
 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 81

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

This article presents a framework that adapts the conventional home electric appliances with the infrared
remote controls (legacy appliances) to the emerging home network system (HNS). The proposed method
extensively uses the concept of service-oriented architecture to improve programmatic interoperability among
multi-vendor appliances. We first prepare APIs that assist a PC to send infrared signals to the appliances.
We then aggregate the APIs within self-contained service components, so that each of the components
achieves a logical feature independent of device/vendor-specific operations. The service components are
finally exhibited to the HNS as Web services. As a result, the legacy appliances can be used as distributed
components with open interfaces. To demonstrate the effectiveness, we implement an actual HNS and
integrated services with multi-vendor legacy appliances.

Keywords:	 home network system; infrared control; integrated services; legacy migration; service-
oriented architecture

INTRODUCTION
The emerging technologies enable general
household appliances, such as TVs, DVD play-
ers, lights, ventilators, refrigerators, air condi-
tioners, blinds and curtains, to be connected with
a local area network at home. A system consist-

ing of such networked appliances is generally
called a home network system (HNS, for short),
which is intended to provide more convenient
and comfortable living for home users. Research
and development of the HNS are currently a
hot topic in the area of ubiquitous/pervasive

Constructing Home Network
Systems and Integrated Services
 Using Legacy Home Appliances

and Web Services
Masahide Nakamura, Kobe University, Japan

Akihiro Tanaka, Nara Institute of Science and Technology, Japan

Hiroshi Igaki, Kobe University, Japan

Haruaki Tamada, Nara Institute of Science and Technology, Japan

Ken-ichi Matsumoto, Nara Institute of Science and Technology, Japan

masa-n
This is a pre-print version. Page numbers may vary in the final version.

82 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

computing. Several HNS products are already
on the market, (e.g., Hitachi, 2003; Matsushita,
2005; Toshiba, 2005).

The HNS provides many applications
and services. The applications typically take
advantage of wide-range control and monitor-
ing of appliances inside and outside the home.
Moreover, integrating different appliances via
network yields more value-added and powerful
services (Kolberg, Magill, & Wilson, 2003),
which we call HNS integrated services. For
instance, integrating a TV, a DVD player,
speakers, lights and a curtain would implement
a HNS integrated service, say, DVD theater
service. When a user requests the service, the
lights become dark, the curtain is closed, the
5.1ch speakers are selected, the sound volume
is adjusted, and the contents are played with
the DVD player. Thus, the user can watch
movies in a theater-like atmosphere within a
single operation.

In general, each networked appliance is
equipped with smart embedded devices, in-
cluding a network interface, a processor and
storage, in order to provide and execute the
appliance features required for various HNS
applications and services. As the embedded
devices become more down-sized, cheaper,
and more energy-saving, it is expected in the
near future that every object will be networked
(Geer, 2006).

However, transition to the networked ap-
pliances is gradual. Most people are still using
legacy appliances, which are the conventional
non-networked home appliances. Although it
is usual to see a network and PCs at home, the
networked appliances are not widely spread
yet.

There are several reasons why the net-
worked appliances are not spread yet. Firstly, the
networked appliances are still quite expensive.
Secondly, types of available appliances are lim-
ited (audio/visual appliances have been being
networked recently, but many others are not yet).
Also, due to the lack of programmatic interoper-
ability (Smith & Meyers, 2005), the integration
of appliances is strictly limited; especially in
the multi-vendor environment the integration

is quite a challenging problem. Finally, there
is a major requirement that the users want to
keep using the legacy appliances that they are
accustomed to use. Considering these reasons, it
is not easy for the general home users to renew
immediately all the existing legacy appliances
with the networked ones.

To cope with both the emerging HNS and
the legacy appliances, this article presents a new
framework that adapts the legacy appliances to
the HNS. Specifically, for the legacy appliances
with the conventional infrared remote control-
lers (denoted by IrRC), we propose a way to
implement a smart adapter on a PC that con-
nects the legacy appliances to the HNS. For this,
we exploit the concept of the service-oriented
architecture (SOA) (Loke, 2003; Papazoglou
& Georgakopoulos, 2003), extensively.

The adaptor is based on a three-layered
architecture: IR device layer, service layer,
and Web service layer. In the IR device layer,
we develop a set of APIs, called Ir-APIs, by
which the PC can send any infrared signals to
appliances. Note that the infrared signals are
specific to devices and vendors. Also, execut-
ing a feature of an appliance requires the user
vendor-specific operations of the IrRC. Thus,
it is inconvenient for external HNS applica-
tions to use the Ir-APIs directly. Therefore, the
service layer then aggregates multiple Ir-API
calls within self-contained services, so that
each of the service achieves a logical feature
independent of the vendor (or device)-specific
issues. Finally, the services are deployed in the
HNS as Web services (W3C, 2002) in the Web
service layer. Thus, every legacy appliance
becomes a distributed component with an open
interface, which can be used by various kinds
of HNS applications. The users can build their
own integrated services and HNS applications
with the legacy appliances.

To demonstrate the effectiveness, we
have implemented an actual HNS and several
integrated services. As a result, it was shown
that the proposed framework is well applicable
to multi-vendor legacy appliances, and that
practical integrated services can be created as
relatively small client applications. We also

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 83

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

present graphical user interfaces for operating
HNS integrated services.

