
DESIGN AND EVALUATION OF BIRTHMARKS FOR

DETECTING THEFT OF JAVA PROGRAMS

Haruaki Tamada Masahide Nakamura Akito Monden
Ken-ichi Matsumoto

Graduate School of Information Science,
Nara Institute of Science and Technology,

8916-5 Takayama-cho, Ikoma-shi, Nara, 630–0101 Japan,
email: {harua-t, masa-n, akito-m, matumoto}@is.aist-nara.ac.jp

ABSTRACT
To detect theft of Java class files efficiently, we have so

far proposed a concept of Java birthmarks. Since the birth-
marks are unique and native characteristics of every class
file, a class file with the same birthmark of another can
be easily suspected as a copy. However, performance and
tolerance of the birthmarks against sophisticated attacks
had not been evaluated well. To clarify these issues, this
paper conducts two experiments. In the first experiment,
we demonstrate that the proposed birthmarks successfully
distinguish non-copied files in practical Java application
(97.8005%). The second experiment shows that the pro-
posed birthmarks are quite tolerant of attacks with auto-
matic program optimizers/obfuscators (93.3876%).

KEY WORDS
copyright issues, birthmark, software theft, Java class file

1 Introduction

In today’s highly competitive world of computer software,
software theft is a serious issue that often arises. Typical
scenarios include: crack and duplicate a whole product and
sell the copies (i.e., software piracy), or steal a part of a
product (e.g., modules) and use it as a part of other prod-
uct. For example, there was an incident where a software
product “Pocket Mascot” was created based on source code
of another product “Minute Mascot”, without permission of
the author [12].

Software theft can cause severe damage to the soft-
ware industries. However, since an enormous amount of
software have been distributed all over the world, it is quite
difficult to detect the fact of theft. Moreover, if a part of
code was stolen, built into other software product, and dis-
tributed without source code, then the detection of the theft
generally becomes much more difficult, This requires sig-
nificant amount of skills and costs.

The goal of our research is to develop an easy-to-use
method, which supports the efficient detection of Java class
files that are quite similar to (or exactly the same as) each
other. A Java class file is a small execution unit of a Java
program, and a Java program generally consists of many

class files. Although a class file is in the binary form (called
bytecode), it is not very difficult to hack a class file, because
of rigorous specification of Java VM, and powerful decom-
pilers (e.g. jad [1]). In this sense, theft of class files is
relatively easy to perform, but difficult to detect.

To achieve our goal, we have previously proposed a
concept of Java birthmarks [11]. Intuitively, a birthmark
of a Java class file is a set of unique characteristics that
the class file originally possesses. If a class file q has the
same birthmark as another class file p’s, q is very likely to
be a copy of p. Thus, the birthmark can be used as a sim-
ple but powerful signature to identify doubtful class files.
Ideally, the birthmark should tolerate a certain extent of al-
ternation and modification by software crackers. There-
fore, the birthmark must be characteristics in the code that
cannot easily modified. Taking this into account, we have
proposed four kinds of birthmarks: constant values in field
variables, a sequence of method calls, an inheritance struc-
ture and used classes.

In our previous research, however, we did not suffi-
ciently evaluate the birthmarks. Especially, two issues had
not been covered yet; performance with practical applica-
tions and tolerance against program transformation.

In this paper, we therefore conducted two experi-
ments to clarify the above issues. In the first experiment,
we applied the birthmarks to well-known Java applications
(Ant, BCEL, JUnit). These applications are supposed to
be built by open-source communities without committing
theft. Hence, we observed how the proposed birthmarks
distinguished the (non-copied) class files. As a result, the
proposed birthmarks identified 97.8005% of all class files.
It was also shown that the rest of them were either tiny
classes or classes written by “cut and paste”.

In the second experiment, we evaluate how the birth-
marks can tolerates program transformation by exploit-
ing practical Java optimizers and obfuscators (ZKM[3],
Smokescreen[5], CodeShield[4] and jarg[2]). In-
troducing a notion of similarity of birthmarks, we demon-
strate that the proposed birthmarks cannot be altered eas-
ily. The result shows that the similarity of birthmarks of
every class file before/after the transformation is as high as
93.3876% on the average.

