Using Formal Methods to increase confidence in one Home
Network System implementation: Case study

Lydie du Bousquét Masahide Nakamutd, Ben Yari**, Hiroshi Igaki*

*Universités de Grenoble, Laboratoire LIG, BP 72, 38402 Sdiartin d'Héres cedex, France
lydie.du-bousquet@imag.fr
**Graduate School of Engineering Science, Kobe Universijyad
{masa-n,igaki}@cs.kobe-u.ac.jp
***Graduate School of Information Science, Nara Instituteai¢&ce and Technology, Japan
hon-e@is.naist.jp

Abstract. A home network system consists of multiple networked apigkss,
intended to provide more convenient and comfortable liieghome users.
Before being deployed, one has to guarantee the correcthessafety and the
security of the system. Here, we present the approach choselidate the Java
implementation of one home network system. We relies on dkria #Modeling
Language (JML), to formaly specify and validate a model efskistem. it.

1 Introduction

Emerging technologies enable general household appBaiocbe connected to LAN at
home. Such smart home appliances are generally called retd/appliances. A Home Net-
work System (HNS) consists of multiple networked applianégtended to provide more con-
venient and comfortable living for home users. Researchdawtlopment of the HNS are
currently a hot topic in the area of ubiquitous/pervasivepating. Several HNS products are
already on the market (e.g. Hitachi (2007); Matsushita {200oshiba (2007)).

A HNS provides many applications and services. They typjidake advantage of wide-
range control and monitoring of appliances inside and datdie home. Integrating different
appliances via a network yields more value-added and polsefvices (see Kolberg et al.
(2003)), which we call HNSntegrated services For instance, orchestrating a TV, a DVD
player, 5.1ch speakers, lights, curtains and an air-cimmgit implements an integrated service,
calledDVD theater servicewhere a user can watch movies in a theater-like atmosphere.

For practical use of such services, it is essential to guaeatihe correctness, the safety
and the security of the services. A service should behavpexsfied (functional correctness).
It must be free from the conditions that can cause injury @tlléo users, damage to or loss
of equipment or environment (safety). And it must be pradagainst malicious adversaries
to intrude or hijack the service (security). For instanc&ReamotelLoclservice (that checks
and locks doors and windows even from outside the home) neudidabled in case of a fire;
otherwise a user might be locked into the room.

Increase confidence in one Home Network System implementati

In this paper, we present the approach we used to specifytemdtb validate a set of
HNS integrated serviceshat have been developed by Nakamura et al. (2006, 2008). Our
approach relies on a Design by Contract strategy. The Jawdelihg Language JML (2005),
an executable specification language, is used for bothirefadnd on-line validation.

In section 2, we first present the Home Network System (HN8iciples. We then de-
scribes the framework developed by Nakamura et al., in winbtdgrated servicegare de-
ployed. In section 3, we detail the needs in terms of valator HNSintegrated services
Section 4 and 5 describe how the model was built and specifgsttion 6 focuses on the
validation process. Section 7 concludes and draws sompegIiges.

2 Context

2.1 Home Network System (HNS)

A HNS consists of one or more networked appliances conndotéddN at home. A
networked appliance is usually equipped with smart embediéeices, including a network
interface, a processor and storage. Each networked appltas a set of control APls, so that
the user or software agents can control the appliance viadtweork. To process the API calls,
each appliance generally has embedded devices includiracagsor and storage.

One of the major HNS applications is the integrated senatestworked home appliances
(calledintegrated servicén the following). An integrate service orchestrates dife home
appliances via network in order to provide more comfortadotel convenient living for the
users. For instance, th@vD Theater Servicturns on a DVD player, switches off the lights,
selects 5.1ch speakers and adjusts the volume automgatidéle Relax Servicéntegrates a
DVD player, a sound system, a light, an air-conditioner, andelectric kettle. When the
service is started, the DVD player is turned on with a musidey@ 5.1ch speaker is selected
with an appropriate sound level, the brightness of the ligltdjusted, the air-conditioner is
configured with a comfortable temperature, and the kettterised on with a boiling mode to
prepare hot water for coffee.

