
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.10 OCTOBER 2007
317

PAPER

Exploiting Eye Movements for Evaluating Reviewer’s

Performance in Software Review

Hidetake UWANO†a), Student Member, Masahide NAKAMURA†, Akito MONDEN†,
and Ken-ichi MATSUMOTO†, Members

SUMMARY This paper proposes to use eye movements to
characterize the performance of individuals in reviewing software
documents. We design and implement a system called DRES-
REM, which measures and records eye movements of document
reviewers. Based on the eye movements captured by eye tracking
device, the system computes the line number of the document
that the reviewer is currently looking at. The system can also
record and play back how the eyes moved during the review pro-
cess. To evaluate the effectiveness of the system we conducted
an experiment to analyze 30 processes of source code review (6
programs, 5 subjects) using the system. As a result, we have
identified a particular pattern, called scan, in the subject’s eye
movements. Quantitative analysis showed that reviewers who did
not spend enough time on the scan took more time to find defects
on average.
key words: software review, human factor, eye movement, ex-
perimental evaluation, system development

1. Introduction

Software review is peer review of software system’s
document such as source code or requirements speci-
fications. It is intended to find and fix defects (i.e.,
bugs) overlooked in early development phases, improv-
ing overall system quality [1]. Basically, the software
review is an off-line task conducted by human reviewers
without executing the system. In the software review,
a reviewer reads the document, understands the struc-
ture and/or functions of the system, then detects and
fixes defects if any. Especially in developing large-scale
software applications, the software review is vital, since
it is quite expensive to fix the defects in later integra-
tion and testing stages. A study shows that review and
its variants such as walk-through and inspection can
discover 50 to 70 percent of defects in software prod-
uct [2]. Our long-term goal is to establish an efficient
method that allows the reviewer to find as many defects
as possible.

Several methodologies that can be used for the
software review have been proposed so far. The idea be-
hind these methods is to pose a certain criteria on read-
ing the documents. Review without any reading crite-

Manuscript received January 4, 2007.
Manuscript revised May 2, 2007.
Final manuscript received June 29, 2007.

†The authors are with the Graduate School of Infor-
mation Science, Nara Institute of Science and Technology,
Ikoma-shi, 630-0192 Japan.

a) E-mail: hideta-u@is.naist.jp

ria is called Ad-Hoc Review (AHR). A method where
the reviewers read the document from several differ-
ent viewpoints, such as designers, programmers and
testers, is called Perspective-Based Reading (PBR) [3].
Checklist-Based Reading (CBR) [4] introduces a check-
list with which the reviewers check typical mistakes in
the document. Usage-Based Reading (UBR) [5] is to
review the document from user’s viewpoint. Defect-
Based Reading (DBR) [6] focuses on detecting specific
type of defects.

To evaluate the performance of these methods,
hundreds of empirical studies have been conducted [7].
However, there has been no significant conclusion on
which review method is the best. Some empirical re-
ports have shown that CBR, which is the most used
method in the software industries, is not more efficient
than AHR. As for UBR, PBR and DBR, they achieved
slightly better performance than CBR and AHR [6],
[8]–[11]. On the other hand, Halling et al. [12] reports
an opposite observation that CBR is better than PBR.
Several case studies have shown that these methods had
no significant difference [13]–[17].

The reason why the results vary among the em-
pirical studies is that the performance of individual re-
viewers is more dominant than the review method itself.
This is because the review is a task involving many hu-
man factors. Thelin et al. [11] compared the effective-
ness between UBR and CBR. Figure 1 describes one
of the results in their experiment. In this Figure, the
horizontal axis shows the defect detection ratio (the
number of defects found / the total number of defects
in the documents) of each method, and the vertical axis
represents a fault classification, which comprises class
A (crucial), class B (important) and class C (not im-
portant.) The Figure shows that the effectiveness of
UBR is 1.2–1.5 times better than the one of CBR on
average. However, as seen in the dotted lines in the
figure, the individual performance in the same review
method varies much more than the method-wise differ-
ence. Unfortunately, the performance variance in indi-
vidual reviewers has not been well studied. Thus, we
consider it essential to investigate the performance of
reviewers rather than to devise review method. Hence,
the key is how to capture the difference among good
and bad reviewers.

To characterize the reviewer’s performance in an

318
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.10 OCTOBER 2007

Fig. 1 Effectiveness of UBR and CBR [11].

objective way, this paper proposes to use eye move-
ments of the reviewer. In this paper, we present a sys-
tem called DRESREM to measure and record the eye
movements during the software review. The system can
calculate the line number of the document that the re-
viewer is currently looking at. This feature allows us
to identify how the reviewer reads the document.

We first point out the following five requirements,
which clarify the purpose of the system: (a) gaze
point tracking on display, (b) line-wise classification of
gaze point, (c) focus identification, (d) record of time-
sequenced eye movements and (e) analysis supports.
Based on these requirements, we then design and im-
plement three sub-systems of DRESREM. Specifically,
as for (a), we use an eye gaze analyzer. To achieve (c),
we adapted a fixation analyzer. For (b), (d) and (e),
we developed a review platform to calculate the line
number that the reviewer is currently looking at.

As an effective application of DRESREM, we then
conduct an experiment of source code review with 5
graduate students. Through the experiment, we have
identified a particular pattern, called scan, in the sub-
ject’s eye movements. The scan pattern characterizes
an action that the reviewer reads the entire code before
investigating the details of each line. Quantitative anal-
ysis showed that reviewers who did not spend enough
time for the scan took more time for finding defects
on average. Thus, it is expected that eye movement is
promising to establish a more human-centered software
review method reflecting human factors. Also, in the
subsequent interviews, it was found that reviewers tend
to comment more detailed and code-specific issues with
the eye movements in the reviews. This fact indicates
that the eye movements involve much information re-
flecting the reviewer’s thought during the code review.
Therefore, captured data of expert reviewers might be
used for educational/training purposes.

