
Using Formal Methods to increase confidence in one Home
Network System implementation: Case study

Lydie du Bousquet∗, Masahide Nakamura∗∗, Ben Yan∗∗∗, Hiroshi Igaki∗∗

∗Universités de Grenoble, Laboratoire LIG, BP 72, 38402 Saint Martin d’Hères cedex, France
lydie.du-bousquet@imag.fr

∗∗Graduate School of Engineering Science, Kobe University, Japan
{masa-n,igaki}@cs.kobe-u.ac.jp

∗∗∗Graduate School of Information Science, Nara Institute of Science and Technology, Japan
hon-e@is.naist.jp

Abstract. A home network system consists of multiple networked appliances,
intended to provide more convenient and comfortable livingfor home users.
Before being deployed, one has to guarantee the correctness, the safety and the
security of the system. Here, we present the approach chosento validate the Java
implementation of one home network system. We relies on the Java Modeling
Language (JML), to formaly specify and validate a model of the system. it.

1 Introduction

Emerging technologies enable general household appliances to be connected to LAN at
home. Such smart home appliances are generally called networked appliances. A Home Net-
work System (HNS) consists of multiple networked appliances, intended to provide more con-
venient and comfortable living for home users. Research anddevelopment of the HNS are
currently a hot topic in the area of ubiquitous/pervasive computing. Several HNS products are
already on the market (e.g. Hitachi (2007); Matsushita (2007); Toshiba (2007)).

A HNS provides many applications and services. They typically take advantage of wide-
range control and monitoring of appliances inside and outside the home. Integrating different
appliances via a network yields more value-added and powerful services (see Kolberg et al.
(2003)), which we call HNSintegrated services. For instance, orchestrating a TV, a DVD
player, 5.1ch speakers, lights, curtains and an air-conditioner implements an integrated service,
calledDVD theater service, where a user can watch movies in a theater-like atmosphere.

For practical use of such services, it is essential to guarantee the correctness, the safety
and the security of the services. A service should behave as specified (functional correctness).
It must be free from the conditions that can cause injury or death to users, damage to or loss
of equipment or environment (safety). And it must be protected against malicious adversaries
to intrude or hijack the service (security). For instance, aRemoteLockservice (that checks
and locks doors and windows even from outside the home) must be disabled in case of a fire;
otherwise a user might be locked into the room.



Increase confidence in one Home Network System implementation

In this paper, we present the approach we used to specify and then to validate a set of
HNS integrated servicesthat have been developed by Nakamura et al. (2006, 2008). Our
approach relies on a Design by Contract strategy. The Java Modeling Language JML (2005),
an executable specification language, is used for both off-line and on-line validation.

In section 2, we first present the Home Network System (HNS) principles. We then de-
scribes the framework developed by Nakamura et al., in whichintegrated servicesare de-
ployed. In section 3, we detail the needs in terms of validation for HNS integrated services.
Section 4 and 5 describe how the model was built and specified.Section 6 focuses on the
validation process. Section 7 concludes and draws some perspectives.

2 Context

2.1 Home Network System (HNS)

A HNS consists of one or more networked appliances connectedto LAN at home. A
networked appliance is usually equipped with smart embedded devices, including a network
interface, a processor and storage. Each networked appliance has a set of control APIs, so that
the user or software agents can control the appliance via thenetwork. To process the API calls,
each appliance generally has embedded devices including a processor and storage.

One of the major HNS applications is the integrated servicesof networked home appliances
(called integrated servicein the following). An integrate service orchestrates different home
appliances via network in order to provide more comfortableand convenient living for the
users. For instance, theDVD Theater Serviceturns on a DVD player, switches off the lights,
selects 5.1ch speakers and adjusts the volume automatically. TheRelax Serviceintegrates a
DVD player, a sound system, a light, an air-conditioner, andan electric kettle. When the
service is started, the DVD player is turned on with a music mode, a 5.1ch speaker is selected
with an appropriate sound level, the brightness of the lightis adjusted, the air-conditioner is
configured with a comfortable temperature, and the kettle isturned on with a boiling mode to
prepare hot water for coffee.