418-229 569

melissa




2 Related Work

Watermarking is a well-known technique to insist on the
ownership of the original software for theft. Therefore, it
may be used for our objective. Watermarking is basically
to embed stealthy information which identifies the program
author (in a static [9] or dynamic [7] manner). However,
the watermarking is not always feasible, due to the na-
ture of extra code. We cannot give proofs for modules
into which no watermark is embedded. Strictly speaking,
to completely prove software theft, we need to embed the
watermarks into all the related modules beforehand. This
is generally quite difficult when the number of modules is
large, or the constraint of program size is strict.

There is also a technique, called code clone that could
be used for the copy detection of programs (e.g., [6, 8]).
The theft is doubted when the code clone is found in dif-
ferent software products. Also, automatic tools for mea-
suring software similarity were presented, and use these
tools for plagiarism detection [10, 13]. However, these
code clone and plagiarism detection techniques require the
source code of target programs. However, the source code
is not necessarily available in our problem setting, since
software products are often distributed without the source
code. In addition, these techniques do not consider pro-
gram transformation. Hence, those techniques are not com-
plete for detecting software theft.

3 Java Birthmarks

3.1 Definition

We start with formulation of the copy relation of programs.

Definition 1 (Copy Relation) Let Prog be a set of given
programs. Let ≡cp denote an equivalent relation over Prog
such that: for p, q ∈ Prog, p ≡cp q holds iff q is a copy
of p (vice versa). Then, the relation ≡cp is called the copy
relation.

The criteria whether or not q is a copy of p can vary
depending on the context. For example, the following cri-
terion are relatively reasonable for general computer pro-
grams: (a) q is an exact duplication of p, (b) q is obtained
from p by renaming all identifiers in the source code of p,
or (c) q is obtained from p by eliminating all the comment
lines in the source code of p. To avoid confusion, we sup-
pose that ≡cp is originally given by the user. Since ≡cp is
an equivalent relation, the following proposition holds.

Proposition 1 For p, q ∈ Prog, the following properties
hold. (Reflexive) p ≡cp p, (Symmetric) p ≡cp q ⇒ q ≡cp

p, (Transitive) p ≡cp q ∧ q ≡cp r ⇒ p ≡cp r.

All the above properties meet well the intuition of copy.
Next, if q is a copy of p, the external behavior of q should
be identical to p’s.

Proposition 2 Let Spec(p) be a (external) specification
conformed by p. Then, the following property holds: p ≡cp

q ⇒ Spec(p) = Spec(q).

Note that the reverse of this proposition does not nec-
essarily hold, since we can see, in general, different pro-
gram implementations conforming the same specification.
Now we are ready to define a birthmark of a program.

Definition 2 (Birthmark) Let p, q be programs and ≡cp

be a given copy relation. Let f(p) be a set of characteris-
tics extracted from p by a certain method f . Then f(p) is
called a birthmark of p under ≡cp iff both of the following
conditions are satisfied.

Condition 1 f(p) is obtained only from p itself (without
any extra information).

Condition 2 p ≡cp q ⇒ f(p) = f(q)

Condition 1 means that the birthmark is not an extra
information and is required for p to run. Hence, extracting
a birthmark does not require extra code as watermarking
does. Condition 2 is saying that the same birthmark has
to be obtained from copied programs. Also, by the con-
traposition, if birthmarks f(p) and f(q) are different, then
p 6≡cp q holds. That is, we can guarantee that q is not a
copy of p.

Hopefully, a birthmark should satisfy the following
properties.

Property 1 For p′ obtained from p by any program trans-
formation, f(p) = f(p′) holds.

Property 2 For p and q such that Spec(p) = Spec(q), if p
and q are written independently, then f(p) 6= f(q).

These two properties strengthen Condition 2 of Def-
inition 2. First, Property 1 is stating the greatest tolerance
to program transformation. We consider that wise crackers
may modify birthmarks by converting the original program
into an equivalent one. One of such techniques is obfusca-
tion. Obfuscation makes original program harder to read
and protects from understanding program. However it can
be abused as an attack against birthmarking (as well as wa-
termarking). Property 1 specifies that the same birthmark
from p and converted p′. However, since many obfusca-
tion methods have been proposed, it is hard to extract such
strong birthmark that perfectly satisfies Property 1.

On the other hand, Property 2 is saying that: even
though the specification of p and q is the same, if im-
plemented separately, different birthmarks should be ex-
tracted. It is rare that the detail of two programs is com-
pletely the same for large programs. However, in the case
that p and q are both tiny programs, extracted birthmarks
could become the same, even if p and q, and their specifi-
cations are written independently. Those properties should
be tuned within allowable range at user’s discretion.