The digest version of this paper was published as a
conference paper in ETRA’06 [18]. Changes were made
to this version, most significantly the refinement of the
system requirements and architectures, definitions of

variables in an analysis, and an addition of a statistical
analysis. These include explanations of how the pro-
posed system calculates the line number of a document
from reviewer’s eye movements on a PC display, the de-
tails of an analysis method of the eye movements in the
experiment, and the statistical significance of the re-
sult of the analysis. We believe that these refinements
clarify the applicability and limitations of the proposed
system against practical review process.

2. Exploiting Eye Movements for Software Re-
view Evaluation

2.1 Software Review – Reading Software Documents

We propose to use eye movements of the reviewer for
evaluation of software review processes. The primary
reason why we exploit the eye movements is that the
software documents are not read as ordinary documents
such as newspapers and stories.

For instance, let us consider two kinds of software
documents: source code and requirements specification.
The source code has a control flow (branches, loops,
function calls, etc.), which defines the execution order
among program statements. The reviewer often reads
the code according to the control flow, in order to simu-
late exactly how the program works. The requirements
specification is typically structured, where a require-
ment contains several sub-requirements. Each require-
ment is written in labeled paragraph. If a requirement
R depends on other requirements R1 and R2, R refers
R1 and R2 by their labels. Hence, when the reviewer
reads the document, he/she frequently jumps from one
requirement to another by traversing the labels.

The way of reading software documents (i.e., read-
ing strategy) should vary among different reviewers.
The reading strategies is indicated by the eye move-
ments of the reviewers. Thus, we consider that the eye
movements can be used as a powerful metric to char-
acterize the performance in the software review.

To support the eye-gaze-based evaluation effi-
ciently, we develop an integrated system environment
for capturing and analyzing eye movements during the
software review.

2.2 Terminologies

We define several technical words used throughout this
paper. The gaze point over an object is the point on
the object where the user is currently looking. Strictly
speaking, it refers to an intersection of the user’s sight
line and the object. The fixation is a condition where
gaze points of a user remain within a small area fa on
a object during a given period of time ft. The fixation
is often used to characterize interests of the user. The
pair (fa, ft) characterizing the fixation is called fixation
criteria. The fixation point is a gaze point where the

UWANO et al.: EXPLOITING EYE MOVEMENTS FOR EVALUATING REVIEWER’S PERFORMANCE IN SOFTWARE REVIEW
319

fixation criteria holds.

2.3 System Requirements

To make clear the purpose of the system, we present
five requirements to be satisfied by the system.

Requirement R1: Sampling Gaze Points over
Computer Display
First of all, the system must be able to capture the re-
viewer’s gaze points over the software documents. Usu-
ally, reviewed documents are either shown on the com-
puter display, or provided as printed papers. Consid-
ering the feasibility, we try to capture gaze points over
a computer display. To precisely locate the gaze points
over the documents, the system should sample the coor-
dinates with sufficiently fine resolutions, distinguishing
normal-size fonts around 10–20 points.

Requirement R2: Extracting Logical Line Infor-
mation from Gaze Points
As seen in source code, a primary construct of a soft-
ware document is a statement. Software documents are
structured, and often written in one-statement-per-line
basis. Thus, it is reasonable to consider that the re-
viewer reads the document in units of lines. The system
has to be capable of identifying which line of the doc-
ument the reviewer is currently looking at. Note that
the information must be stored as logical line numbers
of a document, which is independent of the font size or
the absolute coordinates where the lines are currently
displayed.

Requirement R3: Identifying Focuses
Even if a gaze point comes at a certain line in the docu-
ment, it does not necessarily mean that the reviewer is
reading the line. That is, the system has to be able to
distinguish a focus (i.e., interest) from their eye move-
ments. It is reasonable to consider that the fixation
over a line reflects a fact that the reviewer is currently
reading the line.

Requirement R4: Recording Time-Sequenced
Transitions
The order in which the reviewer reads lines is impor-
tant information that reflects individual characteristics
of software review. Also, each time the reviewer gazes
at a line, it is essential to measure how long the reviewer
focuses on the line. The duration of the focus may in-
dicate the strength of reviewer’s attention to the line.
Therefore, the system must record the lines focused on
as time sequence data.

Requirement R5: Supporting Analysis
Preferably, the system should provide tool supports to
facilitate analysis of the recorded data. Especially, fea-
tures to play back and visualize the data significantly

contribute to efficient analysis. The tools may be useful
for subsequent interviews or for educational purposes to
novice reviewers.

3. DRESREM – The Proposed System

Based on the requirements, we have developed a
gaze-based review evaluation system called DRESREM
(Document Review Evaluation System by Recording
Eye Movements).

3.1 System Architecture

As shown in Fig. 2, DRESREM is composed of three
sub systems: (1) eye gaze analyzer, (2) fixation analyzer
and (3) review platform. As a reviewer interacts with
these three sub systems, DRESREM captures the line-
wise eye movements of the reviewers. While a reviewer
is reviewing a software document, the eye gaze analyzer
captures his/her gaze points over the display. Through
an image processing, the gaze points are sampled as ab-
solute coordinates. Then, the fixation analyzer converts
the sampled gaze points into fixation points, to filter
gaze points irrelevant for the review analysis. Finally,
the review platform derives the logical line numbers
from the fixation points and corresponding date infor-
mation, and stores the line numbers as time-sequenced
data. The review platform also provides interfaces for
the reviewers, and analysis supports for the analysts.