2.2 A framework for implementing HNS integrated services

As the embedded devices become more downsized, cheapem@edenergy-saving, it
is expected in the near future that every object will be neked Geer (2006). However,
transition to the networked appliances is gradual. Mosipfeeare still using legacy appli-
ances, which are the conventional non-networked homeapys, although it is usual to see
a network (and PCs) at home. Indeed, networked applianeeexg@ensive. Due to the in-
teroperability problem, the integration of appliancesnsited especially in the multi-vendor
environment.

To cope with both the emerging HNS and the legacy appliaridakamura et al. (2006,
2008) have proposed a framework that adapts the legacyeappl with conventional infrared
remote controllers. The key ideas are (1) to use a progrartenabared remote controller to
control the different appliances, and (2) to rely on a semadented architecture (SOA) (see
Loke (2003); Papazoglou and Georgakopoulos (2003)).

L. du Bousquet et al.

-UI = -—-—-j Integrated

% |E-_@_l Services
M - SOAPHTTP

I Twsbt

| |
Apache AXIS Web Services

| NN N N N g N | N O |
TV { DVD Jtcirculatorﬂ Light J CIQLerﬂCunain J
Java Classes R A A P o e B
JNI Wrapper

Programmable Remore Controller Library

miniPC
Programmable
Remote Controllers
X =

AN =
He=8—

Fic. 1 —HNS

G

For each appliance, a self-contained component is impleaden Java and deployed as
web service (using Apache AXIS) (Fig. 1). Methods |iB&() andOFF() are open interfaces
for accessing basic features of the appliance. They usecd 8€tls by which the PC can send
infrared signals to the appliances (Ir-APIs). Ir-APIs hévez=n implemented by wrapping the
programmable infrared remote controller with a Java Naititerface (JNI Wrapper).

Some HNS applications may need the current status of anaegglito perform an appro-
priate action. Since, it is impossible for the external >ion to obtain the current status
from the legacy appliance, an appliance component has desnpptary feature that stores
its current stateaccording to the history of the execution. For each appéasmmponent, a
get St at us() method returns the current state (i.e., the attribute &lue

A HNS is installed in an environment, which can be descrited aet of attributes. They
include the current energy consumption, the sound leveltémperature, etc. Their value
can be obtained by the way of some sensors (such as thernrofiretdetector...), which are
implemented as web service like other appliance components

2.3 HNS Integrated Services

Integrated services can be implemented in this framewodtiest applications. An inte-
grated service invokes the methods of the appliance conmtene

Fig. 2 shows a Java-like pseudo code which implements theasiceDVD Theater ser-
vice. In this figure, X.Y() means the invocation of API Y() gi@iance X. In the considered
framework, an integrated service component has methodsijttalize the service (method
initialisationinFig. 2), and to activate itact i vati on in Fig. 2). Some services
may also provide method to deactivate the service. Fornastamethodleact i vati onin
Fig. 2, switches off the appliances used by the DVD theat®ice

Increase confidence in one Home Network System implementati

Publ i ¢ DVDTheat er Servi ce {
Digital TV tv; = new Digital TV();
DVDPl ayer dvd; = new DVDPI ayer ();
SoundSystem speaker; =new SoundSysten();
Light light; = new Light();
Curtain curtain;

void initialisation(Digital TV aTV, DVDPl ayer abDvd,
SoundSyst em aSpeaker, Light aLight, Curtain aCurtain){

tv= aTV,

}

void activation() {
tv.switchOn(); [+ Turn on TV =*/
tv.setVisual | nput(.DVD.);
dvd. switchOn(); [+ Turn on the DVD Pl ayer =/
dvd. set SoundCQut put (. 5.1.);
speaker.swi tchOn(); [+ Turn on the Sound System x/
speaker. set | nput Source(.DVD.);
speaker . set Vol uneLevel (25);
curtain.closeCurtain(); [+ Close curtain */
light.setBrightnessLevel (1); /* Mnimze brightness */
dvd. pl aybvd(); [+ Play DVD =/

}

voi d deactivation() {
tv.switchOif();
dvd. switchOf f () ;
speaker.switchOf();
curtain.openCurtain();

b}

FIG. 2 — A pseudo-code for the DVD Theater Service

public void switchOn(void) {
IrControler con = new IrController(); /= Controller and =/

IrSignal sig = new IrSignal (); /* signal objects of Ir-API=*/
si g. set Si gnal Type(SWTCH_ON, TV_A); [+ set signal ON for TV_Ax/
con. sendSi gnal (sig); /* send the signal*/

sl eep(2); [+ Sleep during 2 seconds*/
state="ON";

FIG. 3 — Concrete implementation of methsdi t chOn() for TV_A

L. du Bousquet et al.

3 Increasing confidence in HNS integrated services

Before providing a HNS and integrated services, one mustgee that the implementa-
tion is correct and “safe” for inhabitants, house properiad their surrounding environment.

