
Using Symbolic Model Checking to Detect
Service Interactions in Telecommunication

Services

Takayuki Hamada, Tatsuhiro Tsuchiya, Masahide Nakamura, and
Tohru Kikuno

Department of Informatics and Mathematical Science
Graduate School of Engineering Science, Osaka University

{t-hamada,t-tutiya,masa-n,kikuno}@ics.es.osaka-u.ac.jp

Abstract. Feature interaction is a kind of inconsistent conflict between
multiple communication services. In this paper we present an automatic
method for detecting feature interactions in service specifications. This
method is based on symbolic model checking which can perform verifica-
tion by symbolically representing the search space with binary decision
diagrams. Experimental results show that the method outperforms a
previous method based on explicit state traversal, in terms of time and
memory required for detection.

1 Introduction

Feature interaction is a kind of inconsistent conflict between multiple communi-
cation services, which was never expected from the single services’ behavior. In
practical service development, the analysis of interactions has been conducted
in an ad hoc manner by subject matter experts. This leads to time-consuming
service design and testing without any interaction-free guarantee.

To tackle this problem, we propose a formal approach for detection of feature
interaction. The detection process checks if interactions occur or not between
given multiple services. The proposed approach uses symbolic model checking as
its basis.

Model checking is a powerful technique for verifying systems that are modeled
as a finite state machine. In model checking, the properties to be checked are
expressed in temporal logic. For realistic designs, the number of states of the
system can be very large and the explicit traversal of the state space may become
infeasible. Symbolic model checking has proven to be successful for overcoming
this problem. This method uses Boolean functions to represent the state space.
Since Boolean functions can be often represented by Ordered Binary Decision
Diagrams (OBDDs) very compactly, the symbolic model checking method can
reduce the memory and time required for analysis. By manipulating the Boolean
functions, the method can determine whether or not a system meets a given
property that is specified using CTL [1], a branching time temporal logic.

I. Chong (Ed.): ICOIN 2002, LNCS 2343, pp. 641–651, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

642 T. Hamada et al.

In this paper, we investigate how we can detect feature interactions by us-
ing SMV, a well-known symbolic model checking tool. We propose a systematic
method for translating given specifications of telecommunication services into
the input language of SMV. Using this method, automatic detection of feature
interactions can be carried out. To illustrate the effectiveness of the approach,
we show the results of applying it to the specifications of practical telecommu-
nication services.

Plath and Ryan [10] also proposed the use of SMV for feature interaction
detection. Their work considered more detailed specifications than ours, but it
entails describing different CTL formulae by hand, depending on the services
and properties to be checked.

In contrast, our method adopts a more abstract model, thus allowing us to
represent four major types of feature interactions by only two formulae. The
downside of adopting a high level model is that only non-subtle interactions can
be detected, which might easily be resolved in a low-level design by, for example,
prioritizing services. We think, however, that the method is still useful, since
knowing the possibility of such interactions can help identify error-prone parts
of the design.

2 Preliminaries

In order to formalize the feature interaction detection problem, we present fun-
damental definition in this section.

2.1 Services

For the formalization, we have to first prepare the services. From ITU-T recom-
mendation [11] (ITU-T Recommendations Q.1200 Series - Intelligent Network
Capability Set 1 (CS1)) and Bellcore’s feature standards [12] (Bellcore - LSSGR
Features Common to Residence and Business Customers I,II,III), we have se-
lected the following seven services (features):

Call Forwarding (CF): This service allows the subscriber to have his incom-
ing calls forwarded to another number. Suppose that x subscribes to CF and
that x specifies y to be a forwarding address. Then, any incoming call to x
is automatically forwarded to y.

Originating Call Screening (OCS): This service allows the subscriber to
specify that outgoing calls be either restricted or allowed according to a
screening list. Suppose that x subscribes OCS and that x puts y in the OCS
screening list. Then, any outgoing call to y from x is restricted, while any
other call from x is allowed. Suppose that x receives dialtone. At this time,
even if x dials y, x receives busytone instead of calling y.

Terminating Call Screening (TCS): This service allows the subscriber to
specify that incoming calls be either restricted or allowed according to a
screening list. Suppose that x subscribes TCS and that x puts y in the TCS

Using Symbolic Model Checking to Detect Service Interactions 643

screening list. Then, any incoming call from y to x is restricted, while any
other call to x is allowed. Suppose that y receives dialtone. At this time, even
if y dials x, y receives busytone instead of calling x.

Denied Origination (DO): This service allows subscriber to disable any call
originating from the terminal. Only terminating calls are permitted. Suppose
that x subscribes to DO. Then, any outgoing call from x is restricted. Even if
x offhooks when the terminal is idle, x receives busytone instead of dialtone.

Denied Termination (DT): This service allows subscriber to disable any call
terminating at the terminal. Only originating calls are permitted. Suppose
that x subscribes to DT. Then, any incoming call to x is restricted. Even if
another user y dials x, y receives busytone without calling x.

Direct Connect (DC): This service is a so-called hot line service. Suppose
that x subscribes to DC and that x specifies y as the destination address.
Then, by only offhooking, x is directly calling y. It is not necessary for x to
dial y.