The digest version of this article was pub-
lished as a conference paper in IEEE ICWS’06
(Nakamura, Tanaka, Igaki et al., 2006). Changes
were made to this version, most significantly
the refinement of the architecture, the addition
of the user interface implementation, and the
addition of evaluation section. We believe that
these new results clarify the applicability and
limitations of the proposed method against a
practical HNS.

PRELIMINARIES

Home Network System (HNS)
A HNS consists of one or more networked
appliances connected to LAN at home. Each
networked appliance has a set of control APIs,
so that the user or software agents can control
the appliance via the network. To process the API
calls, each appliance generally has embedded
devices including a processor and storage.

Figure 1 shows an example of HNS, which
consists of various networked appliances and a
home server. The home server typically plays
a role of gateway to the external network. It
also works as an application server, where
the HNS applications are installed. As seen
in Figure 1, every HNS integrated service is
implemented as a software application that
invokes the APIs according to a certain control

flow. The services are supposed to be installed
in the home server.

Communications among the appliances
are performed based on the underlying network
protocol. Currently, many standard protocols
are being standardized for the networked appli-
ances. Major protocols include DLNA (DLNA,
2006) for digital audio/video appliances and
ECHONET (ECHONET, 2006) for white goods
(e.g., refrigerator, air conditioners, and laundry
machines). However, these standard protocols
mainly prescribe a set of network-layer agree-
ments of the appliance, such as address setup
and message formats. The programmatic in-
teroperability (Smith & Meyers, 2005) at the
application layer or higher is beyond the scope
of the protocols.

To minimize the interoperability issue,
most of the current HNS (e.g., Hitachi, 2003;
Matsushita, 2003; Toshiba, 2005) are comprised
of the single-vendor appliances. Applications
on the HNS are limited to the proprietary ones
provided by the same vendor. Types of appli-
ances that can be integrated are limited, too. The
next challenge for the industries is to establish
standards at the application layer, which allows
any combination of multi-vendor appliances
over different protocols.

Figure 1. An example of home network system

84 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Service-Oriented Framework for
HNS (Igaki, Nakamura, &
Matsumoto, 2005)
Service-oriented architecture (SOA) is a
system architecture that facilitates integration
of distributed heterogeneous systems (Loke,
2003; Papazoglou & Georgakopoulos, 2003).
In an SOA, primary features of each system are
aggregated as a set of services. More sophis-
ticated systems are basically constructed by
integrating the existing services. SOA has been
extensively studied and adopted in the domain
of enterprise systems, since SOA-based systems
are quite resilient for changes and integration of
business processes. Web services (W3C, 2002)
are known as a primary means to implement
SOA-based systems.

To improve the programmatic interoper-
ability discussed above, we have presented
a service-oriented framework for HNS in our
previous work (Igaki et al., 2005), which ap-
plies the concept of SOA to the networked
appliances. Figure 2 depicts an example of a
networked TV, illustrating the key idea of the
framework. In this framework, each networked
appliance is designed based on a two-layered
architecture: a device layer and a service layer.
The device layer represents the hardware and
the control APIs (including the middle-ware)

of the networked appliance. In the figure, the
APIs denote the control APIs of the networked
TV. They can be invoked by external entities in
accordance with the HNS protocol conformed
by the TV.

On the other hand, the service layer aggre-
gates the control APIs according to the logical
features of the TV. Then, the layer exports the
features to the network as the self-contained
services with open interface (i.e., methods). The
communication among the device and service
layer is supposed to be based on the device-
proprietary procedure. Thus, the proprietary
API calls at the device layer are hidden from the
service user. The service layer is implemented
as an application, and is supposed to be installed
in the storage of the networked appliance.

As seen in Figure 2, features like power,
sound and channel are quite generic features
that every vendor’s TV is supposed to have.
Thus, in this example these features are con-
sidered to be TV services. The methods like
ON(),OFF(), setVolume(), setChannel() are
open and vendor-neutral interfaces for the TV
service. Invocation of these methods does not
require any knowledge specific to the underlying
implementation or protocol of the device layer.
Unless the interface definition is changed, any
modification in the service and device layers

Power
ON()

Channel
setChannel()OFF()

Service Layer

Device Middleware

Device Layer

Sound Selector
setVolume()

API API API API APIAPI API API APIAPIAPI API API API API APIAPI API API APIAPIAPI

setInput()

Proprietary Communication

Figure 2. Architecture of networked appliance based on SOA

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 85

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

does not give impact to the service users. Also,
the service users can easily develop their own
integrated services, by combining the method
invocations of different appliances. As a result,
we are able to achieve a HNS that copes with
both system evolution and appliance interop-
erability.

Note however that this framework pre-
sented in (Igaki et al., 2005) assumes the
networked appliances only. The legacy appli-
ances without the processor or the storage are
beyond the scope. Also, the framework is not
yet fully evaluated or implemented with the
actual networked appliances.

Software Controller for Legacy
Appliances
There have been several software applications
with which the user can control legacy appli-
ances from a PC or a handheld device such
as handy phones (Kaden Control Lab, 2006;
NANO Media Inc., 2005). We here call such
applications soft-controllers.

Figure 3 shows a typical example of the
soft-controllers, which is for a legacy TV with
the conventional infrared remote controller for
home appliances (denoted by IrRC). The user
first selects and executes a control command

through the user interface (UI). Then, the appli-
cation sends the corresponding infrared signals
to the appliance through the driver (IrRC driver)
and the interface (IrRC I/F)1.