In the following subsections, we will give a more
detailed explanation for each of the sub systems.

3.2 Eye Gaze Analyzer

To achieve Requirement R1, the eye gaze analyzer sam-
ples reviewer’s eye movements on a computer display.
To implement the analyzer, we have selected a non-
contact eye gaze tracker EMR-NC, manufactured by
nac Image Technology Inc (http://www.nacinc.jp/).
EMR-NC can sample eye movements within 30Hz. The
finest resolution of the tracker is 5.4 pixels on the
screen, which is equivalent to 0.25 lines of 20 point
letters. The resolution is fine enough to satisfy Re-
quirement R1.

EMR-NC consists of an eye camera and image pro-
cessor. The system detects reviewer’s eye image, and
calculates the position, direction, and angle of an eye.
Then the system calculates the position of a display
where the reviewer is currently looking at. Each sam-
ple of the data consists of an absolute coordinate of the
gaze point on the screen and sampled date.

To display the document, we used a 21-inch liquid
crystal display (EIZO FlexScanL771) set at 1024x768
resolution with a dot pitch of 0.3893 millimeter. To
minimize the noise data, we prepared a fixed and non-
adjustable chair for the reviewers.

320
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.10 OCTOBER 2007

Window move,
resize, scroll

Fixation
Point / Line
Converter

Eye movement Fixation points
(Absolute coordinate)

Sampled gaze points
(Absolute coordinate)

Review

Fixation line
numbers

Document Viewer Result Viewer

Review Platform

Eye Camera

Image
Processor

Eye Gaze Analyzer

Eye
image

Display

Event
Capturer

Software
document

Time-
sequence
Analyzer

Logical-line-wise
Eye Movement

Fixation line
numbers, dates,

durations

To other
analysis tool

Window info
(Window size,
position, scroll)

Reviewer

Window event

Dates of fixation
points

Fixation
Analyzer

Monitor

Window move,
resize, scroll

Fixation
Point / Line
Converter

Fixation
Point / Line
Converter

Eye movement Fixation points
(Absolute coordinate)

Sampled gaze points
(Absolute coordinate)

Review

Fixation line
numbers

Document ViewerDocument Viewer Result ViewerResult Viewer

Review Platform

Eye CameraEye Camera

Image
Processor

Image
Processor

Eye Gaze Analyzer

Eye
image

DisplayDisplay

Event
Capturer

Event
Capturer

Software
document

Time-
sequence
Analyzer

Time-
sequence
Analyzer

Logical-line-wise
Eye Movement

Fixation line
numbers, dates,

durations

To other
analysis tool

Window info
(Window size,
position, scroll)

ReviewerReviewer

Window event

Dates of fixation
points

Fixation
Analyzer
Fixation
Analyzer

Monitor

Fig. 2 System architecture of DRESREM.

3.3 Fixation Analyzer

For a given fixation criteria (see Sect. 2.2) and the
gaze points sampled by the eye gaze analyzer, the fixa-
tion analyzer derives fixation points (as absolute coor-
dinates) and their observed date. Extracting the fixa-
tion points from the gaze points is necessary to achieve
Requirement R3. To implement the fixation analyzer,
we have used the existing analysis tool EMR-ANY.exe,
which is a bundled application of EMR-NC.

3.4 Review Platform

The review platform is the core of DRESREM, which
handles various tasks specific to the software review ac-
tivities. We have implemented the platform in the Java
language with SWT (Standard Widget Tool), compris-
ing about 4,000 lines of code.

What most technically challenging is to satisfy Re-
quirement R2. In order to judge if the reviewer is look-
ing at a line of the document, we use fixation points
derived by the fixation analyzer. Here we define a line
on which a fixation point overlaps as fixation line. The
goal is to capture the line numbers of the fixation lines.

Note that the line numbers must be captured as
the logical line numbers. The logical line number is a
sequence number attached to every line within the doc-
ument. The line number is basically independent of the
font size or the absolute position of the line currently
being displayed. Hence, we need a sophisticated mech-
anism to derive the logical line numbers from fixation
points captured as absolute coordinates. For this, we
carefully consider the correspondence between absolute
coordinates of points on the PC display and the lines
of the documents displayed over those coordinates. We
refer such correspondence as point/line correspondence.

Fig. 3 Example of document viewer.

As seen in Fig. 2, the review platform consists of
the following five components.

3.4.1 Document Viewer

The document viewer shows the software document to
the PC display, with which the reviewer reads the doc-
ument. As shown in Fig. 3, the viewer has a slider bar
to scroll the document. By default, the viewer displays
25 lines of the document in a 20-point font, simulta-
neously. The viewer polls window information (such as
window size, font size, position, scroll pitch) to the fixa-
tion point/line converter. This information is necessary
to manage the consistent point/line correspondence.

3.4.2 Event Capturer

As a reviewer interacts with the document viewer, the
reviewer may scroll, move, or resize the window of the

UWANO et al.: EXPLOITING EYE MOVEMENTS FOR EVALUATING REVIEWER’S PERFORMANCE IN SOFTWARE REVIEW
321

document viewer. These window events change the ab-
solute position of the document within the PC display,
thus, modifying the point/line correspondence. To keep
track of the consistent correspondence, the event cap-
turer monitors all events issued in the document viewer.
When an event occurs, the event capturer grabs the
event and forwards it to the fixation point/line con-
verter.