2.2 A framework for implementing HNS integrated services

As the embedded devices become more downsized, cheaper, andmore energy-saving, it
is expected in the near future that every object will be networked Geer (2006). However,
transition to the networked appliances is gradual. Most people are still using legacy appli-
ances, which are the conventional non-networked home appliances, although it is usual to see
a network (and PCs) at home. Indeed, networked appliances are expensive. Due to the in-
teroperability problem, the integration of appliances is limited especially in the multi-vendor
environment.

To cope with both the emerging HNS and the legacy appliances,Nakamura et al. (2006,
2008) have proposed a framework that adapts the legacy appliances with conventional infrared
remote controllers. The key ideas are (1) to use a programmable infrared remote controller to
control the different appliances, and (2) to rely on a service-oriented architecture (SOA) (see
Loke (2003); Papazoglou and Georgakopoulos (2003)).



L. du Bousquet et al.

FIG. 1 – HNS

For each appliance, a self-contained component is implemented in Java and deployed as
web service (using Apache AXIS) (Fig. 1). Methods likeOn() andOFF() are open interfaces
for accessing basic features of the appliance. They use a setof APIs by which the PC can send
infrared signals to the appliances (Ir-APIs). Ir-APIs havebeen implemented by wrapping the
programmable infrared remote controller with a Java NativeInterface (JNI Wrapper).

Some HNS applications may need the current status of an appliance to perform an appro-
priate action. Since, it is impossible for the external application to obtain the current status
from the legacy appliance, an appliance component has a supplementary feature that stores
its current stateaccording to the history of the execution. For each appliance component, a
getStatus() method returns the current state (i.e., the attribute values).

A HNS is installed in an environment, which can be described as a set of attributes. They
include the current energy consumption, the sound level, the temperature, etc. Their value
can be obtained by the way of some sensors (such as thermometer, fire detector...), which are
implemented as web service like other appliance components.

2.3 HNS Integrated Services

Integrated services can be implemented in this framework asclient applications. An inte-
grated service invokes the methods of the appliance components.

Fig. 2 shows a Java-like pseudo code which implements the scenario DVD Theater ser-
vice. In this figure, X.Y() means the invocation of API Y() of appliance X. In the considered
framework, an integrated service component has methods, toinitialize the service (method
initialisation in Fig. 2), and to activate it (activation in Fig. 2). Some services
may also provide method to deactivate the service. For instance, methoddeactivation in
Fig. 2, switches off the appliances used by the DVD theater service.



Increase confidence in one Home Network System implementation

Public DVDTheaterService {
DigitalTV tv; = new DigitalTV();
DVDPlayer dvd; = new DVDPlayer();
SoundSystem speaker; =new SoundSystem();
Light light; = new Light();
Curtain curtain;

void initialisation(DigitalTV aTV, DVDPlayer aDvd,
SoundSystem aSpeaker, Light aLight, Curtain aCurtain){
tv= aTV; ...

}
void activation() {

tv.switchOn(); /* Turn on TV */
tv.setVisualInput(.DVD.);
dvd.switchOn(); /* Turn on the DVD Player */
dvd.setSoundOutput(.5.1.);
speaker.switchOn(); /* Turn on the Sound System */
speaker.setInputSource(.DVD.);
speaker.setVolumeLevel(25);
curtain.closeCurtain(); /* Close curtain */
light.setBrightnessLevel(1); /* Minimize brightness */
dvd.playDvd(); /* Play DVD */

}
void deactivation() {

tv.switchOff();
dvd.switchOff();
speaker.switchOff();
curtain.openCurtain();

} }

FIG. 2 – A pseudo-code for the DVD Theater Service

public void switchOn(void) {
IrControler con = new IrController(); /* Controller and */
IrSignal sig = new IrSignal(); /* signal objects of Ir-API*/
sig.setSignalType(SWITCH_ON, TV_A); /* set signal ON for TV_A*/
con.sendSignal(sig); /* send the signal*/
sleep(2); /* Sleep during 2 seconds*/
state="ON";

}

FIG. 3 – Concrete implementation of methodswitchOn() for TV_A



L. du Bousquet et al.

3 Increasing confidence in HNS integrated services

Before providing a HNS and integrated services, one must guarantee that the implementa-
tion is correct and “safe” for inhabitants, house properties and their surrounding environment.