The soft-controllers basically assume a
use case that a human user controls a single
appliance at a time. They are not supposed to
be invoked by other applications, or to be or-
chestrated by other appliances via the network.
Also, since the appliance and the application are
tightly coupled, the same controller cannot be
used directly for other appliances. Therefore, it
is difficult to apply the soft-controllers directly
for the purpose of adaptation of legacy appli-
ances to the HNS.

ADAPTING LEGACY HOME
APPLIANCES TO HNS

Requirements
Our goal is to adapt the legacy appliances with
the IrRC to the HNS. More specifically, we
try to propose a framework to implement an
adapter for the legacy appliances, satisfying
the following requirements.

•	 Requirement R1: The framework must
achieve easy creation of HNS integrated
services with arbitrary combinations of the
legacy appliances.

•	 Requirement R2: The framework must be
implemented using generic PCs and IrRC
devices without special hardware.

•	 Requirement R3: The framework must
be applicable to a wide range of types and
vendors of the appliances.

The current HNS products do not assume
integration of the legacy appliances with the
HNS. Also, they have yet problems in require-
ments R1 and R3. Our previous framework in
(Igaki et al., 2005) takes requirements R1 and
R3 into account, but it cannot satisfy Require-
ment R2. The soft-controllers are for legacy
appliances, but cannot satisfy requirement
R1. Thus, the existing methods cannot be used
directly to achieve our goal.

Legacy
TV

IrRC I/F
IrRC Driver

PC or Handheld
Device

UIUI
Proprietary
Application

Figure 3. Soft-controller for a legacy TV

86 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Proposed Architecture
To satisfy requirements R1 through R3, we here
propose a new architecture depicted in Figure
4. As an example, we explain the architecture
of an adapter for a legacy TV in the figure. The
proposed architecture replaces the device layer
of our former architecture (see Figure 2) with
the IR device layer consisting of IrRC devices
and the legacy appliance. Also, it puts a Web
service layer on top of the service layer.

To implement the adapter, we first prepare
a PC (or handheld device) and an IrRC device
that can be connected to the PC. On the PC,
we implement a set of APIs called Ir-APIs
with which applications can send any infrared
signals to the appliance. Next, for a given
legacy appliance, we develop a set of services
of the appliance, each of which encapsulates
several Ir-API calls to achieve a self-contained
and vendor-neutral feature. Finally, we export
these services as Web services and deploy them
in the HNS. We call the methods of the Web
services Web-APIs.

The integrated services and any user ap-
plications are implemented as client applica-
tions that invoke the Web-APIs. For this, the
implementation of IrRC, which often varies
among appliance types and/or vendors, is hid-
den within the service layer. The service users
can execute various features of the appliance

without device-specific knowledge. The same
framework is applied to other legacy appliances.
Then, the integrated service can be created by
assembling Web-APIs provided multiple ap-
pliances, according to a desired control flow
(i.e., workflow).

Taking full advantage of Web services, the
proposed architecture also aims the integration
of the legacy home appliances with the external
Web services for the future extension (see left-
side of Figure 4). Once every legacy appliance
is adapted as a Web service, it is quite easy to
implement services that mash up the appliances
and various existing services available in the
Internet. This fact implies that the proposed
architecture has the great extendibility of HNS
services.

IR Device Layer: Providing APIs
for Infrared Remote Controller
(Ir-APIs)
In general, a legacy appliance with an IrRC is
operated as follows. When a user presses a but-
ton of the IrRC, an infrared signal corresponding
to the button is issued from the controller. Upon
receiving the signal, the appliance executes the
corresponding feature (or operation). Thus, the
communication mechanism is quite simple.
However, the correspondence between the
infrared signal and the feature varies among

Figure 4. Proposed architecture for adapting legacy appliances

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 87

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

vendors and types of the appliance. Therefore,
it is convenient to have all-purpose wrappers
for the IrRC, with which the applications in the
upper layer can flexibly switch and manage such
vendor (and device)-specific signals.

For this purpose, we implement Ir-APIs
on the top of the Ir-RC driver. The Ir-APIs
provide a set of generic interfaces with which
the applications can send any infrared signals
to arbitrary types of legacy appliances. The Ir-
APIs are relatively low-level but generic APIs,
which should be commonly used by all types
of appliances. Therefore, typical Ir-APIs must
include; initialize IrRC, set signal type, send
signal, start sending burst signal, stop sending
burst signal, sleep.

Service Layer: Aggregating
Features as Vendor-Neutral
Services
The granularity of Ir-APIs is so fine that one
Ir-API does not necessarily correspond to a
single logical feature of the target appliance.
Also, each IrRC operation heavily depends on
the vendor and type of the appliance. It is not
a good idea to expose every Ir-API directly to
the HNS, since the user has to take care of the
device-specific specification of IrRC of the
target appliance.

The service layer aggregates, for every
logical feature of the appliance, several Ir-API
calls within a service method. What most im-
portant here is that every service method must
be self-contained. Specifically, we recommend
that every service method m should satisfy the

following conditions:

•	 Condition S1: m is always executable by
itself, independent of the context of other
services or appliances.

•	 Condition S2: m achieves by itself a con-
sistent logical feature of the appliance.

For instance, let us consider a TV manufac-
tured by a vendor A, denoted by TVA. Suppose
that TVA has the following restriction on its
implementation: “Once turned on, it does not
accept any infrared signals during 2 seconds
until the hardware becomes fully operational.”
Then, the service method ON() for TVA should
be implemented as in the Java-like pseudo
code in Figure 5. The first four statements are
for achieving a logical feature “turn on TVA,”
satisfying condition S2. The last statement,
sleep(2), is for the subsequent method invoca-
tions to achieve the condition S1. The sleep
statement consumes the 2-seconds wait, so
that any methods executed after ON()should
not be influenced by the device-specific restric-
tion of TVA.

