: Using the reflection, obtain a class c whose name
is nc.

Step 3: Obtain a set Mc of methods defined in c with the
reflection.

Step 4: Decrypt n′
m and obtain the original name nm.

Step 5: From Mc, obtain a method m whose name is nm.

Step 6: Invoke the method m.

Similarly, we can define the resolution proce-
dure resolveClass(n′

c) for the (a) class name nc, and
resolveField(n′

c, n′
f) for the (c) field name.

3.3 A Name Obfuscation Method with DNR

The proposed obfuscation method is as follows. We assume
that the target program p is completely tested and has no
bugs. Also, we assume that Np can contain the system-
defined names.

Procedure of Proposed Name Obfuscation Method

Input: a program p, and a set of names Np.

Output: an obfuscated program p′.

Procedure: Apply following steps to program p and let the
resultant program be p′.

Step 1: Encrypt each name n ∈ Np with an some encryp-
tion method E, and let n′ = E(n).

Step 2: For each n ∈ Np, modify the use part un of n in
p, as follows:

(a) if n appears as a class name nc, then replace un

with resolveClass(n′
c).

127

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0
%

2
5
%
(1
)

2
5
%
(2
)

2
5
%
(3
)

2
5
%
(4
)

2
5
%
(5
)

5
0
%
(1
)

5
0
%
(2
)

5
0
%
(3
)

5
0
%
(4
)

5
0
%
(5
)

7
5
%
(1
)

7
5
%
(2
)

7
5
%
(3
)

7
5
%
(4
)

7
5
%
(5
)

1
0
0
%

Obfuscation Ratio

T
o
ta
l
n
u
m
b
e
r
o
f
D
N
R

a

1500

1650

1800

1950

2100

2250

2400

2550

2700

2850

3000

E
x
e
c
u
ti
o
n
 t
im
e
 (
m
se
c
)

 a

Figure 5. Execution time and the # of DNR

(b) if n appears as a method name nm of class nc,
then replace un with resolveMethod(n′

m, n′
c).

(c) if n appears as a field name nf of class nc, then
replace un with resolveField(n′

f , n′
c).

Figure 3 shows an example of the proposed ob-
fuscation method in the Java language. In this figure,
object instantiations (javax.swing.JEditorPane,
java.awt.BorderLayout), field assignments
(renderArea), and a method call (setLayout)
in Fig. 1 are obfuscated. Just for simplicity, we
chose the Caesar’s cipher with key 1 as the encryp-
tion method E. The decrypt method in Fig. 3
represents a decrypt routine. We can see that all
the system-define names (javax.swing.JFrame,
javax.swing.event.HyperlinkListener,
renderArea, java.net.URL, and location)
appearing in the use part are successfully encrypted.

Let us look at the details in the last block in
Fig.3, which implements a DNR routine resolveMethod for
setLayout method in javax.swing.JFrame class.
In the Java language, java.lang.Class reflects in-
formation of a class. A certain class can be obtained
by giving class name string to forName method defined
in java.lang.Class. Also, java.lang.reflect
package have classes which reflect information of meth-
ods and fields. By using those classes, we can ob-
tain the information of methods, fields and classes. In
this example, encrypted string “kbwb/txjoh/KGsbnf” is
decrypted to “java.swing.JFrame” and an instance of
java.lang.Class is obtained by decrypted string.
Then, “tfuMbzpvu” is also decrypted and “setLayout”
method object is obtained. Finally, the setLayout
method is invoked at line 24 by DNR.

4 Case Study

4.1 Tool and Obfuscation Sample

We have developed a tool of the proposed method on
Java 5 platform[11]. The tool has been implemented with
ASM 2.2.3, Java bytecode manipulation framework[5].

Table 1. Time taken for execution (msec)

Average Minimum Maximum File size
(msec) (msec) (msec) (byte)

0% 1640.9 1589 1700 259,533

25%

1 2208.7 2160 2268 270,617
2 2207.8 2103 2329 275,579
3 2288.8 2228 2343 278,329
4 2138.3 2111 2176 290,565
5 2224.2 2191 2259 279,167

50%

1 2223.9 2123 2313 326,644
2 2378.7 2336 2483 346,557
3 2592.8 2548 2628 333,789
4 2373.4 2336 2406 304,264
5 2415.1 2316 2477 353,821

75%

1 2688 2647 2769 364,170
2 2477.3 2457 2491 366,415
3 2653.2 2567 2716 359,315
4 2557.3 2459 2624 381,813
5 2607.4 2558 2653 360,464

100% 2859.9 2748 2917 412,347

The main features of the tools are; (a) obfuscating di-
rectly Java class files (without source code), (b) support
several encryption methods, and (c) introducing a helper
class, DynamicCaller, for unifying resolveClass, re-
solveMethod, and resolveField DNR routines (its methods
newInstance(), invoke(), invokeStatic(),
setField(), getField(), setStatic(), and
getStatic() corresponds the routines respectively).