3.1 Requirements at different levels

Yan et al. (2007) have identified three levels of requirements that can be expected from
integrated services.

For every electric appliance, the manufacturer prescribesa set of safety instructions for
proper and safe use of the appliance. Conventionally, theseinstructions have been designated
for human users. However, in the HNS integrated service, theinstructions must be guaranteed
within the software. For instance, the following shows a safety instruction for an electric kettle:
do not open the lid while the water is boiling, or there is a risk of scald. Any integrated service
using the kettle must be implemented so that it will never open the lid while the kettle is in the
boiling mode.

Since an integrated service orchestrates different multiple appliances simultaneously, it is
necessary to consider global properties over the multiple appliances. For instance, the Cooking
Preparation Service (which automatically sets up the kitchen configuration of preparing for
cooking) must avoid carbon monoxide poisoning.While the gas valve is opened, the ventilator
must be turned on.

In general, each house has a set of residential rules for inhabitants and neighbors for safety.
Since the integrated services give various impacts againstthe surrounding environment (in-
cluding the room, the building, the neighbors, etc), the services must satisfy these rules. For
instance,do not make loud voice or sound after 9 p.m.

An integrated service islocally correct if and only if satisfies all local properties, i.e. all
properties derived from the appliance instructions. It isglobally correctiff it satisfies all prop-
erties prescribed for it. It isenvironmentally correctiff it satisfies all properties derived from
the environment where it is provided.

3.2 Using formal methods: choosing an approach

We want to increase the confidence of the real implementationof the integrated services.
A first experimentation of formalization and validation wasdone in Leelaprute et al. (2005). A
model of services and appliances was proposed and expressedin the SMV language McMillan
(1993). Expected properties of the services were also expressed and the SMV model-checker
was used to prove that the services satisfy the properties.

The experimentation has shown that SMV is expressive enoughto describe practical ser-
vices. It also enables a compact modeling independent of theunderlying HNS protocols or
specific platform. However, this approach appears to be not sufficient for at least three reasons.

The use of a model-checker greatly increases confidence in themodel. However, the model
was not derived from the real system. Abstraction and/or mistakes in the model or the incorrect
property expression may lead to misleading conclusions1.

1This has been observed in du Bousquet (1999).



Increase confidence in one Home Network System implementation

Moreover, HNS are supposed to ease the development of new services and/or user appli-
cations. It is not reasonable to ask a user to translate theirown applications to SMV and prove
them. At least, an automatic translation would be necessary.

Finally, it should be noticed that appliances have some influence on the environment.
Switching on (resp. off) an appliance increases (resp. decreases) the power consumption.
It may also have an influence on the temperature, the brightness, the sound level in the house.
Modification of these parameters can influence the behavior of the whole system. For instance,
temperature is measured by the air-conditioner to determine if it should heat or cool the air with
respect to the required temperature. Relations between appliances and environment are very
difficult to model.

With respect to this analysis, we choose to express a model inthe same language used for
the real application implementation: Java. Moreover, we choose the Java Modeling Language
(JML) to express the specification, for several reasons. It is very close to Java, and it is sup-
posed to be easier for programmers to learn. It is executableand can be embedded in the final
code to monitor its execution. Several tools are available for proof and testing. It supports
more constructions than the “assert mechanism" available in Java.

To validate and improve our HNS implementation, we have carried out the following steps.

1. A model was extracted from the real application (especially appliances and services) and
completed (see Sec. 4) .

2. The model was annotated with JML (see Sec. 5).

3. A validation step was carried out (see Sec. 6). This step has two complementary
goals. First it was required to detect inconsistencies in the model and to improve correc-
tion/robustness of the services. Second, it helped to improve, to detail or to correct the
JML annotations.

4. On this basis, the real implementation is currently modified. JML annotations are intro-
duced in the real implementation code in order to monitor theexecution (current work).

Steps 1 to 3 are dedictated to the elaboration and the validation of the specifications of the
HNS system and integrated services (expressed as annotations). It also helps to test amodelof
the existing system. This model is too abstract from the realimplementation to guarantee the
correction of the real implementation, that is why step 4 is carried out. The annotations cannot
directly be inserted in the implementation; otherwise the real appliances have to be sollicitated
during the specification validation (test).