When a feature requires a sequence of mul-
tiple Ir-APIs, these APIs should be encapsulated
within a service method. The pseudo code in
Figure 6 is to set the sound volume of TVA to
a given level x. In general, the volume level is
adjusted by a human user with a relative scale
considering the current volume level. However,
here the application needs to do the task. Hence,
the method setVolume() first minimizes the
sound volume by repeatedly sending the signal

 public void ON(void) {
IrControler con = new IrController(); /*Controller and */
IrSignal sig = new IrSignal(); /*signal objects of Ir-API*/
sig.setSignalType(ON, TV_A); /*set signal ON for TV_A*/
con.sendSignal(sig); /*send the signal*/

sleep(2); /*Sleep during 2 seconds*/
}

Figure 5. Service method ON() for TVA

88 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of volume-down, and then sends the signal of
volume-up for x times. Moreover, the sound ad-
justment feature depends on the power feature,
since it works only when TVA is ON. Therefore,
setVolume() contains an invocation of ON() in
case the power is off. Thus, the service method
becomes self-contained.

Supplementary Service:
Getting Status
Some HNS applications may get the current
status of an appliance, and then perform an
appropriate action based on the status. A typi-
cal example is an energy-saving service, which
stops a DVD player when a TV is turned off.

However, the communication among a
user and a legacy appliance is basically one-
way from the IrRC to the appliance. Hence,
it is impossible for the external application
to obtain the current status directly from the
legacy appliance.

To cope with the problem, we implement,
in the service layer, a supplementary feature
that stores the current state of the appliance
according to the history of service execution.
Specifically, for every appliance, we prepare a
database, called state DB, for storing the cur-

rent values of primary properties the appliance.
When a service method is executed, the values
of the corresponding properties are updated in
the state DB. We then deploy a service method
getStatus()which returns the current state (i.e.,
the tuple of the property values) upon the request
from the external applications.

Web Service Layer:
Exporting Service Methods as
Web-APIs
For every service method implemented in the
service layer, we export the method to the HNS
as a Web-API. In this article, we adopt the Web
services (W3C, 2002), which is a standard SOA
framework, for the service exportation. The
interface definition of each service method
is strictly typed by an XML-based language,
called WSDL. An external application first
interprets the interface definition, and then
invokes a Web-API via network with appropri-
ate parameters.

HNS Integrated Services
Once features of every legacy appliance are
exported as Web-APIs, the legacy appliances
can be used as distributed components. By

 public void setVolume(unsigned int x) {
IrControler con = new IrController(); /*Controller and */
IrSignal sig = new IrSignal(); /*signal objects of Ir-API*/

if (Power==OFF) ON(); /*Turn on when TV_A is off*/

sig.setSignalType(VOLDOWN, TV_A); /*Volume down signal*/
for (repeat_enough_times) { /*Minimize the sound level*/

con.sendSignal(sig);
}

sig.setSignalType(VOLUP, TV_A); /*Volume up signal*/
for (;x>0;x--) { /*Issue volume up x times*/

con.sendSignal(sig);
}

}

Figure 6. Service method setVolume() for TVA

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 89

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

combining these components, the user can as-
semble various integrated services. Specifically,
an integrated service can be implemented as a
client application consisting of invocations of
the Web-APIs and a control flow among the
APIs. Note that the user can invoke Web-APIs
with an arbitrary control flow, since every Web-
API should be self-contained. For instance, let
us consider the DVD theater service mentioned
in Section INTRODUCTION. Figure 7 repre-
sents a sequence of Web-API invocations that
can implement of the service.

The client application is installed on a
remote PC or a handheld device owned by the
user. It is also possible to install the integrated
service on the home server. Then, the integrated
service can be executed even from outside home.
Also, the integrated service can be deployed
as a new Web service to be reused for more
sophisticated services.

IMPLEMENTATION: NAIST-HNS
Based on the proposed framework, we have
implemented an actual HNS with the legacy
appliances. The developed HNS is called
NAIST-HNS.

Legacy Appliances Used
The following legacy appliances have been
used in NAIST-HNS. Note that our system is
composed of multi-vendor appliances:

Plasma display:
	 NEC PX-50XM2
DVD/HDD recorder:
	 Toshiba RF-XS46

Wireless LCD TV:
	 Sony KLV-17WS1
Ceiling light:
	 Panasonic HHFZ5310
Curtains with actuator:
	 NAVIO Powertrack
Air cleaner:
	 Hitachi EP-V12
Air circulator:
	 MORITA MCF-257NR
Power plug with IrRC:
	 HORIBA IS-100
Climate monitor (sensor):
	 IT Watchdogs WxGoos-1

Implementation of Legacy Adapter
Figure 8 depicts the overview of the devel-
oped legacy adapter for NAIST-HNS. In this
implementation, we installed services for all
appliances within a single PC. Note that this
is just for convenience of the experiment. The
services can be distributed among multiple
PCs if necessary (see evaluation section for
more details).