3.1 Requirements at different levels

Yan et al. (2007) have identified three levels of requirers¢nat can be expected from
integrated services.

For every electric appliance, the manufacturer prescribest of safety instructions for
proper and safe use of the appliance. Conventionally, timsseictions have been designated
for human users. However, in the HNS integrated serviceintsteuctions must be guaranteed
within the software. For instance, the following shows @&gainstruction for an electric kettle:
do not open the lid while the water is boiling, or there is &rid scald Any integrated service
using the kettle must be implemented so that it will nevemobe lid while the kettle is in the
boiling mode.

Since an integrated service orchestrates different meltippliances simultaneously, it is
necessary to consider global properties over the multippdiances. For instance, the Cooking
Preparation Service (which automatically sets up the krcbonfiguration of preparing for
cooking) must avoid carbon monoxide poisonilghile the gas valve is opened, the ventilator
must be turned on.

In general, each house has a set of residential rules fobitamds and neighbors for safety.
Since the integrated services give various impacts ag#iessurrounding environment (in-
cluding the room, the building, the neighbors, etc), theises must satisfy these rules. For
instancedo not make loud voice or sound after 9 p.m.

An integrated service ikcally correctif and only if satisfies all local properties, i.e. all
properties derived from the appliance instructions. gl@bally correctiff it satisfies all prop-
erties prescribed for it. It ienvironmentally corrediff it satisfies all properties derived from
the environment where it is provided.

3.2 Using formal methods: choosing an approach

We want to increase the confidence of the real implementatidine integrated services.
A first experimentation of formalization and validation wdane in Leelaprute et al. (2005). A
model of services and appliances was proposed and expliesbedSMV language McMillan
(1993). Expected properties of the services were also egpteand the SMV model-checker
was used to prove that the services satisfy the properties.

The experimentation has shown that SMV is expressive entugbscribe practical ser-
vices. It also enables a compact modeling independent afiiiderlying HNS protocols or
specific platform. However, this approach appears to beufbitient for at least three reasons.

The use of a model-checker greatly increases confidence maklel However, the model
was not derived from the real system. Abstraction and/otakés in the model or the incorrect
property expression may lead to misleading conclusions

1This has been observed in du Bousquet (1999).

Increase confidence in one Home Network System implementati

Moreover, HNS are supposed to ease the development of ngwesand/or user appli-
cations. Itis not reasonable to ask a user to translatedhgirapplications to SMV and prove
them. At least, an automatic translation would be necessary

Finally, it should be noticed that appliances have some énffe on the environment.
Switching on (resp. off) an appliance increases (resp. edses) the power consumption.
It may also have an influence on the temperature, the brighftiee sound level in the house.
Modification of these parameters can influence the behafibeovhole system. For instance,
temperature is measured by the air-conditioner to detegihinshould heat or cool the air with
respect to the required temperature. Relations betwediaapps and environment are very
difficult to model.

With respect to this analysis, we choose to express a modeéisame language used for
the real application implementation: Java. Moreover, waosle the Java Modeling Language
(JML) to express the specification, for several reasons Very close to Java, and it is sup-
posed to be easier for programmers to learn. It is executatdecan be embedded in the final
code to monitor its execution. Several tools are availabiepfoof and testing. It supports
more constructions than the “assert mechanism" availablava.

To validate and improve our HNS implementation, we haveiedwut the following steps.

1. Amodelwas extracted from the real application (espbcégpliances and services) and
completed (see Sec. 4) .

2. The model was annotated with JML (see Sec. 5).

3. A validation step was carried out (see Sec. 6). This steptiva complementary
goals. First it was required to detect inconsistenciesémtiodel and to improve correc-
tion/robustness of the services. Second, it helped to ivgyrm detail or to correct the
JML annotations.

4. On this basis, the real implementation is currently medifdML annotations are intro-
duced in the real implementation code in order to monitortkecution (current work).