3.4.3 Fixation Point/Line Converter

The fixation point/line converter derives the logical line
numbers of fixation lines (referred as fixation line num-
bers) from the given fixation points. Let pa = (xa, ya)
be an absolute coordinate of a fixation point on the PC
display. First, the converter converts pa into a relative
coordinate pr within the document viewer, based on the
current window position pw = (xw, yw) of the viewer,
i.e., pr = (xr, yr) = pa−pw = (xa−xw, ya−yw). Then,
taking pr, the window height H, the window width W ,
the font size F and the line pitch L into account, the
converter computes a fixation line number lpr . Specifi-
cally, lpr is derived by the following computation:

lpr =

byr/(F + L)c + 1,

· · · if ((0 ≤ xr ≤ W) and (0 ≤ yr ≤ H))
0 (OUT OF DOCUMENT),

· · · otherwise

Thus, the point/line correspondence is constructed
as a pair (pa, lpr).

Note that lpr is changed by the user’s event (e.g.,
window move or scroll up/down). Therefore, the con-
verter updates lpr upon receiving every event polled
from the event capturer. For instance, suppose that
the reviewer moves the document viewer to a new po-
sition pw′ . Then, the converter notified of a window
move event. Upon receiving the event, the converter
re-calculates pr as pa − pw′ , and updates lpr .

Thus, for every fixation point, the fixation
point/line converter derives the corresponding fixation
line number, which achieves Requirement R2.

3.4.4 Time-Sequence Analyzer

The time-sequence analyzer summarizes the fixation
line numbers as time-sequenced data to satisfy Require-
ment R4. Using the date information sampled by the
fixation analyzer, the time-sequence analyzer sorts the
fixation line numbers by date. This is to represent the
order of lines in which the reviewer read the document.
It also aggregates successive appearances of the same
fixation line number into one with the duration. The
duration for a fixation line would reflect the strength of
reviewer’s interest in the line.

3.4.5 Result Viewer

The result viewer visualizes the line-wise eye move-
ments using horizontal bar chart, based on the time-
sequenced fixation line numbers. Figure 4 shows a
snapshot of the result viewer. In the figure, the left side
of the window shows document which was reviewed by
the reviewer. In the right side of the window, the se-
quential eye movements of the reviewer are described
as a bar chart. In this chart, the length of each bar
represents the duration for the fixation line.

The result viewer can play back the eye move-
ments. Using the start/stop buttons and slider bar
placed under the viewer, the analyst can control re-
play position and speed. On the result viewer, time-
sequenced transition of fixation lines is described by
highlighting of line and emphasizing of bar. Moreover,
the result viewer has a feature which can superimpose
the recorded gaze points and fixation points onto the
document viewer. This feature helps the analyst to
watch more detailed eye movements over the document.
Thus, the result viewer can be extensively used for the
subsequent analysis of the recorded data, which fulfills
Requirement R5.

4. Evaluating Performance of Source Code Re-
view using DRESREM

To demonstrate the effectiveness of DRESREM, we
have conducted an experiment of source code review.

4.1 Experiment Overview

The source code review is a popular software review
activity, where each reviewer reads the source code of
the system, and finds bugs without executing the code.

The purpose of this experiment is to watch how the
eye movements characterize reviewer’s performance in
the source code review. In the experiment, we have
instructed individual subjects to review source code of
small-scale programs, each of which contains a single
defect. Based on a given specification of the program,
each subject tried to find the defect as fast as possible.
The performance of each reviewer was measured by the
time taken until the injected defect was successfully de-
tected (we call the time defect detection time).

During the experiment, the eye movements of the
individual subjects were recorded by DRESREM. Us-
ing the recorded data, we investigate the correlation
between the review performance and eye movements.

4.2 Experiment Design and Procedure

Five graduate students participated in the experiment
as the reviewers. The subjects have 3 or 4 years of pro-
gramming experience, and have experienced the source

322
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.10 OCTOBER 2007

Fig. 4 Result viewer.

code review before the experiment at least once.
We have prepared six small-scale programs writ-

ten in the C language (12 to 23 lines of source code).
To measure the performance purely with the eye move-
ments, each program has no comment line. For each
program, we prepared a specification, which is com-
pact and easy enough for the reviewers to understand
and memorize. Then, in each program we intention-
ally injected a single logical defect, which is an error
of program logic, but not of program syntax. Table 1
summarizes the programs prepared for the experiment.

We then instructed individual subjects to review
the six programs with DRESREM. The review method
was the ad-hoc review (AHR, see Sect. 1). The task
for each subject to review each program consists of the
following five steps.

1. Calibrate DRESREM so that the eye movements
are captured correctly.

2. Explain the specification of the program to the
subject verbally. Explain the fact that there ex-
ists a single defect somewhere in the program.

3. Synchronizing the subject to start the code review
to find defect, start the capture of eye movements
and code scrolling.

4. Suspend the review task when the subjects says
he/she found the defect. Then, ask the subject to
explain the defect verbally.

5. Finish the code review task if the detected defect
is correct. Otherwise, resume the task by going
back to the step 3. The review task is continued
until the subject successfully finds the defect, or
the total time for the review exceeds 5 minutes.

The above task is repeated for each of the six pro-
grams. Thus, total 30 review tasks (= 6 programs × 5
subjects) have been conducted. The order of assigning
the six programs may yield learning/fatigue effects to

the reviewer. To minimize the effects, we have used the
Latin square to shuffle and balance the order.

4.3 New Finding — Scan Pattern

After the experiment, we have investigated the recorded
data. Using the result viewer extensively, we played
back the eye movements of the individual reviewers,
and examined statistics. As a result, we have identified
a particular pattern of the eye movements.