Technologies used for the system compo-
nents are summarized as follows:

PC: 	
	 Celeron M360J, 512MB, 80GB, WinXP

Pro
IrRC I/F:
	 Sugiyama Electron -- Crossam2+USB
IrRC Driver:
	 Serial COM library for Crossam2+USB
Ir-API:
	 Java Native Interface (JNI) Wrapper

 TV.setInput(DVD); /*Set input mode for DVD*/
Light.setBrightness(1); /*Minimize brightness*/
Curtain.Close(); /*Close curtain*/
Speaker.setInput(DVD); /*Set input mode for DVD*/
Speaker.setChannel(5.1); /*Set channel to 5.1ch*/
Speaker.setVolume(25); /*Set volume level to 25*/
DVD.play(); /*Play DVD*/

Figure 7. Integrated service (DVD theater)

90 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Service Layer:
	 J2SE 5.0
Web Service Layer:
	 Apache AXIS 1.3

The Crossam2+USB (Crossam, for short)
adopted for IrRC I/F is a programmable infrared
remote controller, which can be connected to
a PC. Crossam can memory infrared signals
of various legacy appliances, and can dispatch
a signal in each button. The customization of
Crossam is quite simple, and thus we can eas-
ily correspond to addition or replacement of
legacy appliances.

Also, Crossam has a bundled serial port
library written in C++. Using the library, the
external program can send low-level commands,
such as press a button, start and stop signal, to
Crossam. Hence, we have used the bundle for
IrRC Driver.

Next, we implemented Ir-APIs that can
be invoked from Java programs by wrapping

the Crossam library with Java Native Interface
(JNI). The usage of JNI is due to consideration
of the portability of Web services. The JNI wrap-
per comprised 130 lines of Java code.

The service layer was implemented in Java.
For each appliance we constructed a Java class,
where features of the appliance correspond
to service methods. We constructed total 12
classes (four for the climate monitor and eight
for other appliances) with 132 methods, com-
prising 1196 lines of code. Finally, the Java
classes were deployed as Web services using
Apache AXIS.

NAIST-HNS Integrated Services
We have implemented the following integrated
services as client programs using Perl’s SOAP::
Lite module (Kulchenko & Reese, 2004).2
Although the service scenarios seem to be
sophisticated, they could be implemented in
quite small programs, each of which comprises
about 20-30 lines of code.

Figure 8. Overview of the HNS implementation

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 91

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

•	 DVD Theater: Integrating the TV, the DVD
player, the speakers, the lights, and the
curtains, the service automatically sets up
the living room in a theater configuration.
Upon a user’s request, the TV is turned on
with the DVD input, the curtains are closed,
brightness of the lights are minimized, the
speakers are configured for 5.1ch mode,
and finally the DVD player plays the con-
tents.

•	 Air Cleaning: Integrating the smoke sensor
of the climate monitor, the air cleaner, the
circulator, the service cleans dirty air in
the room, automatically and efficiently.

•	 Wakeup Support: Integrating the speaker
system, the lights, and the curtains, the ser-
vice assists the user to wake up smoothly.
Before 10 minutes of the given wakeup
time, the speaker system and the lights
are turned on with minimal sound volume
and brightness. Then, the volume and the
brightness are gradually increased, and set
to the optimal at the wakeup time. Finally,
the curtains are opened.

•	 Auto illumination: Integrating the climate
monitor, the curtains, and the lights, the
service always keeps the optimal lighting in
the room regardless of time and weather.

Figure 9 shows a picture of our experi-
mental room, where a user is trying to activate
the DVD theater service using a user interface
(discussed in the following section).

User Interfaces
We have also implemented various graphical
user interfaces (GUIs) for human users to oper-
ate NAIST-HNS. Figure 10 shows three kinds
of the developed interfaces.

Figure 10(a) shows a fancy interface
written in Flash. This user interface displays
a service menu on a TV in the room. Using a
small remote controller, the user can choose
an integrated service from the menu. Then, the
user can activate and deactivate the service. By
using this interface, it is no more necessary for
the user to handle too many remote controllers
for multiple appliances (see controllers on the
table in Figure 9).

Figure 9. HNS experimental room

92 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 10(b) shows a GUI designated for
mobile phones. This interface has been imple-
mented as a Perl-CGI Web application. Using
the mini browser in the mobile phone, the
user can control appliances and services even
outside home. Thanks to the service and Web
service layers of the proposed architecture, it
was possible to implement the Web Applica-
tion quite efficiently based on a typical MVC
(model-view-controller) approach. That is,
Web services, HTML templates, and the perl-
CGI scripts correspond to the model, view and
controller, respectively. Specifically, every CGI
script was implemented so as to perform the
following common steps:

Step 1: On receiving an HTTP request, parse
the request and obtain the user inputs.

Step 2: Based on the inputs, activate Web ser-
vices of appropriate legacy appliances.

Step 3: Get the current state of the appliances
through getStatus() Web-API.

Step 4: Generate a status message from the
current state and responses of the Web
services.

Step 5: Embed the message in the prepared
HTML template, and output the HTML
text as a HTTP Response.

Finally, Figure 10(c) shows light-weight
GUIs developed as standard widget applications
for the PC. The GUIs were written in Perl/Tk,
operating on both Windows and Linux PCs.
For the implementation, we basically follow
the above common steps (Steps 2, 3, and 4). As
a result, the size of application became quite
small. For instance, the number of statements
of CurtainRemocon.pl (left of Figure 10(c))
was as small as 28.

EVALUATION
In this section, we evaluate the proposed frame-
work from several viewpoints.