The problem is how to develop an effective method f
for a set Prog of Java class files and copy relation ≡cp.

570



3.2 Proposed Birthmarks

Here we outline how the proposed method works. First,
from a given pair of class files p and q, we extract birth-
marks f(p) and f(q) with a method f . Next, we compare
f(p) and f(q). If f(p) 6= f(q), then p 6≡cp q, so we con-
clude that q is not a copy of p. As for the above f , we
have proposed four methods that extract the following four
types of birthmarks [11]: constant values in field vari-
ables (CVFV), sequence of method calls (SMC), inheri-
tance structure (IS) and used classes (UC).

In the following, we present the definition of each
birthmark. For more comprehension, we use a Java source
code in Fig. 1 to show an example for each birthmark. Note
that in our problem setting, the source code of given class
files is not necessarily available.

package jp.ac.aist_nara.se.tama.ant.taskdefs;

import org.apache.tools.ant.Task;
import org.apache.tools.ant.Project;
import org.apache.tools.ant.BuildException;

public class Echo extends Task{
public String message = "";
public int logLevel = Project.MSG_DEBUG;

public void setMessage(String message){
this.message = message;

}

public String getMessage(){
return message;

}

public void setLevel(String level){
level = level.toLowerCase();
if(level.equals("debug"))

logLevel = Project.MSG_DEBUG; // 4
else if(level.equals("verbose"))

logLevel = Project.MSG_VERBOSE; // 3
else if(level.equals("info"))

logLevel = Project.MSG_INFO; // 2
else if(level.equals("warn"))

logLevel = Project.MSG_WARN; // 1
else if(level.equals("error"))

logLevel = Project.MSG_ERR; // 0
else

logLevel = Project.MSG_DEBUG; // 4
}

public int getLevel(){
return logLevel;

}

public void execute() throws BuildException{
log(message, getLevel());

}
}

Figure 1. Example of Java source code (simple echo task
for Apache Ant)

3.2.1 Constant Values in Field Variables
(CVFV)

A class often has field variables to store static and/or dy-
namic attributes. If the field variables are initialized to be
certain constant values upon their declaration, these initial
values are essential information to determine the way of

object instantiation. Modifying these values is dangerous
since the modification may change output of the program.
Therefore, the initial values can be used as a good signature
that characterizes the class.

Definition 3 (CVFV Birthmark) Let p be a class file and
v1, v2, ..., vn be field variables declared in p. Also, let
ti (1 ≤ i ≤ n) be the type of vi and ai (1 ≤
i ≤ n) be the initial value assigned to vi in the decla-
ration. (If ai is not present, we regard ai as “null” ).
Then, the sequence ((t1, a1), (t2, a2), ..., (tn, an)) is called
CV FV birthmark of p, denoted by CV FV (p).

The CVFV birthmark of the program in Fig 1 is:
(java.lang.String, “”)

(int, 4)

3.2.2 Sequence of Method Calls (SMC)

Usually in Java, general-purpose functions are already
implemented as methods of well-known classes, such as
J2SDK and Jakarta project. So, a class usually calls one
or more methods of these well-known classes. We consider
that the sequence of method calls can be used as a good
birthmark by the following two reasons.

The first reason is that it is difficult for crackers to
modify the sequence automatically because of dependen-
cies between the method calls. The second reason is that
replacing a method in the sequence with another one takes
much effort, since making the alternative requires as much
effort as making the well-known class from scratch.

Definition 4 (SMC Birthmark) Let p be a class file and C
be a given set of well-known classes. Let m1,m2, ...,mn

be a sequence of methods mi’s appeared in p in this order
(this is not necessarily the execution order), where mi be-
longs to a class in C. Then, the sequence (m1,m2, ...,mn)
is called SMCbirthmark of p, denoted by SMC(p).

The SMC birthmark of the program in Fig 1 is:
org.apache.tools.ant.Task(),

String String#toLowerCase(),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

void org.apache.tools.ant.Task#log(String, int)

3.2.3 Inheritance Structure (IS)

Java is an object oriented programming language. Every
class in Java has a hierarchy of inheritance structure except
java.lang.Object, which is a root class of all classes.
Hence, by traversing the superclasses from a given class
p to java.lang.Object, we can obtain a sequence of

571



classes. This sequence can be used as a unique character-
istics of p. However, the sequence of classes may contain
both well-known classes and user-made classes. Since the
user-made classes are relatively easily altered, we discard
them from the sequence, and use the resultant sequence as
a birthmark.