Steps 1 to 3 are dedictated to the elaboration and the vialidat the specifications of the
HNS system and integrated services (expressed as anmajatibalso helps to testraodelof
the existing system. This model is too abstract from theireplementation to guarantee the
correction of the real implementation, that is why step Zaigied out. The annotations cannot
directly be inserted in the implementation; otherwise & appliances have to be sollicitated
during the specification validation (test).

4 Model construction

The basis of the model was thus built as a simplification ofithplementation. Each
component representing the appliances and the servicesmadified so that the calls to the
remote control API (Fig. 3) were transformed into simplenfiig message calls (Fig. 4).

Then the model was extended. First, the environment of thisdavas implemented as a
specific object, calle@Envi r onment . Environment object attributes represent sensor mea-
surements. For instancet @nper at ur e attribute is the abstraction of thermometer sensor
output. For each of these attributesset _at t ri but e() method is provided to allow the

L. du Bousquet et al.

public void switchOn(void) {
Systemout.println("SWTCH ON, TV_A");
i nternal State="ON';

}

FIG. 4 — Simplification of methodwi t chOn() for TV_A in the model

public void switchOn(void) {
if (powerState.equal s("ON')) {
set Appl i anceConsunpt i on(naxConsunpti on);
Systemout.println("SWTCH ON, TV_A");
internal State="ON"; }

FIG. 5 — Evolution of methodwi t chOn() for TV_A in the model

environment changes. get _att ri but e() method allows the interrogation of the sensor
by any appliances or services.

Second, a home object was implemented. It corresponds tetiaydar configuration of
the home network systems. From the home interface, it isilples® call any public methods
of service, appliance or environment objects.

Finally, the appliance objects were modified. The initiaplementation did not take into
account the fact that appliances can be powered on or oférrat state of appliances and
the code of some methods were completed to deal with the psiaex. One inheritance
level was introduced in order to factor common methods ssgioaver On() , power O f,
swi tchOn() andswi t chOf f (). At last, the influences of the appliances on the environ-
ment (such as temperature, sound, ...) were also added.u@rentmodel is composed of 25
classes among which 14 appliance components and 7 services.

5 Using Java Modeling Language

5.1 Brief description of IML

The Java Modeling Language (JML) is an annotation languagd to specify Java pro-
grams by expressing formal properties and requiremente®unlasses and their methods (see
Leavens et al. (1999)).

The JML specification appears within special Java commdéetsyeen /*@ and @*/ or
starting with //@. The specification of each method precédeasterface declaration. JML an-
notations rely on three kinds of assertions: class invésijgme-conditions and post-conditions.
Invariants have to hold in all visible states. A visible stadughly corresponds to the initial
and final states of any method invocation JML (2005). JMLeetin the principles of Design
by Contract defined by Meyer (1992), which states that tokeva method, the system must
satisfy the method pre-condition, and as a counterpartyé#od has to establish its post-

Increase confidence in one Home Network System implementati

conditions. A method’s precondition is given by ttegjuiresclause. If that is not true, then
the method is under no obligation to fulfill the rest of thedfied behavior.

JML extends the Java syntax with several keywordsesul t denotes the return value
of the method. It can only be used émsuresclauses of a non-void methodol d(Expr)
\foral | and\exi st s designate universal and existential quantifiers.

5.2 Specification of our system

We have used the JML assertions for two purposes. First itusad to check consistency
of the model. Second, it was used to express explicit remérds (such as those given in
section 3.1).

As explained previously, we have derived a model from théireplementation and have
modified it, especially at the appliance level. In order tor@ase confidence with respect to
those modifications, we have introduced JML assertionscdéslil to the appliance internal
state consistency specification. Those assertions canthekpressed as invariant and prost-
conditions. For instance, for any object, its internalestgiace is specified by an invariant. The
evolution of its state is specified as post-conditions dased with each method.

The implementation of local, global and environment préipsiwere done in a systemati-
cal way. Local properties were described both as pre-cmmdiind invariants in the appliance
objects. Service expected behaviors were described wihgmditions. Global properties
were expressed as invariant in the service classes. Em@nnhproperties were expressed
in the Envi r onment class, as invariants. In our actual model, we have inse®&dJXML
annotations (17 pre-conditions, 150 post-conditions,4hihvariants).

6 The Testing Process

JML specifications can be used as an oracle for a test proEessmproving confidence
within the model, we have used a combinatorial testing aggro Here, we first cover some
principles of testing with JML, before introducing our appch for combinatorial testing.