(a) Flash Interface (b) Mobile Phone Interface

(c) PC Application Interface

Figure 10. User Interfaces for NAIST HNS

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 93

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Achievements of Requirements
We first evaluate if the proposed framework
satisfies requirements R1, R2 and R3 (see
requirements section).

The integrated services can be implemented
just by combining Web-APIs deployed with
Web services. Since the service layer was de-
signed to be vendor-neutral and self-contained
(see conditions S1 and S2), the developer can
invoke the Web-APIs in any combinations and
any order, without concerning the underlying
IR signals or vendor-specific issues. Also, as
the lines of code of the developed integrated
services indicate, the developer can create their
own integrated services without much effort.
Thus, R1 is achieved.

Requirement R2 is surely satisfied as we
demonstrated it with NAIST-HNS. We have
built up the whole NAIST-HNS by generic PCs
and commercial universal remote controllers.

The proposed framework applies to a
variety of legacy appliances, as long as the
appliance has an infrared remote controller
(IrRC), and its signals are compatible to the
proposed legacy adapter. Thus, requirement R3
is satisfied. As for appliances that do not have
the IrRC, we can use a power relay device with
IrRC (HORIBA, 2000) for providing simple
services like power on and off.

Performance
One of major concerns in any SOA-based system
is performance. We have measured response
time of each integrated service developed in Sec-
tion IMPLEMENTATION, in order to clarify
the overhead posed by the proposed framework.
There are two kinds of response time: device
response time (DRT) and service response time

(SRT). The DRT is the time physically taken
for the legacy appliances to execute features
required in the service. For instance, turning on
our DVD/HDD recorder required DRT about 30
seconds for initializing the system. On the other
hand, the SRT is the time purely devoted for
processing the service layer with Web services,
which is interesting for us here.

Table 1 shows the result. Each row rep-
resents the corresponding response time in
milliseconds. �3 The last row represents the
number of Web-APIs executed in each inte-
grated service.

It can be seen in the table that the total
response time varies from service to service.
This is because the different services use dif-
ferent sets of legacy appliances. However, SRT
has a strong correlation with the number of
Web-APIs executed, regardless of the features
executed by the Web-APIs. This is because the
time taken for the middleware to process Web
service messages became a dominant factor for
SRT. SRT for each Web-API invocation varied
from 0.22 seconds to 0.65 seconds. Hence, it
can be said that the proposed framework suffers
from quite a little overhead. Hence, we should
count the overhead carefully when developing
services that require time-sensitive or real-time
transactions.

However, we are optimistic for the over-
head in the service layer. The overhead is basi-
cally due to performance of the current WSDL
implementations in marshalling XML data to
and from messages. This problem will likely
be alleviated by future WSDL implementations
as the technology matures.

DVD theater Air cleaning Wakeup Illumination
SRT (msec) 3,563 2,613 4,905 676
DRT (msec) 39,350 3,000 19,600 1,250
Total (msec) 42,913 5,613 24,505 1,926
of Web-APIs executed 6 4 16 3

Table 1. Response time of integrated services

94 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Productivity
In the proposed architecture, vendor (or de-
vice)-specific operations of legacy appliances
are completely encapsulated within the service
layer, whereas vendor-neutral features can be
accessed as Web services. Currently, many pro-
gramming languages support SOAP and WSDL
libraries invoking Web services. Therefore, what
required for the application/service developer
is just to know the location of the Web service
definition (i.e., WSDL), and the names and
parameters of desired Web-APIs.

After that, for each invocation of an ap-
pliance feature, the developer writes code just
for two operations: (1) instantiate Web service,
and (2) invoke the service object. In case of
Perl, these operations can be written just within
two lines. As for Java, the IDE (integrated
development environment), such as Eclipse or
NetBeans, typically has a feature that automati-
cally generates related skeleton code for Web
service invocations. The developer just adds a
few lines to the skeleton code. Thus, our idea of
exploiting Web services significantly contrib-
utes to the high productivity of new services and
applications using the legacy appliances.

Using the Web service integration frame-
work such as BPEL4WS (Weerawarana &
Curbera, 2002) may enable more efficient
service creation. The further discussion of the
applicability of BPEL4WS to HNS applica-
tions/services is left to our future work.

Extendibility
The proposed architecture is not strictly bound
with the legacy appliances only. The same ar-
chitecture can also be applied to the emerging
networked appliances. This is done by replacing
the IR device layer in Figure 4 with a certain
HNS protocol stack and control APIs of the
networked appliances. The point is to deploy
the service and Web service layers on top of
the proprietary device implementation. Since
different appliances can be uniformly managed
as Web services, it is easy to add new appliances
and new services.

Another merit in extendibility is that one
can integrate legacy appliances with the ex-

ternal Web services in the Internet. That is, it
is no more necessary to distinguish the home
appliances from the conventional information
services and resources in the Internet. This is
a great benefit in creating more intelligent and
sophisticated HNS services. The followings are
interesting examples which integrate legacy
appliances using news and stock Web services
in the Internet:

News flash: As soon as important news arrives,
turn on the TV with the selected channel.

Stock alarm: When a stock price rises, notify it
of users by ringing chimes in the house.

Development of more sophisticated ser-
vices is left to future work.

