
Symbolic Approaches to Feature Interaction Detection

Tatsuhiro Tsuchiya
Osaka University

t-tutiya@ist.osaka-u.ac.jp

Masahide Nakamura
Nara Institute of Science & Technology

masa-n@is.aist-nara.ac.jp

Tohru Kikuno
Osaka University

kikuno@ist.osaka-u.ac.jp

c©2002, T. Tsuchiya, M. Nakamura, and T. Kikuno

Abstract

Feature interaction is a kind of inconsistent conflict between
multiple communication services and considered an obsta-
cle to developing reliable telephony systems. In this note
we outline the results of applying symbolic model check-
ing techniques to detection of feature interactions in service
specifications.

1. Introduction

Feature interaction refers to situations where a combina-
tion of different services behaves differently than expected
from the single services’ behaviors. For example, consider
a situation where user A has subscribed to the serviceOrigi-
nating Call Screening (OCS) and does not want calls to user
C to be put through, and user B has activated the serviceCall
Forwarding (CF) to user C. In this situation, if A calls B,
the intention of OCS not to be connected to C is invalidated
since the call is put through to C by way of B. In today’s
intelligent telecommunication networks, feature interaction
is considered a major obstacle to the introduction of new
features and the provision of reliable services.

Much research has been conducted to tackle this prob-
lem [2]. In this note, we outline the preliminary results of
applying symbolic model checking to detection of feature
interactions in communication service specifications.

Model checking is a formal approach for verifying sys-
tems that are modeled as a finite state machine. For realistic
designs, the number of states of the system can be very large
and the explicit traversal of the state space may become in-
feasible. Symbolic model checking is one approach to this
state explosion problem. This method alleviates the prob-
lem by implicitly representing the state space by boolean
functions.

For any finite-state system, a stateS can be represented
as a boolean vector of fixed length. Any setA of states can
be represented as a boolean function such that

fA(S) = 1 iff S ∈ A

Supportedby a grant from Japanese Ministry of Education(No. 13224060)

The transition relation can be similarly encoded as follows.

T (S, S′) = 1 iff there is a transition fromS to S ′

Forward state traversal can be performed by repeatedly com-
puting

∃S.(fA(S) ∧ T (S, S′))|S′→S

The above formula represents the set of states that can be
reached exactly in one step from the states inA. Backward
state traversal can be carried out in a similar way.

Many symbolic model checking tools useBinary Deci-
sion Diagrams (BDDs) as the data structure to manipulate
boolean functions, since boolean functions can often be rep-
resented by BDDs very compactly.

We developed a program that produces an input program
of SMV, a well-know BDD-based model checker, from a
given service specification and applied SMV to feature in-
teraction detection. The results were quite encouraging. We
had already developed a tool called SVAL [3], which us-
es explicit state representation in combination of symmetry
reduction. For many cases, the time required by SMV for
verification was less than half than SVAL.

To further improve the verification performance, we have
been attempting to develop other techniques. In the rest of
this note, we outline these techniques.

2. Model

We useState Transition Rules (STR) to model telecom-
munication services. Figure 1 shows the STR specification
for thePlain Old Telephone Service (POTS). The rules are
of the following form.

rule : pre-condition [event] post-condition.

For example, consider two usersA, B. Then the application
of r1 to the initial state{idle(A), idle(B)}yields either state
{idle(A), dialtone(B)} or state{idle(B), dialtone(A)}.
Additional services can be described by adding rules to the
POTS specification. Services we consider include:Call
Forwarding (CF), Originating Call Screening (OCS),Ter-
minating Call Screening (TCS),Denied Origination (DO),
Denied Termination (DT), andDirect Connect (DC).



r1 : idle(x) [offhook(x)] dialtone(x).
r2 : dialtone(x) [onhook(x)] idle(x).
r3 : dialtone(x), idle(y) [dial(x, y)] calling(x, y).
r4 : dialtone(x), ¬idle(y) [dial(x, y)] busytone(x).
r5 : calling(x, y) [onhook(x)] idle(x), idle(y).
r6 : calling(x, y) [offhook(y)] path(x, y), path(y, x).
r7 : path(x, y), path(y, x) [onhook(x)] idle(x), busytone(y).
r8 : busytone(x) [onhook(x)] idle(x).
r9 : dialtone(x) [dial(x, x)] busytone(x).