Definition 5 (IS Birthmark) Let p be a class file and C
be a given set of well-known classes. Let c1, c2, ..., cn be
a sequence of classes such that c1 = p, ci(2 ≤ i ≤ n)
is a superclass of ci−1, and cn is a root of class hierar-
chy (java.lang.Object). If ci does not belong to a class
in C, we replace ci with “null.” Then, the resultant se-
quence (c2, c3, ..., cn) is called ISbirthmark of p, denoted
by IS(p).

The IS birthmark of the program in Fig 1 is:
org.apache.tools.ant.Task,

org.apache.tools.ant.ProjectComponent,

java.lang.Object.

3.2.4 Used Classes (UC)

A class (let it say p) generally uses other classes to im-
plement new functions by combining existing features of
the other classes. These external classes appear in p as a
superclass, return and argument types of methods, method
calls. Modifying those classes used in p is not easy be-
cause of dependencies between the classes. Moreover, if
the classes are well-known classes, it is harder for crackers
to alter them. Hence, the set of used classes is considered
to be a unique birthmark of p.

Definition 6 (UC Birthmark) Let p be a class file and C
be a given set of well-known classes. Let U be a set of
classes u’s such that u is used in p and u ∈ C. Let
u1, u2, ..., un (ui ∈ U) be a sequence obtained by arrang-
ing all elements in U in an alphabetical order. Then, the
sequence (u1, u2, ..., un) is called UCbirthmark of p, de-
noted by UC(p).

The UC birthmark of the program in Fig 1 is:
java.lang.String,

org.apache.tools.ant.Task,

org.apache.tools.ant.Project,

org.apache.tools.ant.BuildException.

3.3 Similarity of Birthmark

Each of the proposed birthmarks is in the form of a se-
quence. Suppose that we have a pair of birthmarks f(p) =
(p1, ..., pn) and f(q) = (q1, ..., qn) for class files p and
q. Basically, we say that f(p) is the same as f(q) (i.e.,
f(p) = f(q)) iff pi = qi for all i (1 ≤ i ≤ n). In other
words, even when only a single pair of pi and qi is different
and other pairs are the same, we have to say f(p) 6= f(q).

Thus, the birthmark concludes that q is not a copy of p, al-
though f(p) and f(q) are very similar to each other. Hence,
we here introduce similarity of birthmark, which is a per-
centage of elements matched among f(p) and f(q) in the
total elements in the birthmark (sequence).

Definition 7 (Similarity) Let f(p) = (p1, ..., pn) and
f(q) = (q1, ..., qn) be birthmarks with length n, extracted
from class files p and q. Let s be the number of pairs
(pi, qi)’s such that pi = qi (1 ≤ i ≤ n) . Then, similarity
between f(p) and f(q) is defined by: s/n × 100.

4 Experimental Evaluation

To show the effectiveness in the practical settings, this sec-
tion conducts two experiments. The first experiment eval-
uates performance of the proposed birthmarks, while the
second experiment measures tolerance of the birthmarks
against program transformation.

For the experiment, we have implemented a tool
called jbirth. The main features of jbirthare: ex-
traction of the four types of birthmarks directly from Java
class files (without source code), pairwise birthmark com-
parison of Java class files, and plug-in architecture for new
birthmarks.

4.1 Experiment 1(Performance)

In this experiment, we validate if the proposed birthmarks
can be used as effective birthmarks for practical applica-
tions. Usually, all class files in a practical Java product
are supposed to be different from each other. If there exist
exactly the same class files in one package, it means re-
dundant, thus, inefficient class design. Hence, we evaluate
how many class files in a Java package can be distinguished
from each other by the proposed birthmarks.

Now, let f be a certain birthmarks, and let p, q (p 6≡cp

q) be class files arbitrarily taken from a product. To eval-
uate the performance of f , we show how many pairs of p
and q are successfully distinguished by f .

As the target applications, we chose the following
products: Apache Ant (1.5.4), Jakarta BCEL (5.1), JU-
nit (3.8.1) and jbirth. For each Jar file, we exe-
cute jbirthto perform pairwise birthmark comparison of
class files contained in the Jar file. We used the proposed
four birthmarks together. For this, we set the well-known
classes (see Definition 4) to be class files contained in con-
tained package of J2SDK SE 1.4.