It was observed that the subjects were likely to
first read the whole lines of the code from the top to
the bottom briefly, and then to concentrate on some
particular portions. The statistics show that 72.8 per-
cent of the code lines were gazed in the first 30 percent
of the review time. We call this preliminary reading of
the entire code, the scan pattern.

Figures 5 and 6 describe the eye movements of
two subjects C and E reviewing programs IsPrime and
Accumulate, respectively. The graphs depict the time
sequence of fixation lines. In the figures, the scan pat-
terns are well observed. As seen in Fig. 5, this subject
scans the code twice, then concentrates the while loop
block located middle of code. In Fig. 6 is seen that
this subject firstly locates the headers of two function
declarations in lines 1 and 13. Then, the subject scan
the two functions makeSum() and main() in this or-
der. After the scan, he concentrates on the review of
makeSum().

We hypothesize that the scan pattern reflects the
following review strategy in source code review: A re-
viewer first tries to understand the program structure
by scanning the whole code. During the scan, the re-
viewer should identify suspected portions where the de-
fect is likely to exist. Therefore, we consider that the
scan quality would significantly influence the efficiency
of the defect detection in the review.

UWANO et al.: EXPLOITING EYE MOVEMENTS FOR EVALUATING REVIEWER’S PERFORMANCE IN SOFTWARE REVIEW
323

Table 1 Programs reviewed in the experiment.

Program LOC Specification Injected Defect

IsPrime 18 The user inputs an integer n. The pro-
gram returns a verdict whether n is a
prime number or not.

Logic in a conditional expression is
wrongly reversed, yielding an opposite
verdict.

Accumulate 20 The user inputs a non-negative integer n.
The program returns the sum of all inte-
gers from 1 to n.

A loop condition is mistaken. The con-
dition must be (i <= n) but is actually
(i < n).

Sum-5 12 The user inputs five integers. The pro-
gram outputs the sum of these integers.

A variable for accumulating the sum is
not initialized.

Average-5 16 The user inputs five integers. The pro-
gram outputs the average of these.

An explicit type conversion from integer
to double is forgotten, yielding a round
margin in the average.

Average-any 22 The user inputs an arbitrary number of
integers (up to 255) until zero is given.
The program outputs the average of the
given numbers.

The number of loops is wrong. The pro-
gram always calculates the average of 255
numbers regardless of the number of in-
tegers actually entered.

Swap 23 The user inputs two integers n1, n2. The
program swaps values of n1 and n2 using
function swap(), and outputs them.

Pointers are misused. As a result, the two
numbers are not swapped.

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 } First scan

1 31 61 91 121 151 181
01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

Fixation Num.

Second scan

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 } First scan

1 31 61 91 121 151 181
01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

Fixation Num.

Second scan

Fig. 5 Eye movements of subject E reviewing program IsPrime.

4.4 Quantitative Analysis of Scan Pattern and Review
Performance

To verify the hypothesis, we here conduct a quantita-
tive analysis using the recorded data. For each review
in the experiment, we have measured defect detection
time (DDT) and first scan time (FST). For a reviewer
r and a program p, DDT (r, p) is defined as the time
taken for r to detect the injected defect within p. DDT
is supposed to be a metric reflecting the performance
(efficiency) of the review task. On the other hand,
FST (r, p) is defined as the time spent from the begin-
ning of the review until r reads 80 percent of the total
lines (except blank lines) of p. FST might be used as
a metric characterizing the quality of the scan.

Note that both DDT and FST deeply depends
on the reading speed of the reviewer. That is, a slow
reader tends to spend more time for scan and defect
detection than a fast reader. The reading speed varies
from a subject to a subject according to individual ex-
perience. Hence, for each reviewer r, the absolute value
of FST (r, p) (or DDT (r, p)) does not necessarily reflect
his/her quality of scan (or performance, respectively).
To minimize the effect of the reading speed, we normal-
ize DDT (r, p) and FST (r, p) by the total average. Let
r be a reviewer, p be a given program, and Prog be a
set of all programs reviewed. Then, we define normal-
ized defect detection time (nDDT) and normalized first
scan time (nFST) as follows.

nDDT (r, p) =
DDT (r, p)∑

p′∈Prog DDT (r, p′) / |Prog|

324
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.10 OCTOBER 2007

1 31 61 91 121 151
00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. n", sum);
20 }

Function scan

00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. ¥
20 }

Fixation Num.

Header scan

1 31 61 91 121 151
00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. n", sum);
20 }

Function scan

00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. ¥
20 }

Fixation Num.

Header scan

Fig. 6 Eye movements of subject C reviewing program Accumulate.

nFST (r, p) =
FST (r, p)∑

p′∈Prog FST (r, p′) / |Prog|

nDDT and nFST are relative metrics for individ-
ual reviewer. When nDDT (r, p) is greater than 1.0, r
spent more time than usual to detect the defect in p,
which means the lower performance. When nFST (r, p)
is greater than 1.0, r spent more time than usual to scan
the code, which means the higher quality of scan.

Figure 7 depicts a scattered plot, representing the
pairs of (nFST (r, p), nDDT (r, p)), for every reviewer
r and every program p. In the figure, the horizontal
axis represents nFST , whereas the vertical axis plots
nDDT . The figure clearly shows a negative correlation
between nFST and nDDT . Pearson’s product mo-
ment showed significantly negative correlation between
nFST and nDDT (r = −0.568, p = 0.002). That
is, the first scan time less than the average yields the
longer defect detection time. More specifically, the de-
fect detection time increased up to 2.5 times of average
detection time when the first scan time is less than 1.0.
On the other hand, in the case that the scanning time
is more than 1.0, the defect detection time is less than
the average.