4 Model construction

The basis of the model was thus built as a simplification of theimplementation. Each
component representing the appliances and the services were modified so that the calls to the
remote control API (Fig. 3) were transformed into simple printing message calls (Fig. 4).

Then the model was extended. First, the environment of the house was implemented as a
specific object, calledEnvironment. Environment object attributes represent sensor mea-
surements. For instance, atemperature attribute is the abstraction of thermometer sensor
output. For each of these attributes, aset_attribute() method is provided to allow the



L. du Bousquet et al.

public void switchOn(void) {
System.out.println("SWITCH_ON, TV_A");
internalState="ON";

}

FIG. 4 – Simplification of methodswitchOn() for TV_A in the model

public void switchOn(void) {
if (powerState.equals("ON")) {
setApplianceConsumption(maxConsumption);
System.out.println("SWITCH_ON, TV_A");
internalState="ON"; }

}

FIG. 5 – Evolution of methodswitchOn() for TV_A in the model

environment changes. Aget_attribute() method allows the interrogation of the sensor
by any appliances or services.

Second, a home object was implemented. It corresponds to a particular configuration of
the home network systems. From the home interface, it is possible to call any public methods
of service, appliance or environment objects.

Finally, the appliance objects were modified. The initial implementation did not take into
account the fact that appliances can be powered on or off. Internal state of appliances and
the code of some methods were completed to deal with the powerstate. One inheritance
level was introduced in order to factor common methods such as powerOn(), powerOff,
switchOn() andswitchOff(). At last, the influences of the appliances on the environ-
ment (such as temperature, sound, ...) were also added. Our current model is composed of 25
classes among which 14 appliance components and 7 services.

5 Using Java Modeling Language

5.1 Brief description of JML

The Java Modeling Language (JML) is an annotation language used to specify Java pro-
grams by expressing formal properties and requirements on the classes and their methods (see
Leavens et al. (1999)).

The JML specification appears within special Java comments,between /*@ and @*/ or
starting with //@. The specification of each method precedesits interface declaration. JML an-
notations rely on three kinds of assertions: class invariants, pre-conditions and post-conditions.
Invariants have to hold in all visible states. A visible state roughly corresponds to the initial
and final states of any method invocation JML (2005). JML relies on the principles of Design
by Contract defined by Meyer (1992), which states that to invoke a method, the system must
satisfy the method pre-condition, and as a counterpart, themethod has to establish its post-



Increase confidence in one Home Network System implementation

conditions. A method’s precondition is given by therequiresclause. If that is not true, then
the method is under no obligation to fulfill the rest of the specified behavior.

JML extends the Java syntax with several keywords.\result denotes the return value
of the method. It can only be used inensuresclauses of a non-void method.\old(Expr)
\forall and\exists designate universal and existential quantifiers.

5.2 Specification of our system

We have used the JML assertions for two purposes. First it wasused to check consistency
of the model. Second, it was used to express explicit requirements (such as those given in
section 3.1).

As explained previously, we have derived a model from the real implementation and have
modified it, especially at the appliance level. In order to increase confidence with respect to
those modifications, we have introduced JML assertions dedicated to the appliance internal
state consistency specification. Those assertions can be both expressed as invariant and prost-
conditions. For instance, for any object, its internal state space is specified by an invariant. The
evolution of its state is specified as post-conditions associated with each method.

The implementation of local, global and environment properties were done in a systemati-
cal way. Local properties were described both as pre-conditions and invariants in the appliance
objects. Service expected behaviors were described with post-conditions. Global properties
were expressed as invariant in the service classes. Environment properties were expressed
in theEnvironment class, as invariants. In our actual model, we have inserted 209 JML
annotations (17 pre-conditions, 150 post-conditions, and42 invariants).

6 The Testing Process

JML specifications can be used as an oracle for a test process.For improving confidence
within the model, we have used a combinatorial testing approach. Here, we first cover some
principles of testing with JML, before introducing our approach for combinatorial testing.