The result is shown in Table 1. In the table, the dis-
tinction ratio represents a percentage of pairs of class files
that are successfully distinguished, in the total pairs com-
pared. The table also includes average, minimum, maxi-
mum values of the similarity. As seen in the distinction ra-
tio, the proposed birthmarks were able to distinguish most
of class files.

Figure 2 shows the frequency distribution of similar-
ity, where the horizontal axis represents the similarity, and

572



Table 1. The result of Experiment 1

Ant 1.5.4 BCEL 5.1 JUnit 3.8.1 jbirth

Number of Class Files 376 339 90 63
Number of Comparisons 70,500 57,291 4,005 1891

Distinction Ratio 99.7872% 93.29389% 98.3770% 99.7440%

Similarity
Percentage

Average 8.4035% 12.1585% 14.4709% 9.3815%
Minimum 0% 0% 0% 0%
Maximum 100% 100% 100% 100%

Table 2. The result of Experiment 2

ZKM Smokescreen jarg CodeShield

Similarity
Percentage

Average 94.4096% 90.9628% 98.9016% 89.2766%
Minimum 50% 27% 82% 57%
Maximum 100% 100% 100% 99%

the vertical axis plots the number of pairs of class files with
the corresponding similarity, normalized by the number of
comparisons. It can be seen in the figure that for most pairs
of class files, the similarity is below 20%. This implies that
different class files have significantly different birthmarks.

The proposed birthmarks could not achieve 100% of
the distinction ratio. We investigated the source code of the
class files that could not be distinguished. As a result, we
found that these classes are: (a) very small inner-classes
that contains only one or two method calls (e.g., contain-
ing System.exit(0) only), or (b) small classes with
almost identical routines (which seem to be written by copy
and paste, considering from adjunct comment lines). The
case (a) shows that such tiny and trivial classes do not have
enough information to characterize themselves. For such
class files, birthmarking is not appropriate to protect them
from theft. However, we consider that it is not a very seri-
ous problem even if they are stolen, since such small class
files hardly contain intellectual properties. For the case (b),
we can say that the proposed birthmarks worked very well,
since the birthmarks conclude “The one is very likely to a
copy of another.”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1009080706050403020100

Apache Ant 1.5.4

Jakarta BCEL 5.1

JUnit 3.8.1

jbirth

Figure 2. The result of Experiment 1

4.2 Experiment 2 (Tolerance against trans-
formation)

In this experiment, we evaluate the tolerance of the pro-
posed birthmarks against program transformation such as
obfuscation and optimization. To copy an original class
file p, crackers may convert p into an equivalent p′ by us-
ing certain automatic tools, so that the original birthmark
f(p) is altered. Our objective here is to evaluate how much
of the original birthmarks are modified by a program trans-
formation using similarity of birthmarks.

For this, we exploited the following practical tools:
ZKM, Smokescreen, CodeShieldand jarg.

Those tools typically implement name obfuscation
and elimination of debug information for Java class files.
The name obfuscation changes meaningful symbol names
(i.e., class, field and method names) to meaningless
ones, which makes decompiled source code harder to un-
derstand. ZKM, Smokescreenand CodeShieldadopt
flow obfuscation, which scrambles the control flow with-
out changing the original runtime behavior. jargand
Smokescreensupport optimization of unreachable code
and unused fields and methods. ZKMprovides unique fea-
tures, string encryption, which encrypts string literals in
class files, and then add code fragments to decrypt the
string at runtime.

We applied each tool to a package ant.jar with
the strongest obfuscation level, and obtained the obfuscated
packages. Then, we executed jbirthto measure similar-
ity of birthmarks for all pairs of a class file in ant.jar
and its obfuscated version.

Table 2 summarizes the result. We compared 376
pairs of the original and the obfuscated class files, by means
of the proposed four types of birthmarks. Figure 3 depicts
the frequency distribution, where the horizontal axis repre-
sents the similarity, and the vertical axis plots the number

573



of pairs of class files with the corresponding similarity, nor-
malized by the total number of comparisons.

It can be seen in Table 2 that for all the tools, the
majority of the original birthmarks were still preserved
even after the obfuscation. Thus, the proposed birthmark
achieved a relatively strong tolerance against program ob-
fuscation in this experiment.