Figure 4 shows a program obtained by applying the
proposed method to the program in Fig. 1. In this example,
the 56 bit DES [4] with the key ”0xb097f88f0bbc73b5” is
chosen. In the figure, we can see that all of method names
and field names defined in Java SE are encrypted.

4.2 Obfuscation Overhead

We have conducted an experiment to evaluate the overhead
of the proposed method. We applied an encryption method
56 bit DES. The experimental platform is Windows Vista
Ultimate, Intel Core 2 1.86GHz, 2046M RAM, and Java 5
(jdk1.5.0 12). We evaluate a overhead of programs by the
ratio of the number of obfuscated classes.

As for the target program, we chose SwingSet2 [10]
of jdk1.5.0 12. SwingSet2 is a demo program of Java
swing package and contains 138 classes. In the experiment,
we randomly chose some classes of the 0%, 25%, 50%,
75% and 100% among all classes in SwingSet2.jar,
and obfuscated them. Then, 5 sets of obfuscated classes
were created in each percentage category (excluding 0%
and 100%). For each set, we measured the execution time
10 times taken for each class to complete the loading.

The results are shown in Table 1 and Table 2. Table
1 shows the execution time of the average, the maximum,
and the minimum of the obfuscated program, and the sum
of class file size. Table 2 shows how many times the DNR
is called by each routine. Also, the relation between exe-
cution overhead and the number of DNR calls is shown in
Fig. 5. In Fig. 5, the execution overhead is represented

128

1:public class PlainWebBrowser extends javax.swing.JFrame implements javax.swing.event.HyperlinkListener{
2: public Object renderArea;
3: public PlainWebBrowser(java.net.URL url){
4: Object o1 = DynamicCaller.newInstance(new Object[0], "a66297a550249aaf06684d0828c6f38b3510f3937c8973f6");
5: DynamicCaller.setField(this, o1, "2f1f9f0d17a287c1768c86f425205076", "cb4ae31a9d00d7f33f7fa28a1da39c7b");
6: Object o2 = DynamicCaller.newInstance(new Object[0], "322b5e6093539e2def5e1d91ed5673efed3193d71365bf79");
7: DynamicCaller.invoke(this, new Object[] { o2, }, "2f1f9f0d17a287c1768c86f425205076", "b090a73d53b053465c0b836b0de958bc");
8: Object o3 DynamicCaller.getField(this, "2f1f9f0d17a287c1768c86f425205076", "cb4ae31a9d00d7f33f7fa28a1da39c7b");
9: Object o4 = DynamicCaller.newInstance(new Object[] { o3, }, "a66297a550249aaffd45c2d99e870a280d8725555a756cfe";);