6.1 JML as a Test Oracle

JML is executable. It is possible to use invariant assertions, as well as pre- and post-
conditions as an oracle for conformance testing. JML specifications are translated into Java by
thejmlc tool, added to the code of the specified program, and checked against it, during its
execution.

The executable assertions are thus executed before, duringand after the execution of a
given operation. Invariants are properties that have to hold in all visible states. A visible state
roughly corresponds to the initial and final states of any method invocation (JML (2005)).
When an operation is executed, three cases may happen.All checks succeed: the behavior
of the operation conforms to the specification for these input values and initial state. The test
delivers aPASSverdict. An intermediate or final check fails: this reveals an inconsistency
between the behavior of the operation and its specification.The implementation does not
conform to the specification and the test delivers aFAIL verdict. An initial check fails: in
this case, performing the whole test will not bring useful information because it is performed



L. du Bousquet et al.

outside of the specified behavior. This test delivers anINCONCLUSIVE verdict. For example,√
x has a precondition that requiresx being positive. Therefore, a test of a square root method

with a negative value leads to anINCONCLUSIVEverdict.

6.2 Test Case Generation

Combinatorial testing performs combinations of selected input parameters values for given
operations and given states. For example, a tool like JML-JUnit generates test cases which
consist of a single call to a class constructor, followed by asingle call to one of the methods
(see Cheon and Leavens (2002)). Each test case corresponds to a combination of parameters
of the constructor and parameters of the method.

The LIG laboratory has developed Tobias (see du Bousquet et al. (2004); Dupuy-Chessa
et al. (2005); Ledru et al. (2004)), a test generator based oncombinatorial testing (see Cohen
et al. (1996)). It adapts combinatorial testing to the generation of sequences of operation calls.
The input of Tobias is composed of a test pattern (also calledtest schema) which defines a
set of test cases. A schema is a bounded regular expression involving the Java methods and
their associated JML specification. Tobias unfolds the schema into a set of test cases: all
combinations of the input parameters for all operations of the schema are computed. The test
suite can be turned into a JUnit file thanks to Tobias.

The schemas may be expressed in terms ofgroups, which are structuring facilities that
associate a method, or a set of methods, to typical values. Groups may also involve several
operations. For instance, for testing the Blind class, one can design the following schema:

T-Blind =















T-Blind = Init ; BlindOp^{4..4} with
Init = {Blind aBlind = new Blind()}
BlindOp = {aBlind.powerOn()} ∪ {aBlind.powerOff()}
∪{aBlind.Open()} ∪ {aBlind.Close()}

Init is a set of only one instantiation.BlindOp is a set of 4 instantiations. The suffix
^{4..4}means that the group is repeated 4 times.T-Blind is unfolded into 1*(4*4*4*4)=
256 test cases.

To validate our model, we have designed several test schemascorresponding to different
phases in the validation process. First, each appliance wastested in isolation and in the context
of the home. Thus, schemas similar toT-Blind were produced for each appliance. This
phase revealed severalINCONCLUSIVE verdicts because some pre-conditions of some opera-
tions were not satisfied. For instance, within the kettle test schemas, theopenLid method of
the kettle can be called when it is in the boiling mode. This isnot supposed to be done due
to the kettle local properties. TheseINCONCLUSIVE verdicts were expected, each time some
specific local properties were implemented.

This phase also revealed severalFAIL verdicts, which were not expected. A careful analysis
showed that appliance implementations were sometimes inconsistent with the JML assertions.
Those inconsistencies resulted mainly in the evolutions ofthe model and the specification,
which was sometimes not completely carried out.

In a second phase, we have focused our work on the service validation. The main objective
was to activate each service in different situations (in order to be sure that a service can be



Increase confidence in one Home Network System implementation

activated in any cases). Two types of test sequences were produced and executed. Both sets of
tests were composed of a prologue followed by the activationof the service under test.

The first set was dedicated to the service activations validation with respect to the different
appliance states. To do that, the test prologue consisted of3 or 4 different calls to one appliance.
This was aimed at checking that the services could work correctly whatever the state of each
appliance (taken independently). This allowed us to detectthat some calls or checks were
forgotten for some services. For instance, in the RelaxService, kettle was not closed before
switching on. This problem was not discovered during preliminary tests because when the
kettle object is created, its lid is close. By applying several consecutive calls on the kettle
before activating the RelaxService, we were able to discover the implicit requirement about
the kettle lid. We corrected the service by systematically closing the lid before switching it on.