6.1 JML as a Test Oracle

JML is executable. It is possible to use invariant assesti@s well as pre- and post-
conditions as an oracle for conformance testing. JML sptifins are translated into Java by
thej m ¢ tool, added to the code of the specified program, and chedi&idst it, during its
execution.

The executable assertions are thus executed before, damith@fter the execution of a
given operation. Invariants are properties that have td hohll visible statesA visible state
roughly corresponds to the initial and final states of anyhmétinvocation (JML (2005)).
When an operation is executed, three cases may haplenhecks succeed the behavior
of the operation conforms to the specification for these implues and initial state. The test
delivers aPASSverdict. Anintermediate or final check fails: this reveals an inconsistency
between the behavior of the operation and its specificatibhe implementation does not
conform to the specification and the test deliversasl verdict. Aninitial check fails: in
this case, performing the whole test will not bring usefdbmmation because it is performed

L. du Bousquet et al.

outside of the specified behavior. This test deliversNaTONCLUSIVE verdict. For example,
vz has a precondition that requireseing positive. Therefore, a test of a square root method
with a negative value leads to &#CONCLUSIVE verdict.

6.2 Test Case Generation

Combinatorial testing performs combinations of selectgulit parameters values for given
operations and given states. For example, a tool like JMhiJlgenerates test cases which
consist of a single call to a class constructor, followed [ygyle call to one of the methods
(see Cheon and Leavens (2002)). Each test case correspoadsinbination of parameters
of the constructor and parameters of the method.

The LIG laboratory has developed Tobias (see du Bousquét €094); Dupuy-Chessa
et al. (2005); Ledru et al. (2004)), a test generator basetbarbinatorial testing (see Cohen
etal. (1996)). It adapts combinatorial testing to the gatien of sequences of operation calls.
The input of Tobias is composed of a test pattern (also ca#lstischema) which defines a
set of test cases. A schema is a bounded regular expressmxing the Java methods and
their associated JML specification. Tobias unfolds the sehénto a set of test cases: all
combinations of the input parameters for all operationdefdschema are computed. The test
suite can be turned into a JUnit file thanks to Tobias.

The schemas may be expressed in termgrofips which are structuring facilities that
associate a method, or a set of methods, to typical valuesugSrmay also involve several
operations. For instance, for testing the Blind class, @redesign the following schema:

T-Blind=1Init ; BlindOp"{4..4} with
Init ={Blind aBlind = new Blind()}
Bl i ndOp ={aBl i nd. power On() } U {aBl i nd. power O f () }
U{aBl i nd. Open() }u{aBli nd. d ose()}

T-Blind=

I nit is a set of only one instantiatiornBl i ndQp is a set of 4 instantiations. The suffix
~ 4. . 4} means that the group is repeated 4 timiesBl i nd is unfolded into 1*(4*4*4*4)=
256 test cases.

To validate our model, we have designed several test scheomgessponding to different
phases in the validation process. First, each appliancéastes] in isolation and in the context
of the home. Thus, schemas similarfeBl i nd were produced for each appliance. This
phase revealed sevet8llCONCLUSIVE verdicts because some pre-conditions of some opera-
tions were not satisfied. For instance, within the kettlé $ebemas, thepenLi d method of
the kettle can be called when it is in the boiling mode. Thisds supposed to be done due
to the kettle local properties. TheB¢CONCLUSIVE verdicts were expected, each time some
specific local properties were implemented.

This phase also revealed sevetall verdicts, which were not expected. A careful analysis
showed that appliance implementations were sometimes#istent with the JML assertions.
Those inconsistencies resulted mainly in the evolutionthefmodel and the specification,
which was sometimes not completely carried out.

In a second phase, we have focused our work on the servicatialn. The main objective
was to activate each service in different situations (ineoftid be sure that a service can be

Increase confidence in one Home Network System implementati

activated in any cases). Two types of test sequences wedegzd and executed. Both sets of
tests were composed of a prologue followed by the activaifdhe service under test.

The first set was dedicated to the service activations vadidavith respect to the different
appliance states. To do that, the test prologue consistedrmf different calls to one appliance.
This was aimed at checking that the services could work ctyrevhatever the state of each
appliance (taken independently). This allowed us to ddtestt some calls or checks were
forgotten for some services. For instance, in the Relax8enrkettle was not closed before
switching on. This problem was not discovered during prilemny tests because when the
kettle object is created, its lid is close. By applying save&onsecutive calls on the kettle
before activating the RelaxService, we were able to discthes implicit requirement about
the kettle lid. We corrected the service by systematicdtigiog the lid before switching it on.