10: DynamicCaller.invoke(this, new Object[] { o4, "Center", }, "2f1f9f0d17a287c1768c86f425205076", "edb49cf44850031c";);
11: Object o5 = DynamicCaller.getField(this, "2f1f9f0d17a287c1768c86f425205076", "cb4ae31a9d00d7f33f7fa28a1da39c7b");
12: DynamicCaller.invoke(o5, new Object[] { this, }, "a66297a550249aaf06684d0828c6f38b3510f3937c8973f6", "6e4e8cf0610b90c2d8608819a83b9e2ab1f3a611ef002d56");
13: Object o6 = DynamicCaller.getField(this, "2f1f9f0d17a287c1768c86f425205076", "cb4ae31a9d00d7f33f7fa28a1da39c7b");
14: DynamicCaller.invoke(o6, new Object[] { new Boolean(false), }, "a66297a550249aaf06684d0828c6f38b3510f3937c8973f6", "1896096f3a5b52ef56f561980741c259");
15: DynamicCaller.invoke(this, new Object[] { new Integer(2), }, "2f1f9f0d17a287c1768c86f425205076",
16: "2b4e5099a9f92836c1390945ce922b208a5d15ef80bee749de209bef9d1612f6");
17: DynamicCaller.invoke(this, new Object[] { new Integer(400), new Integer(600), }, "2f1f9f0d17a287c1768c86f425205076", "24209303b0ba19ac");
18: DynamicCaller.invoke(this, new Object[] { new Boolean(true), }, "2f1f9f0d17a287c1768c86f425205076", "77d76f1b6ec32f97b697d240ae1c4ba2");
19: DynamicCaller.invoke(this, new Object[] { url, }, "2f1f9f0d17a287c1768c86f425205076", "3c53afe08c4b5898");
20: }
21: public void hyperlinkUpdate(HyperlinkEvent e){
22: Object o1 = DynamicCaller.invoke(e, new Object[0], "a66297a550249aaf00cfa6321b539a892fa0d06307277e054ba570d29ef8709ede209bef9d1612f6",
23: "07fe9f80d9b52479a16a66be70119fd5");
24: Object o2 = DynamicCaller.getStatic("a66297a550249aaf00cfa6321b539a892fa0d06307277e054ba570d29ef8709e8539bf260b43520811a22d97f25b3750",
25: "0bade759e91db795888d06705c8563c4");
26: if(o1 != o2){
27: Object o1 = DynamicCaller.invoke(e, new Object[0], "a66297a550249aaf00cfa6321b539a892fa0d06307277e054ba570d29ef8709ede209bef9d1612f6", "68bd6e25d9fa5a04");
28: DynamicCaller.invoke(this, new Object[] { o1, }, "2f1f9f0d17a287c1768c86f425205076", "3c53afe08c4b5898");
29: }
30: }
31: public void setPage(java.net.URL location){
32: try{
33: Object o1 = DynamicCaller.getField(this, "2f1f9f0d17a287c1768c86f425205076", "cb4ae31a9d00d7f33f7fa28a1da39c7b");
34: DynamicCaller.invoke(o1, new Object[] { location, }, "a66297a550249aaf06684d0828c6f38b3510f3937c8973f6", "3c53afe08c4b5898");
35: } catch(Exception e){
36: Object o2 = DynamicCaller.invoke(e, new Object[0], "a12f27ec29a113c9313d6ae12f76eddeb49254169990f045", "017186a6191bc657c585cbec0730d75b");
37: DynamicCaller.invokeStatic(new Object[] { this, o1, }, "a66297a550249aafc52a232880c6bd2dd492a1e3e0e62d65",
38: "dbf81f4d9244576c6d5a19eef1358ad970999eb9b50092c2");
39: }
40: }
41: public static void main(String args[]) throws Exception{
42: Object o1 = DynamicCaller.invokeStatic(new Object[] { args, new Integer(0), }, "a12f27ec29a113c941330416fa2e06ffdf75e527e791863a", "b647e427ff37e89e");
43: Object o2 = DynamicCaller.newInstance(new Object[] { o1, }, "8ec26e55cf7e06cd3f56aa79fefb5c5a";);
44: DynamicCaller.newInstance(new Object[] { o2, }, "2f1f9f0d17a287c1768c86f425205076");
45: }
46:}

Figure 4. Obfuscated program by the proposed method (Fig. 1)

with the box plot in right side axis. The number of DNR is
represented a line graph plotted in the left side axis.

In the ratio of 100% obfuscation, the sum of class file
size increased 1.59 times and the average of execution time
increased 1.74 times 0% obfuscation ratio compared with
0% obfuscation ratio. Thus, as the number of DNR in-
creases, the execution time and the file size are increased.

Therefore, if the target program is sensitive about the
execution time or the runtime platform has not enough
disk space, we would resolve the priority of names from
the viewpoint of security to refine the set of target names
Np. Also, we can combine use of the proposed obfus-
cation method for system-defined names, and the conven-
tional name obfuscation method for user-defined names.

5 Related Works

Since the conventional name obfuscation method is easy
to be implemented, most of the obfuscation tools sup-
port the method. Typical Java obfuscation tool is Dash-
O provided by PreEmptive solutions[6]. Dash-O is also
supports the name obfuscation method called overload
induction[12]. The overload induction induces the method
overloading maximally. For example, when Foo#foo()
and Foo#bar(int v) is applied overload induction,
then resultant methods are overloaded and become a#a()
and a#a(int a).

Other tool Allatori supports a unique name obfusca-
tion method, which change all the local variable names in
the Java bytecode into the same name[8]. Even though all

of the local variable have the same name, the program is
executable because it is referenced by the index, not the
name. Additionally, the source code is obtained by decom-
pilation, it will fail to be re-compile.