Thus, the experiment showed that the longer a re-
viewer scanned the code, the more efficiently the re-
viewer could find the defect in the code review. This
observation can be interpreted as follows. A reviewer,
who carefully scans the entire structure of the code,
is able to identify many candidates of code lines con-
taining defects during the scan. In Figs. 5 and 6, the
reviewers focus their eye movements to a particular
block or a function after the scanning of the code. On
the other hand, a reviewer with insufficient scan often
misses some critical code lines, and they stick to irrele-

0.0 0.5 1.0 1.5 2.0 2.5

nFST

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n
D
D
T

Fig. 7 Normalized first scan time and defect detection time.

vant lines involving no defect. Figure 8 depicts typical
eye movements that could not address suspicious lines
through the scanning of a program IsPrime, which is
the same source code as Fig. 5. This reviewer spent in-
sufficient scan time compared with his/her average scan
time (nFST = 0.51), and the reviewer could not detect
a defect at last. Of course, our hypothesis has been
proven within this experiment only. For more general-
ity, we plan to continue more experiments in our future
work.

4.5 Using Recorded Data for Review Training

After the experiment, we conducted two kinds of in-

UWANO et al.: EXPLOITING EYE MOVEMENTS FOR EVALUATING REVIEWER’S PERFORMANCE IN SOFTWARE REVIEW
325

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451

Fixation Num.

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451

Fixation Num.

Fig. 8 Eye movements of subject B reviewing program IsPrime.

terviews to investigate what the eye movements actu-
ally reflect. In the first interview, for each subject we
showed the source code and asked what the subject had
been thinking in the code review. Most subjects com-
mented abstract review policies, including the strategy
of understanding the code and the flow of the review.
Typical comments are summarized in the first column
of Table 2.

In the second interview, we showed the recorded
eye movements using the result viewer together with
the source code, and asked the same questions. As a
result, we were able to gather more detailed and code-
specific comments. As shown in the second column of
Table 2, each subject told reasons why he checked some
particular lines carefully and why not for other lines. It
seems that the record of the eye movements reminded
the subjects of their thought well.

This fact indicates that the eye movements involve
much information reflecting the reviewer’s thought dur-
ing the code review. Therefore, we consider that data
captured by DRESREM can be used for training and
educational purposes. Especially, the eye movements of
expert reviewers would be helpful for novice reviewers.

5. Discussion

5.1 Advantage and Limitations

The major advantage in adopting the eye movements
is that the eye movements provide us with quantita-
tive and objective analysis on how the reviewer reads
the software document. As a related work, there exists
a method called think-aloud protocol [19], which tapes
audio and video of subjects to record their intellectual
activities. However, compared to the think-aloud pro-
tocol, the eye movements do not impose training or
expensive preparation upon the subjects.

The limitation is that capturing eye movements re-
quires an eye camera with high resolution and extreme
precision. Such eye cameras and surrounding devices
are still uncommon and expensive. However, we be-
lieve that the limitation will be alleviated with the fu-
ture technologies and devices. A report [20] says that
until 2010 the price of eye cameras will be reduced to
1/100 and that the precision will be improved 10 times.

5.2 Applicability to Practical Software Review

In this paper, we have conducted an experiment of the
source code review only. However, we consider that
DRESREM is applicable to other kinds of practical
software documents as well.

As seen in the Sect. 3.4, primary feature of DRES-
REM is the line-wise gaze tracking. Therefore, it is
especially suitable for (a) structured documents, (b)
documents formed by multiple statements, (c) docu-
ments written in one-statement-per-line basis, or (d)
documents that have special flows (e.g., control flow,
labeled references, etc.). Such software documents in-
clude requirement specifications, use case descriptions,
program code (source, assembly) and test cases.

On the other hand, the documents mainly con-
structed from figures, diagrams and charts are beyond
the scope of DRESREM. Such documents include se-
quence diagrams and state chart diagrams. However,
as for these documents, the eye movements should be
tracked and evaluated in a point-wise basis, rather than
the line-wise basis. Therefore, we can use the sam-
pled fixation points directly, without performing the
point/line conversions (see Sect. 3.4.3). We can cope
with this by down-grading DRESREM, or by using
other existing systems. Thus, we believe that this is
not a critical problem.

326
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.10 OCTOBER 2007

Table 2 Comments gathered in interviews.

First interview (with source code only) Second interview (with source code and eye movements)

· I thought something is wrong in the second while loop. · I did not care the conditional expression of the loop.

· Firstly, I reviewed main function, and then, read the an-
other one.

· I watched this variable declaration to see the initial value of the
variable.

· I simulated the program execution in mind assuming an
input value.

· I thought this input process was correct because it is written in
a typical way.

· I checked the while loop for times. · I could not understand why this variable is initialized here.

5.3 Related Work

Eye movements have been often used for the purpose
of evaluating human performance, especially in cogni-
tive science. Law et al. [21] analyzed eye movements
of experts and novices in laparoscopic surgery training
environment. This study showed that experts tend to
watch affected parts more than the tool in hand, com-
pared with novices. Kasarskis et al. [22] investigated
eye movements of pilots in a landing task at flight simu-
lator. In this study, novices tend to concentrate watch-
ing the altimeter than experts, while the experts watch
the airspeed.

In the field of software engineering, there are sev-
eral research works exploiting the eye movements, for
the purpose of, for instance, monitoring online debug-
ging processes [23], [24], usability evaluation [25], [26],
human interface [27], [28]. As far as we know, there has
been no research that directly applies the eye move-
ments for evaluating performance of the software re-
view.