Portability
Since all features of legacy appliances are
wrapped within Web services, applications
using the legacy appliances can be ported to
various platforms and languages. As seen in
the previous section, the service layer of all
appliances in NAIST-HNS was implemented
in Java on the Windows platform. However,
this fact does not require client applications
or integrated services to use specific language
and platform (e.g., Java and Windows). Indeed,
we have implemented client applications and
integrated services in Windows, Linux, and
Sun Solaris platforms. They worked as ex-
pected. We have also tested various languages
for implementing the integrated services. The
languages tested include Perl, PHP, Java, C#
.Net, VB, Delphi (Pascal). Thus, we were able
to achieve the programmatic interoperability
taking the full advantage of Web services. This
characteristic is quite unique compared with
other standards for home network systems and
networked appliances.

Maintainability
The service layer of the proposed framework
plays an important role, which achieves a
loose-coupling between the HNS applications
(as service consumers) and the appliances (as
service providers). As long as the interface

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 95

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

definition of the service is not changed, one can
change, replace or update the appliances without
influencing the service consumers. Therefore,
the HNS based on the proposed framework is
quite resilient for the system modification and
evolution.

Limitations
A technical limitation of the proposed frame-
work is in the reliability of the physical channel
between IrRC/IF and the appliance. As discussed
in the supplementary service section, the com-
munication from the PC to a legacy appliance
is basically one-way. Hence, it is not easy to
confirm whether or not an infrared signal is suc-
cessfully received by the appliance. If the signal
is lost, inconsistency between the state DB and
the actual status of the appliance occurs, which
may lead the integrated service to malfunction.
Therefore, we need to guarantee the reliability
of the physical channel at all cost.

Fortunately in our framework, the service
layer can be distributed within multiple PCs.
Hence, in an extreme case, we can assign a PC
for every appliance so that the IrRC is close
enough to the appliance. A smarter approach
is to assign a PC for each group of neighbor
appliances. The user has to choose a reasonable
layout considering reliability requirement, cost
for PCs, a floor plan and objects in the room.

User authentication and security manage-
ment are beyond the scope of this article, but
are important issues in practical usage of the
HNS. We conduct these problems in our future
work.

RELATED WORK
Loke (Loke, 2003) firstly modeled networked
appliances as Web services, and proposed a
workflow engine, called Decoflow, which pre-
scribes integrated services using BPEL4WS.
However, the method regards each networked
appliance just as a black box with an open
interface. Also, it does not mention the legacy
appliances. The proposed framework can
complement the method, which would allow
efficient creation and management of the in-
tegrated services.

SOA with Web services is expected as a
powerful means to achieve legacy migration.
For instance, Lewis, Morris, O’Brien et al.
(2005) presented a framework called SMART,
which assists organizations in analyzing legacy
capabilities for use as services in SOA. Zhang
and Yang (2004) proposed a method based on
a code analysis, which facilitates legacy code
extraction for Web service construction. How-
ever, most existing techniques including the
above are addressing the legacy migration of
enterprise systems. We believe that our original
contribution was to show a concrete framework
for legacy migration in the new domain, that is
home network system, exploiting the essence
of SOA with Web services.

Another interesting issue is the feature
interaction problem (Kolberg et al., 2003;
Metzger, 2004; Weiss & Esfandiari, 2006),
which is the functional conflicts among
multiple HNS services on the appliances or
environmental factors. Nakamura, Igaki and
Matsumoto (2005) formalized the feature
interaction problem and presented a conflict
detection method in the context of the HNS.
We are currently implementing the method on
the developed system.

CONCLUSION
This article presented a framework that adapts
the legacy home appliances to the emerging
home network system. The proposed framework
extensively adopted the concept of SOA. Fea-
tures of the legacy appliances are exposed as
self-contained Web-APIs with Web services. We
also implemented the actual HNS with multi-
vendor legacy appliances, as well as several
integrated services.

Our future work includes the security is-
sues and the feature interaction management.
We also plan to investigate a method that sup-
ports non-expert users in creating integrated
services easily.

ACKNOWLEGMENT
This research was partially supported by: the
Ministry of Education, Science, Sports and
Culture, Grant-in-Aid for Young Scientists (B)

96 International Journal of Web Services Research, 5(1), 81-97, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(No.18700062), and Grant-in-Aid for 21st cen-
tury COE Research (NAIST-IS —Ubiquitous
Networked Media Computing).

REFERENCES
DLNA (2006). Digital Living Network Alliance
http://www.dlna.org

ECHONET (2006). ECHONET Consortium http://
www.echonet.gr.jp/

Geer, D. (2006). Nanotechnology: The growing
impact of shrinking computers. IEEE Pervasive
Computing, 5(1), 7-11.

Hitachi Home & Life Solutions Inc. (2003).
HORASO Network Service. http://ns.horaso.com/
index.html

HORIBA (2000). Tsuichau-mon – Light Right.
http://www.jp.horiba.com/products_e/hip08/
hip08_04.htm#6

Igaki, H., Nakamura, M., & Matsumoto, K. (2005).
A Service-Oriented Framework for Networked Ap-
pliances to Achieve Appliance Interoperability and
Evolution in Home Network System (short paper).
In Proceedings of the International Workshop on
Principles of Software Evolution (IWPSE 2005),
61-64.

Kaden Control Lab. (2006). “AVT Series”, http://d-
purasu.hp.infoseek.co.jp/

Kolberg, M., Magill, E. H., & Wilson, M. (2003).
Compatibility issues between services support-
ing networked appliances. IEEE Communications
Magazine, 41(11), 136-147.

Kulchenko, P., Reese. B. (2004). SOAP::Lite - Client
and server side SOAP implementation http://www.
soaplite.com/

Lewis, G., Morris, E., O’Brien, L., Smith, D., &
Wrage, L. (2005). SMART: The Service-Oriented
Migration and Reuse Technique. Technical Note
CMU/SEI-2005-TN-029, Software Engineering
Institute.