The second test set was dedicated to the service activalimtation against different en-
vironment states (temperature, time, sound level, cugensumption...). To do that, the pro-
logue consisted of applying different parameters to thdarenment attributes. This aimed
at checking that the service could work correctly whateher $tate of the environment. Of
course, it was very easy to show how services were not censigtith the usage rules. For
instance, the DVD Theater Service violate the environmemp@rty “do not make loud voice
or sound after 9 p.mif it is activated after 9 p.m.

More than 30 test schemas were described and unfolded irothiasTplug-in for Eclipse.
Schemas have between 500 and 5000 test cases. Unfolding lastésat most two minutes
for the biggest scheméas Tests cases then were translated in the JUnit format anclitec
within the Eclipse environment. It took at most 500 secomulgtfe biggest sets of test cases.
Approximately 10 errors were found (at the appliance andiselevels).

7 Conclusion and perspectives

Home network systems are critical applications. Beforeob@ing widespread, it is essen-
tial to guarantee the correctness, the safety and the seofithe services. In this paper, we
study the use of Java Modelling Language, to specify andlasdian HNS implementation.
The work is carried out in two steps. During the first step, \aeehderived a Java model of the
real implementation. The model was then annotated andatelidvith a combinatorial testing
approach. The actual model is composed of 14 appliances saxvites. The specification is
composed of 209 JML annotations (17 pre-conditions, 156 pamsditions, and 42 invariants).
More than 30 test schemas were described and unfolded irgbad SO0 to 5000 executable
test cases within the Tobias tool.

A second step of the work consisted of the insertion of theotations in the real imple-
mentation. This allows a continual monitoring of the apaiion. This part is under work.

There are two main directions in which we want to work. Thetfase is the use of a
prover as a complement to the testing approach. JML was ohoseause several tools are
available (see Leavens et al. (2000); van den Berg and J42664); Burdy et al. (2003);
Flanagan et al. (2002)). We first tried to use the JACK toat @erdy et al. (2003)). However,
the current version of JACK does not support the JML versienused. We are currently
evaluating ESC/JAVA (see Flanagan et al. (2002)).

2Tobias was executed on a laptop, equipped with a 1.5GHz gsocand 512 MO of RAM, with Window XP OS.

L. du Bousquet et al.

The second main direction of our work is to provide a framédwtorease the extension of
the existing system. Indeed, the translation of the realémpntation into a model is difficult
to automate and is error-prone. In order to ease the prockes wtroducing new services
or appliances, we propose to follow a different strategystdad of directly implementing
appliances and/or services in the real implementationywened have to express them directly
into the model. Thus, it would be possible to validate theie in the model (with test and
proof), and to correct it (if needed). Then, it will be podsibo transform the classes of the
model into skeleton of classes for the implementation, tvhiave to be completed before their
final use. To reduce the probability of errors introducedat step, the skeletons should be as
complete as possible.

Acknowledgement This research was partially supported by the Ministry of &tion, Sci-
ence, Sports and Culture, Grant-in-Aid for Young Scient{®) (No. 18700062), Scientific
Research (B) (No. 17300007), and Comprehensive Developafest Society Foundation
Software program. It is also supported by JSPS and MAE urdedapan-France Integrated
Action Program (PHC-SAKURA).

References

Burdy, L., A. Requet, and J.-L. Lanet (2003). Java appletemtness: a developer-oriented
approach. Inthe 12th Int. FME Symposiuritaly.

Cheon, Y. and G. Leavens (2002). A simple and practical aggrdo unit testing: The JML
and JUnit way. IlECOOP 2002Vol. 2474 ofLNCS pp. 231-255. Springer.

Cohen, D., S. Dalal, J. Parelius, and G. Patton (1996). Theagmtorial design approach to
automatic test generatiolfEEE Software 1(%), 83—88.

du Bousquet, L. (1999). Feature interaction detectiongigsting and model-checking, expe-
rience report. InNorld Congress on Formal Methodéol. 1708 ofLNCS Toulouse, France,
pp. 622—641. Springer Verlag.

du Bousquet, L., Y. Ledru, O. Maury, C. Oriat, and J.-L. Laf104). A case study in JML-
based software validation (short paper). l@éth Int. IEEE Conf. on Automated Sofware
Engineering (ASE’'04)pp. 294-297.