Crosby et al. analyzed eye movements of university
students to characterize their performance of program
comprehension [29]. In their experiment, the students
are first instructed to watch movies showing correct ex-
ecution of Pascal programs. Then, the students read
the source code. However, their task is to understand
the code, but not to find defects. Thus, the context is
quite different from that of source code review, where
the reviewers have to find as many bugs as possible
without executing the code.

6. Conclusion

In this paper, we have designed and implemented a sys-
tem, called DRESREM, for the eye-gaze-based evalua-
tion of software review. Integrating three sub-systems
(the eye gaze analyzer, the fixation analyzer and the
review platform), DRESREM automatically captures
reviewer’s eye movements, and derives the sequence of
logical line numbers of the document that the reviewer
has focused. Thus, the system allows us to evaluate
quantitatively how the reviewer reads the document.

We have also conducted an experimental evalua-
tion of the source code review using DRESREM. As
a result, we have found a particular reading pattern,
called scan. Through the statistic analysis, it was

shown that the reviewers taking sufficient time for scan-
ning the code tend to detect defects efficiently. In
the subsequent interviews, reviewers made more de-
tailed and code-specific comments when the recorded
eye movements were shown. This fact indicates that
the eye movements involve much information reflecting
the reviewer’s thought during the code review.

As future work, we are planning to conduct exper-
iments with more large-scale source code and/or dif-
ferent document such as requirement specifications. In
review of large-scale documents, reviewers would tend
to aggregate multiple lines as a meaningful unit, called
chunk [30]. Therefore, we plan to conduct chunk-wise
analysis, which is coarser-grained analysis than what
was presented in this paper.

Evaluation of tool-assisted review is also an inter-
esting topic to establish an efficient review method.
The recent sophisticated IDEs (Integrated Develop-
ment Environments) provide many convenient features
for writing/reading software documents, including word
search and the call hierarchy viewer. Tracking eye gaze
over the IDE may derive an efficient way of the tool
assistance for software review.

Acknowledgments

This work was supported by Grants-in-Aid for Scien-
tific Research (B) No. 17300007 and by the Compre-
hensive Development of e-Society Foundation Software
program of the Ministry of Education, Culture, Sports,
Science and Technology (MEXT).

References

[1] B.W. Boehm, Software Engineering Economics, Prentice
Hall, 1981.

[2] K. Wiegers, Peer Reviews in Software - A Practical Guide,
Addison-Wesley, 2002.

[3] F. Shull, I. Rus, and V. Basili, “How perspective-based
reading can improve requirements inspections,” Computer,
vol.33, no.7, pp.73–79, 2000.

[4] M.E. Fagan, “Design and code inspection to reduce errors in
program development,” IBM Syst.J., vol.15, no.3, pp.182–
211, 1976.

[5] T. Thelin, P. Runeson, and B. Regnell, “Usage-based read-
ing :An experiment to guide reviewers with use cases,” In-
formation and Software Technology, vol.43, no.15, pp.925–
938, 2001.

[6] A.A. Porter, L.G. Votta, and V.R. Basili, “Comparing de-
tection methods for software requirements inspection - A

UWANO et al.: EXPLOITING EYE MOVEMENTS FOR EVALUATING REVIEWER’S PERFORMANCE IN SOFTWARE REVIEW
327

replicated experiment,” IEEE Trans. Softw. Eng., vol.21,
no.6, pp.563–575, 1995.

[7] M. Ciolkowski, O. Laitenberger, D. Rombach, F. Shull, and
D. Perry, “Software inspection, reviews and walkthroughs,”
International Conference on Software Engineering (ICSE),
pp.641–642, 2002.

[8] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile,
F. Shull, S. Sørumg̊ard, and M.V. Zelkowitz, “The empirical
investigation of perspective-based reading,” Empirical Soft-
ware Engineering: An International Journal, vol.1, no.2,
pp.133–163, 1996.

[9] A. Porter and L. Votta, “Comparing detection methods for
software requirements inspection: A replication using pro-
fessional subjects,” Empirical Software Engineering: An In-
ternational Journal, vol.3, no.4, pp.355–380, 1998.

[10] F.J. Shull, Developing Techniques for Using Software Doc-
uments: A Series of Empirical Studies, Ph.D. Thesis, Univ.
of Maryland, 1998.

[11] T. Thelin, P. Runeson, and C. Wohlin, “An experimen-
tal comparison of usage-based and checklist-based reading,”
IEEE Trans. Softw. Eng., vol.29, no.8, pp.687–704, 2003.

[12] M. Halling, S. Biffl, T. Grechenig, and M. Köhle, “Us-
ing reading techniques to focus inspection performance,”
27th Euromicro Workshop Software Process and Product
Improvement, pp.248–257, 2001.

[13] P. Fusaro, F. Lanubile, and G. Visaggio, “A replicated
experiment to assess requirements inspection techniques,”
Empirical Software Engineering: An International Journal,
vol.2, no.1, pp.39–57, 1997.

[14] F. Lanubile and G. Visaggio, “Evaluating defect detection
techniques for software requirements inspections,” Tech.
Rep. 08, ISERN Technical Report, 2000.

[15] J. Miller, M. Wood, M. Roper, and A. Brooks, “Further
experiences with scenarios and checklists,” Empirical Soft-
ware Engineering: An International Journal, vol.3, no.3,
pp.37–64, 1998.

[16] K. Sandahl, O. Blomkvist, J. Karlsonn, C. Krysander,
M. Lindvall, and N. Ohlsson, “An extended replication of
an experiment for assessing methods for software require-
ments inspections,” Empirical Software Engineering: An
International Journal, vol.3, no.4, pp.327–354, 1998.