The second test set was dedicated to the service activation validation against different en-
vironment states (temperature, time, sound level, currentconsumption...). To do that, the pro-
logue consisted of applying different parameters to the environment attributes. This aimed
at checking that the service could work correctly whatever the state of the environment. Of
course, it was very easy to show how services were not consistent with the usage rules. For
instance, the DVD Theater Service violate the environment property “do not make loud voice
or sound after 9 p.m." if it is activated after 9 p.m.

More than 30 test schemas were described and unfolded in the Tobias plug-in for Eclipse.
Schemas have between 500 and 5000 test cases. Unfolding phase lasts at most two minutes
for the biggest schemas2. Tests cases then were translated in the JUnit format and executed
within the Eclipse environment. It took at most 500 seconds for the biggest sets of test cases.
Approximately 10 errors were found (at the appliance and service levels).

7 Conclusion and perspectives

Home network systems are critical applications. Before becoming widespread, it is essen-
tial to guarantee the correctness, the safety and the security of the services. In this paper, we
study the use of Java Modelling Language, to specify and validate an HNS implementation.
The work is carried out in two steps. During the first step, we have derived a Java model of the
real implementation. The model was then annotated and validated with a combinatorial testing
approach. The actual model is composed of 14 appliances and 7services. The specification is
composed of 209 JML annotations (17 pre-conditions, 150 post-conditions, and 42 invariants).
More than 30 test schemas were described and unfolded into a set of 500 to 5000 executable
test cases within the Tobias tool.

A second step of the work consisted of the insertion of the annotations in the real imple-
mentation. This allows a continual monitoring of the application. This part is under work.

There are two main directions in which we want to work. The first one is the use of a
prover as a complement to the testing approach. JML was chosen because several tools are
available (see Leavens et al. (2000); van den Berg and Jacobs(2001); Burdy et al. (2003);
Flanagan et al. (2002)). We first tried to use the JACK tool (see Burdy et al. (2003)). However,
the current version of JACK does not support the JML version we used. We are currently
evaluating ESC/JAVA (see Flanagan et al. (2002)).

2Tobias was executed on a laptop, equipped with a 1.5GHz processor and 512 MO of RAM, with Window XP OS.



L. du Bousquet et al.

The second main direction of our work is to provide a framework to ease the extension of
the existing system. Indeed, the translation of the real implementation into a model is difficult
to automate and is error-prone. In order to ease the process when introducing new services
or appliances, we propose to follow a different strategy. Instead of directly implementing
appliances and/or services in the real implementation, onewould have to express them directly
into the model. Thus, it would be possible to validate their use in the model (with test and
proof), and to correct it (if needed). Then, it will be possible to transform the classes of the
model into skeleton of classes for the implementation, which have to be completed before their
final use. To reduce the probability of errors introduced at that step, the skeletons should be as
complete as possible.

Acknowledgement This research was partially supported by the Ministry of Education, Sci-
ence, Sports and Culture, Grant-in-Aid for Young Scientists (B) (No. 18700062), Scientific
Research (B) (No. 17300007), and Comprehensive Development of e-Society Foundation
Software program. It is also supported by JSPS and MAE under the Japan-France Integrated
Action Program (PHC-SAKURA).

References

Burdy, L., A. Requet, and J.-L. Lanet (2003). Java applet correctness: a developer-oriented
approach. Inthe 12th Int. FME Symposium, Italy.

Cheon, Y. and G. Leavens (2002). A simple and practical approach to unit testing: The JML
and JUnit way. InECOOP 2002, Vol. 2474 ofLNCS, pp. 231–255. Springer.

Cohen, D., S. Dalal, J. Parelius, and G. Patton (1996). The combinatorial design approach to
automatic test generation.IEEE Software 13(5), 83–88.

du Bousquet, L. (1999). Feature interaction detection using testing and model-checking, expe-
rience report. InWorld Congress on Formal Methods, Vol. 1708 ofLNCS, Toulouse, France,
pp. 622–641. Springer Verlag.

du Bousquet, L., Y. Ledru, O. Maury, C. Oriat, and J.-L. Lanet(2004). A case study in JML-
based software validation (short paper). In19th Int. IEEE Conf. on Automated Sofware
Engineering (ASE’04), pp. 294–297.