Dupuy-Chessa, S., L. du Bousquet, J. Bouchet, and Y. LediQ5R Test of the ICARE
platform fusion mechanism. Ih2th Int. Workshop on Design, Specification and Verification
of Interactive System¥ol. 3941 of LNCS pp. 102-113. Springer.

Flanagan, C., K. R. M. Leino, L. M., G. Nelson, J. B. Saxe, anft&ta (2002). Extended static
checking for Java. IfProc. of the ACM SIGPLAN 2002 Conf. on Programming language
design and implementatippp. 234—245. ACM Press.

Geer, D. (2006). Nanotechnology: the growing impact ofrgking computers.Pervasive
Computing %1), 7-11.

Hitachi. The electric household appliances revolution| wihange your lifestyle!
http://ww. hitachi-cable.co.jp/en/hc-news/353/index_1.htm .

JML (2005). The JML Home Page. http://www.jmlspecs.org.

Increase confidence in one Home Network System implementati

Kolberg, M., E. Magill, and M. Wilson (2003). Compatibilitysues between services support-
ing networked appliance$EEE Communications Magazine 41136—-147.

Leavens, G., A. Baker, and C. Ruby (1999). JML: A notationdetailed design. In H. Kilov,
B. Rumpe, and I. Simmonds (EdsBehavioral Specifications of Businesses and Systems
pp. 175-188. Kluwer.

Leavens, G. T., K. R. M. Leino, E. Poll, C. Ruby, and B. Jac@®0(0). JML: notations and
tools supporting detailed design in Java. In ACM (E@DPSLA 2000 CompaniorAlso
available as Tech. Report TR 00-15, Dep. of Computer Scjelovea State Univ., Aug.
2000. ftp://ftp.cs.iastate.edu/pub/techreports/TRB0O-

Ledru, Y., L. du Bousquet, O. Maury, and P. Bontron (2004)tefing TOBIAS combinatorial
test suites. IfFundamental Approaches to Software Engineering (FASEa2) 2984 of
LNCS Barcelona, Spain. Springer.

Leelaprute, P., T. Tsuchiya, T. Kikuno, M. Nakamura, and.Katsumoto (2005). Describing
and verifying integrated services of home network systemsl2th Asia-Pacific Software
Engineering Conf. (APSEC’0p)aiwan, pp. 549-560. IEEE.

Loke, S. W. (2003). Service-oriented device ecology workfoInFirst Int. Conf. on Service-
Oriented Computing (ICSOC 20Q3jol. 2910 ofLNCS ltaly, pp. 559-574. Springer.

Matsushita Electric Industrial Co., L. Kurashi net (ip)-
http://national.jp/appliance/product/kurashi-net/.

McMillan, K. L. (1993). Symbolic Model Checkindluwer Academic Publishers.
Meyer, B. (1992). Applying “Design by ContractComputer 2§10), 40-51.

Nakamura, M., A. Tanaka, H. Igaki, H. Tamada, and K. Matsun@006). Adapting legacy
home appliances to home network systems using web serbicks. Conf. on Web Services
(ICWS’06) pp. 849-858. IEEE.

Nakamura, M., A. Tanaka, H. Igaki, H. Tamada, and K. Matsuni@®08). Constructing home
network systems and integrated services using legacy hpplieaces and web servicdat.
Journal of Web Services Research

Papazoglou, M. P. and D. Georgakopoulos (2003). Specigiservice-oriented computing.
Introduction.Commun. ACM 4@.0), 24-28.

Toshiba. Toshiba home network: Feminhy.t p: / / ww3. t oshi ba. co.jp/femnity/.

van den Berg, J. and B. Jacobs (2001). The LOOP Compiler f@raad JML. InTools and
Algorithms for the Construction and Analysis of System<C@&01) Vol. 2031 of LNCS
Springer.

Yan, B., M. Nakamura, L. du Bousquet, and K. ichi Matsumofa0(?). Characterizing safety
of integrated services in home network system. 5th Int. Conf. On Smart Homes and
Health Telematics (ICOSTYol. 4541 ofLNCS Japan, pp. 130-140. Springer.