Unfortunately, those methods can deal with the user-
defined name only. Since system provided names cannot
be changed, class files still have plain names of system pro-
vided names.

Meanwhile, the previous name obfuscation methods
and the proposed obfuscation method can be used comple-
mentarily. We can apply both obfuscation methods with
sequence of previous obfuscation method, proposed obfus-
cation method.

6 Conclusion

In this paper, we proposed a new name obfuscation method
to hide system-defined names using dynamic name resolu-
tion. Adopting an approach to resolving encrypted names
at runtime with the reflection, the system-defined names
can be obfuscated successfully. We also implemented a
tool for obfuscating Java class files by proposed method.
Then, we evaluated obfuscation overhead to SwingSet2
with the implemented tool.

Finally our future work is summarized as follows.

• Reduce the obfuscation overhead,

• Apply the anti-tampering for the DNR to prevent the
dynamic analysis.

129

Table 2. # of dynamic resolution of obfuscated programs

Field
reference

Field
assignment

Static field
reference

Static field
assignment

Object
instantiation

Static
method call

Method call
Total # of
DNR

0% 0 0 0 0 0 0 0 0

25%

1 40 2 20 0 645 0 2826 3533
2 311 6 34 0 422 78 1654 2505
3 1626 51 47 14 251 61 2041 4091
4 854 26 68 5 699 222 3074 4948
5 16 4 100 1 700 45 2896 3762

50%

1 1456 68 101 6 698 226 3162 5717
2 879 60 154 6 1354 548 5399 8400
3 2002 96 91 14 1133 397 5388 9121
4 1486 55 77 15 855 38 4296 6822
5 1513 92 187 6 1023 603 4398 7822

75%

1 2933 132 165 20 1934 296 8893 14373
2 2380 112 144 20 1206 540 5416 9818
3 2159 85 135 15 1409 424 6606 10833
4 1255 76 201 6 1646 581 6811 10576
5 2297 103 151 15 1252 439 6218 10475

100% 3320 156 201 20 2073 628 9529 15927

Acknowledgement

The work was partially supported by the Comprehensive
Development of e-Society Foundation Software program
of the Ministry of Education, Culture, Sports, Science and
Technology, and by the Ministry of Education, Culture,
Sports, Science and Technology for Scientific Research
(C), 19500056, 2007.

References

[1] Jien-Tsai Chan and Wuu Yang. Advanced obfuscation
techniques for java bytecode. Systems and Software,
71, Issue 1-2:1–10, April 2004.

[2] B. D. Chaudhary and H. V. Sahasrabuddhe. Meaning-
fulness as a factor of program complexity. In Proc.
of the ACM 1980 annual conference, pages 457–466,
1980.

[3] Christian Collberg, Clark Thomborson, and Douglas
Low. Breaking abstractions and unstructuring data
structures. In Proc. 1998 International Conference
on Computer Languages, pages 28–38, Washington,
DC, USA, October 1998. IEEE Computer Society.

[4] NBS (National Bureau of Standards). Data encryp-
tion standard (des). Technical Report FIPS-Pub.46,
National Bureau of Standards, U.S. Department of
Commerce, Washington D.C., January 1977.

[5] ObjectWeb Consortium. ASM.
http://asm.objectweb.org/.

[6] PreEmptive Solutions. DashO - the premier Java ob-
fuscator and efficiency enhancing tool.
http://www.agtech.co.jp/products/preemptive/dasho/
index.html.

[7] PreEmptive Solutions. Dotfuscator —.net obfuscator,
code protector, and pruner.
http://www.preemptive.com/products/dotfuscator/
index.html.

[8] Smardec. Allatori java obfuscator.
http://www.allatori.com/.

[9] Sun Microsystems., Inc. Java standard edition.
http://java.sun.com/se/.

[10] Sun Microsystems, Inc. SwingSet2 demo.
http://www.JavaDesktop.org/.

[11] Haruaki Tamada. DonQuixote: Java obfuscation
framework. http://donquixote.cafebabe.jp/.

[12] Paul M. Tyma. Method for renaming identifiers of a
computer program. United States Patent 6,102,966,
August 2000. Filed: Mar.20, 1998.

[13] Zelix Pty Ltd. Zelix Klass Master, 1997.
http://www.zelix.com/klassmaster/index.html.

130