Loke, S. W. (2003). Service-Oriented Device Echol-
ogy Workflows. In Proceedings of the1st Int’l Conf.
on Service-Oriented Computing (ICSOC2003),
LNCS2910, 559-574

Matsushita Electric Industrial Co., Ltd. ��������(2005).
“Kurashi Net”, http://national.jp/appliance/pro-
duct/kurashi-net/

Metzger, A. (2004). Feature interactions in embed-
ded control systems. Computer Networks, 45(5),
625-644.

Nakamura, M., Igaki, H., & Matsumoto, K. (2005).
Feature Interactions in Integrated Services of Net-
worked Home Appliances -An Object-Oriented Ap-
proach. In Proceedings of the Int’l. Conf. on Feature
Interactions in Telecommunication Networks and
Distributed Systems (ICFI’05), (pp. 236-251).

Nakamura, M., Tanaka, A., Igaki, H., Tamada, H.,
& Matsumoto, K. (2006). Adapting Legacy Home
Appliances to Home Network Systems Using Web
Services. In Proceedings of the of IEEE Interna-
tional Conference on Web Services (ICWS2006),
(pp. 849-858).

NANO Media Inc. (2005). “App-rimo-con”, http://
www.nanomedia.jp/english/service/s02.html

Papazoglou, M. P., & Georgakopoulos, D. (2003).
Service-oriented computing. Communications of the
ACM, 46(10), 25-28.

Smith, D. J., & Meyers, B. C. (2005). Exploiting
Programmatic Interoperability: Army Future Force
Workshop. Technical Note CMU/SEI-2005-TN-042,
Software Engineering Institute.

Toshiba (2005). “Toshiba home network – Feminity”,
http://www3.toshiba.co.jp/feminity/feminity_eng/

W3C (2002). “Web Service Activity”, http://www.
w3.org/2002/ws/

Weerawarana, S., Curbera, F. (2002). “Business
process with BPEL4WS: Understanding BPEL4WS,
Part1”, http://www-106.ibm.com/developerworks/
webservices/\\library/ws-bpelcol1/

Weiss, M., Esfandiari, B. (2005). On feature interac-
tions among web services. International Journal of
Web Services Research, 2(4), 22-47.

Zhang, Z., & Yang, H. (2004). Incubating services
in legacy systems for architectural migration.In Pro-
ceedings of the11th Asia-Pacific Software Engineer-
ing Conference (APSEC’04), (pp. 196-203).

 International Journal of Web Services Research, 5(1), 81-97, January-March 2008 97

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Endnotes
1	 The IrDA, which is often used for exchang-

ing data������������������������������������ ����������������������������������� among PCs and handheld devices, is
completely different from�������������������� ������������������� the IrRC, although
both protocols use the infrared for�������������� ������������� the physical
layer.

2	 We did not use BPEL4WS for implementing
the integrated services, since BPEL4WS was

somehow �������������������������������� exaggerated��������������������� for our current HNS
implementation. Further investigation of its
applicability is left for our future work.

3	 The time taken for each Perl client to prepare�
SOAP stubs from the corresponding WSDLs
had been excluded from the������ �����data.

Masahide Nakamura received the BE, ME, and PhD degrees in information and computer sciences from
Osaka University, Japan, in 1994, 1996, 1999, respectively. From 1999 to 2000, he has been a post-doctoral
fellow in SITE at University of Ottawa, Canada. He joined Cybermedia Center at Osaka University from
2000 to 2002. From 2002 to 2007, he worked for the Graduate School of Information Science at Nara
Institute of Science and Technology, Japan. He is currently an associate professor in the Graduate School
of Engineering at Kobe University. His research interests include the service-oriented architecture, Web
services, the feature interaction problem, V&V techniques and software security. He is a member of the
IEEE, ACM and IEICE.

Akihiro Tanaka received the BE in information and mathematical from Nara University of Education,
Japan in 2005. He received ME degree from Nara Institute of Science and Technology, Japan in 2007.
He is currently working for Hitachi, Ltd. His research interests include service oriented architecture, Web
service, home network system, legacy appliances.

Hiroshi Igaki received the BE degree (2000) in Department of Electrical and Electronics Engineering
from Kobe University, Japan, and the ME degree (2002) and DE degree (2005) in information science
from Nara Institute of Science and Technology, Japan. He is currently an assistant professor of Gradu-
ate School of Engineering at Kobe University. His research interests include communication support in
software development, web services and service-oriented architecture. He is a member of the IEEE and a
member of the ACM.

Haruaki Tamada received the BE and ME in information and communication engineering from Kyoto
Sangyo University, Japan in 1999, 2001. He received DE degree from information science from Nara In-
stitute of Science and Technology, Japan in 2006. He is currently an assistant professor in Graduate School
of Information Science, Nara Institute of Science and Technology, Japan. His research interests include
software security, software measurement. He is a member of the IEICE, IPSJ and IEEE.

Ken-ichi Matsumoto received the BE, ME, and PhD degrees in Information and Computer sciences from
Osaka University, Japan, in 1985, 1987, 1990, respectively. Dr. Matsumoto is currently a professor in the
Graduate School of Information Science at Nara Institute of Science and Technology, Japan. His research
interests include software metrics and measurement framework. He is a senior member of the IEEE, and
a member of the ACM, IEICE, IPSJ and JSSST.