Figure 1. STR specification for POTS.

3. Exploiting Symmetry

To further improve the performance of the BDD-based
method, we have been attempting to exploit symmetry to
reduce the state space. In telecommunication systems, it
is usual that all subscribers of a service are guaranteed to
be able to use the same functionality of the service. This
symmetry in terms of users defines an equivalence relation
on the states. For example, states{idle(A), dialtone(B)}
and {idle(B), dialtone(A)} are in the same equivalence
class.

The basic idea in exploiting symmetry is to check only the
representative state of each equivalence class. LetF (S, S′)
be the boolean function such thatF (S, S ′) = 1 iff S′ is
the representative of the equivalence class thatS belongs to.
Suppose thatfA(S) represents the set of representative states
that have already been explored. Forward state traversal can
then be performed by iterating the following two steps.

Step 1 :fB(S) := ∃S.(fA(S) ∧ T (S, S′))|S′→S

Step 2 :fA(S) := fA(S) ∨ ∃S.(fB(S) ∧ F (S, S′))|S′→S

In words, Step 2 maps newly visited states to their represen-
tatives.

In our experiment, we found that the method works best
when the number of users is four. In this case, the verifica-
tion time was reduced to almost half for many combinations
of services. On the other hand, the number of users ex-
ceeded four, ordinary symbolic state traversal worked much
better. This is because computingF (S, S′) consumes a
large amount of time and space, thus diminishing the ben-
efits of state space reduction. Currently we are trying to
improve this technique to achieve further efficiency.

4. Bounded Model Checking

Bounded model checking has received recent attention
as an efficient verification method [1]. The basic idea of
this method is to reduce the model checking problem to the
propositional satisfiability decision problem. For example,

Table 1. Times required for verification (in
seconds).

Services SVAL BC
CF+DT 2.04 0.17
CF+OCS 7.64 0.19
CF+TCS 0.06 0.18
DC+DT 24.75 0.05
DC+DO 0.19 0.03
DC+OCS 0.04 0.26
DC+TCS 0.04 0.28
DT+OCS 0.67 0.12
DT+TCS 0.02 0.01
OCS+TCS 0.02 0.11

suppose thatI(S) andFI(S) represent the initial state and
the set of undesirable states where feature interaction occurs.
Then the undesirable states can be reached withink steps
from the initial state iffI(S0)∧T (S0, S1)∧T (S1, S2) · · ·∧
T (Sk−1, Sk) ∧ (FI(S0) ∨ · · · ∨ FI(Sk)) is satisfiable.

For asynchronous systems, however, this method does
not work well because the above formula tends to become
very large for such systems. Because of the asynchronous
nature of telecommunication systems, it is not practical to
apply the original method to feature interaction detection.

Recently we developed an alternative method for 1-
bounded Petri nets which uses a very succinct formula [4].
We also applied the method to feature interaction detection.
Table 1 compares the time required to detect the first feature
interaction between the bounded checking approach (denot-
ed by BC) and SVAL. (We used a LINUX PC with a 850
MHz Pentium III processor.) Although the two method-
s exhibited similar performance, bounded model checking
achieved significant reduction for some cases.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbol-
ic Model Checking without BDDs. InProceedings of Tools
and Algorithms for the Analysis and Construction of Systems
(TACAS’99), number 1579 in LNCS, pages 193–207, 1999.

[2] D. O. Keck and P. J. Kuehn. The feature and service interac-
tion problem in telecommunicatons systems: A survey.IEEE
Transactions on Software Engineering, 24(10):779–796, Oc-
tober 1998.

[3] M. Nakamura and T. Kikuno. Feature interaction detection
using permutation symmetry. InProc. of Fifth Int’l. Workshop
on Feature Interactions in Telecommunication Networks and
Distributed Systems (FIW’98), pages 193–207, 1998.

[4] T. Tsuchiya, E. Ashida, and T. Kikuno. A Simple and Efficient
Bounded Model Checking Method for Asynchronous Systems.
(submitted for publication), 2002.