[17] G. Sabaliauskaite, F. Matsukawa, S. Kusumoto, and K. In-
oue, “An experimental comparison of checklist-based read-
ing and perspective-based reading for UML design docu-
ment inspection,” 2002 International Symposium on Empir-
ical Software Engineering (ISESE ’02), pp.148–157, IEEE
Computer Society, 2002.

[18] H. Uwano, M. Nakamura, A. Monden, and K. Matsumoto,
“Analyzing individual performance of source code review
using reviewers’ eye movement,” 2006 symposium on Eye
tracking research & applications (ETRA ’06), pp.133–140,
ACM Press, 2006.

[19] K.A. Ericsson and H.A. Simon, Protocol analysis: Verbal
reports as data, MIT Press, Cambridge, MA, USA, 1984.

[20] “The eye prize.” http://hcvl.hci.iastate.edu/IPRIZE/
[21] B. Law, M.S. Atkins, A.E. Kirkpatrick, A.J. Lomax, and

C.L. Mackenzie, “Eye gaze patterns differentiate novice and
expert in a virtual laparoscopic surgery training environ-
ment,” ACM Symposium of Eye Tracking Research and
Applications (ETRA ’04), pp.41–48, 2004.

[22] P. Kasarskis, J. Stehwien, J. Hichox, A. Aretz, and C. Wick-
ens, “Comparison of expert and novice scan behaviors dur-
ing VFR flight,” 11th International Symposium on Aviation
Psychology, http://www.aviation.uiuc.edu/UnitsHFD/ con-
ference/proced01.pdf, 2001.

[23] R. Stein and S.E. Brennan, “Another person’s eye gaze as
a cue in solving programming problems,” 6th International

Conference on Multimodal Interface, pp.9–15, ACM Press,
2004.

[24] K. Torii, K. Matsumoto, K. Nakakoji, Y. Takada,
S. Takada, and K. Shima, “Ginger2: An environment
for computer-aided empirical software engineering,” IEEE
Trans. Softw. Eng., vol.25, no.4, pp.474–492, 1999.

[25] A. Bojko and A. Stephenson, “Supplementing conventional
usability measures with eye movement data in evaluating
visual search performance,” 11th International Conference
on Human-Computer Interaction (HCI International 2005),
2005.

[26] N. Nakamichi, M. Sakai, J. Hu, K. Shima, M. Nakamura,
and K. Matsumoto, “Webtracer: Evaluating Web usability
with browsing history and eye movement,” 10th Interna-
tional Conference on Human-Computer Interaction (HCI
International 2003), pp.813–817, 2003.

[27] J.K.J. Robert, Eye tracking in advanced interface design,
pp.258–288, Oxford University Press, 1995.

[28] S. Zhai, C. Morimoto, and S. Ihde, “Manual and gaze in-
put cascaded (MAGIC) pointing,” SIGCHI conference on
Human factors in computing systems, pp.246–253, 1999.

[29] M.E. Crosby and J. Stelobsky, “How do we read algorithms?
a case study,” Computer, vol.23, no.1, pp.24–35, 1990.

[30] I. Burnstein, K. Roberson, F. Saner, A. Mirza, and
A. Tubaishat, “A role for chunking and fuzzy reasoning
in a program comprehension and debugging tool,” 9th In-
ternational Conference on Tools with Artifical Intelligence,
pp.102–109, 1997.

Hidetake Uwano received the BE de-
gree in Software and Information Sciences
from Iwate Prefectural University, Japan
in 2004, and the ME degree in informa-
tion science from Nara Institute of Sci-
ence and Technology, Japan in 2006. He
is currently a PhD candidate in Graduate
School of Information Science, Nara In-
stitute of Science and Technology, Japan.
His research interests include human-
computer interaction, human factor, and

software measurement. He is a student member of IEEE and
IPSJ.

Masahide Nakamura received the
B.E., M.E., and Ph.D. degrees in Informa-
tion and Computer Sciences from Osaka
University, Japan, in 1994, 1996, 1999,
respectively. From 1999 to 2000, he has
been a post-doctoral fellow in SITE at
University of Ottawa, Canada. He joined
Cybermedia Center at Osaka University
from 2000 to 2002. From 2002 to 2007,
he worked for the Graduate School of In-
formation Science at Nara Institute of Sci-

ence and Technology, Japan. He is currently an associate profes-
sor in the Graduate School of Engineering at Kobe University.
His research interests include the service-oriented architecture,
Web services, the feature interaction problem, V&V techniques
and software security. He is a member of IEEE.

328
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.10 OCTOBER 2007

Akito Monden received the BE de-
gree (1994) in electrical engineering from
Nagoya University, Japan, and the ME
degree (1996) and DE degree (1998) in in-
formation science from Nara Institute of
Science and Technology, Japan. He was
honorary research fellow at the Univer-
sity of Auckland, New Zealand, from June
2003 to March 2004. He is currently As-
sociate Professor at Nara Institute of Sci-
ence and Technology. His research inter-

ests include software security, software measurement, and human-
computer interaction. He is a member of the IEEE, ACM, IPSJ,
JSSST, and JSiSE.

Ken-ichi Matsumoto received the
BE, ME, and PhD degrees in Information
and Computer sciences from Osaka Uni-
versity, Japan, in 1985, 1987, 1990, re-
spectively. Dr. Matsumoto is currently a
professor in the Graduate School of In-
formation Science at Nara Institute of
Science and Technology, Japan. His re-
search interests include software metrics
and measurement framework. He is a se-
nior member of the IEEE, and a member

of the ACM, IPSJ and JSSST.