Dupuy-Chessa, S., L. du Bousquet, J. Bouchet, and Y. Ledru (2005). Test of the ICARE
platform fusion mechanism. In12th Int. Workshop on Design, Specification and Verification
of Interactive Systems, Vol. 3941 ofLNCS, pp. 102–113. Springer.

Flanagan, C., K. R. M. Leino, L. M., G. Nelson, J. B. Saxe, and R. Stata (2002). Extended static
checking for Java. InProc. of the ACM SIGPLAN 2002 Conf. on Programming language
design and implementation, pp. 234–245. ACM Press.

Geer, D. (2006). Nanotechnology: the growing impact of shrinking computers.Pervasive
Computing 5(1), 7–11.

Hitachi. The electric household appliances revolution will change your lifestyle!
http://www.hitachi-cable.co.jp/en/hc-news/353/index_1.html.

JML (2005). The JML Home Page. http://www.jmlspecs.org.



Increase confidence in one Home Network System implementation

Kolberg, M., E. Magill, and M. Wilson (2003). Compatibilityissues between services support-
ing networked appliances.IEEE Communications Magazine 41, 136–147.

Leavens, G., A. Baker, and C. Ruby (1999). JML: A notation fordetailed design. In H. Kilov,
B. Rumpe, and I. Simmonds (Eds.),Behavioral Specifications of Businesses and Systems,
pp. 175–188. Kluwer.

Leavens, G. T., K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs (2000). JML: notations and
tools supporting detailed design in Java. In ACM (Ed.),OOPSLA 2000 Companion. Also
available as Tech. Report TR 00-15, Dep. of Computer Science, Iowa State Univ., Aug.
2000. ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/.

Ledru, Y., L. du Bousquet, O. Maury, and P. Bontron (2004). Filtering TOBIAS combinatorial
test suites. InFundamental Approaches to Software Engineering (FASE’04), Vol. 2984 of
LNCS, Barcelona, Spain. Springer.

Leelaprute, P., T. Tsuchiya, T. Kikuno, M. Nakamura, and K.-I. Matsumoto (2005). Describing
and verifying integrated services of home network systems.In 12th Asia-Pacific Software
Engineering Conf. (APSEC’05), Taiwan, pp. 549–560. IEEE.

Loke, S. W. (2003). Service-oriented device ecology workflows. InFirst Int. Conf. on Service-
Oriented Computing (ICSOC 2003), Vol. 2910 ofLNCS, Italy, pp. 559–574. Springer.

Matsushita Electric Industrial Co., L. Kurashi net (jp).
http://national.jp/appliance/product/kurashi-net/.

McMillan, K. L. (1993).Symbolic Model Checking. Kluwer Academic Publishers.

Meyer, B. (1992). Applying “Design by Contract".Computer 25(10), 40–51.

Nakamura, M., A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto (2006). Adapting legacy
home appliances to home network systems using web services.In Int. Conf. on Web Services
(ICWS’06), pp. 849–858. IEEE.

Nakamura, M., A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto (2008). Constructing home
network systems and integrated services using legacy home appliances and web services.Int.
Journal of Web Services Research.

Papazoglou, M. P. and D. Georgakopoulos (2003). Special issue: Service-oriented computing.
Introduction.Commun. ACM 46(10), 24–28.

Toshiba. Toshiba home network: Feminity.http://www3.toshiba.co.jp/feminity/.

van den Berg, J. and B. Jacobs (2001). The LOOP Compiler for Java and JML. InTools and
Algorithms for the Construction and Analysis of Systems (TACAS’01), Vol. 2031 ofLNCS.
Springer.

Yan, B., M. Nakamura, L. du Bousquet, and K. ichi Matsumoto (2007). Characterizing safety
of integrated services in home network system. In5th Int. Conf. On Smart Homes and
Health Telematics (ICOST), Vol. 4541 ofLNCS, Japan, pp. 130–140. Springer.