Note that the frequency distribution in Fig. 3 is sig-
nificantly different from the one in Figure 2. That is, the
similarity between independent (non-copied) class files is
lower than the one between automatically converted files.
This means that by setting an appropriate threshold on the
similarity, the proposed birthmarks can provide consider-
ably reliable evidence for the copied class files, even if the
copies are obtained by program obfuscation.

We can see, in Figure 3, that the similarity varies
slightly, depending on the obfuscation tool applied. It
seems that the difference is caused by the obfuscation
methods exploited in the tools. More thoughtful exam-
ination of the impact of specific obfuscation techniques
against the proposed birthmarks is left to our future work.

0

0.2

0.4

0.6

0.8

1

1.2

1009080706050403020100

zkm

smokescreen

jarg

codeshield

Figure 3. The result of Experiment 2

5 Conclusion

In this paper, we presented four types of birthmarks to
provide a reasonable evidence of theft of Java class files.
The proposed Java birthmarks were thoroughly evaluated
by two practical experiments. The results showed that the
proposed birthmarks could successfully distinguish (non-
copied) class files in practical Java packages except some
tiny classes, and that they achieved relatively good toler-
ance to program obfuscation.

Compared to watermarking, the advantage is that the
birthmarks are easily used without any extra code. Limi-
tation is that: birthmarks might be a bit weaker evidence
than watermarks. Even if we have the same birthmarks
f(p) = f(q), we can only suspect that q is very likely to
be a copy of p. However, watermarking and birthmarking
are not exclusive techniques. Hence, combined use of them
would cover the limitation of each other.

Finally, we summarize our future work. We plan to
evaluate tolerance of the birthmarks against many more ob-
fuscation methods. Also, we want to clarify the relevance
of the similarity to the copy relation, through more experi-
ments. Investigation of other types of birthmarks is also an
interesting issue.

References

[1] jad - the fast java decompiler.
http://kpdus.tripod.com/jad.html.

[2] jarg - java archiver grinder.
http://jarg.sourceforge.net/index.en.

[3] Zelix klass master, 1997.
http://www.zelix.com/klassmaster/index.html.

[4] Codeshield java byte code obfuscator, 1999.
http://www.codingart.com/codeshield.html.

[5] Smokescreen java obfuscator, 2000.
http://www.leesw.com/.

[6] Ira D. Baxter, Andrew Yahin, Leonardo M. De
Moura, Marcelo Sant’Anna, and Lorraine Bier. Clone
detection using abstract syntax trees. In ICSM: the
International Conference on Software Maintenance,
pages 368–377, 1998.

[7] Christian Collberg and Clark Thomborson. Soft-
ware watermarking: Models and dynamic embed-
dings. In Principles of Programming Languages
1999, POPL’99, San Antonio, TX, January 1999.

[8] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro In-
oue. Ccfinder: A multi-linguistic token-based code
clone detection system for large scale source code.
IEEE Trans. on Software Engineering, 28(7):654–
670, 2002.

[9] Akito Monden, Hajimu Iida, Kenichi Matsumoto,
Katsuro Inoue, and Koji Torii. A practical method
for watermarking java programs. In COMPSAC 2000,
24th Computer Software and Applications Confer-
ence, pages 191–197, 2000.

[10] L. Prechelt, G. Malpohl, and M. Philippsen. JPlag:
Finding plagiarisms among a set of programs. Tech-
nical Report 1, Fakultat fur Informatik, Universitat
Karlsruhe, Germany, mar 2000.

[11] Haruaki Tamada, Masahide Nakamura, Akito Mon-
den, and Kenichi Matsumoto. Detecting the theft
of programs using birthmarks. Information Science
Technical Report NAIST-IS-TR2003014 ISSN 0919-
9527, Graduate School of Information Science, Nara
Institute of Science and Technology, 2003. (Ref. to
jbirth: http://se.aist-nara.ac.jp/jbirth/).

[12] Tomohiro Ueno. The protest page to pocketmascot,
2001. http://members.jcom.home.ne.jp/tomohiro-
ueno/About PocketMascot/About PocketMascot e.html.

[13] Michael J. Wise. YAP3: Improved detection of sim-
ilarities in computer program and other texts. SIGC-
SEB: SIGCSE Bulletin (ACM Special Interest Group
on Computer Science Education), 28, 1996.

574