Emergency Call (EMG): This service is usually deployed on police and fire
stations. In the case of an emergency incident, the call will be held even
when the caller mistakenly onhooks. Suppose that x is a police station on
which EMG is deployed, and that y has made a call to x and is now busy
talking with x. Then, even when y onhooks, the call is on hold without
being disconnected. Followed by that, if y offhooks, the held line reverts to
a connected line and y can talk with x again. In order to disconnect the call,
x has to onhook.

2.2 Specifications

To formalize the feature interaction detection problem, we have to describe ser-
vices in a certain way. There are a number of researches concerning service de-
scription to formulate the interaction problem. In this paper, we adopt a variant
of State Transition Rules (STR) [5,9], a rule-based service specification language.
Other examples of such a language include, for example, declarative transition
rules [3].

Notation. First, we define the syntax notation of the specification. A service
specification S is defined as S = 〈U, V, P,E,R, s0〉, where
(a) U is a set of constants representing service users.
(b) V is a set of variables.
(c) P is a set of predicate symbols.
(d) E is a set of event symbols.
(e) R is a set of rules.
(f) s0 is the (initial) state.

Each rule r ∈ R is defined as follows:

r : pre−condition [event] post−condition.

644 T. Hamada et al.

Pre(post)−condition is a set of predicates p(x1, . . . , xk)’s, where p ∈ P ,xi ∈ V
and k is called arity which is a fixed number for each p. Especially, precondi-
tion can include negations of predicates such as ¬p(x1, . . . , xk)’s which implies
p(x1, . . . , xk) does not hold. Event is a predicate e(x1, . . . , xk), where e ∈ E,
xi ∈ V .

Figure 1 shows an example of a specification. This specification represents the
Plain Old Telephone Service (POTS). Additional communication features, such
as those described in the previous subsection, can be described by modifying
this specification (for example, adding rules or predicate symbols).

U = {A, B}
V = {x, y}
P = {idle, dialtone, calling, path, busytone}
E = {onhook, offhook, dial}
R = {

pots1 : idle(x) [offhook(x)] dialtone(x).
pots2 : dialtone(x) [onhook(x)] idle(x).
pots3 : dialtone(x) , idle(y) [dial(x, y)] calling(x, y).
pots4 : dialtone(x) , ¬idle(y) [dial(x, y)] busytone(x).
pots5 : calling(x, y) [onhook(x)] idle(x) , idle(y).
pots6 : calling(x, y) [offhook(y)] path(x, y) , path(y, x).
pots7 : path(x, y) , path(y, x) [onhook(x)] idle(x) , busytone(y).
pots8 : busytone(x) [onhook(x)] idle(x).
pots9 : dialtone(x) [dial(x, x)] busytone(x).
}

s0 = {idle(A), idle(B)}

Fig. 1. Rule-based specification for POTS.

State Transition Model. Next, we define the state transition specified by the
rule-based specification.

Let S = 〈U, V, P,E,R, s0〉 be a service specification. For r ∈ R, let x1, . . . , xn

(xi ∈ V) be variables appearing in r, and let θ = 〈x1|a1, . . . , xn|an〉(ai ∈ U)
be a substitution replacing each xi in r with ai. Then, an instance of r based
on θ (denoted by rθ) is defined as a rule obtained from r by applying θ =
〈x1|a1, . . . , xn|an〉 to r. We represent pre-condition, event and post-condition of
rule r as Pre[r], Ev[r] and Post[r], respectively.

A state is defined as a set of instances of predicates p(a1, . . . , ak)’s, where
p ∈ P , ai ∈ U . We think of each state as representing truth valuation where
instances in the set are true, and instances not in the set are false.

Let s be a state. We say that rule r is enabled for θ at s, denoted by en(s, r, θ),
iff all instances in Pre[rθ] hold at s (i.e., all instances are included in s). Let
P̂ re[rθ] be the subset of Pre[rθ] that is obtained by removing all negations of

Using Symbolic Model Checking to Detect Service Interactions 645

instances of predicates from Pre[rθ]. When en(s, r, θ) holds, the next state, s′ of
s, can be generated by deleting all instances in P̂ re[rθ] from s and adding all
instances in Post[rθ] to s; that is,

s′ = (s\P̂ re[rθ]) ∪ Post[rθ]

At this time, we say a state transition from s to s′ caused by an event Ev[rθ] is
defined on S.

Example 1. Suppose that r = pots4 in Figure 1, θ = 〈x|A, y|B〉 and s= {dialtone
(A), dialtone(B)}. At this time, Pre[rθ] = {dialtone(A),¬idle(B)}, Post[rθ] =
{bustytone(A)} and en(s, pots4, θ) holds. If subscriber A dials B, then a state
transition occurs, thus resulting in s′ = {busytone(A), dialtone(B)}.

2.3 Feature Interactions

In this paper, we focus primarily on the following three types of interactions.
These are very typical cases of interactions and are discussed in many papers
(e.g., [2,3,4,6,9]):

– deadlock: Functional conflicts of two or more services cause a mutual pre-
vention of their service execution, which result in a deadlock.

– loop: The service execution is trapped into a loop from which the service
execution never returns to the initial state.

– violation of invariant: The invariant property, which is asserted by each
service, is violated by the service combination.

Example 2. (Deadlock) Suppose that both A and B subscribe to EMG and are
talking to each other. Here, if A onhooks, the call is on hold by B’s EMG. At
this time, if A offhooks, the call reverts to the talking state. On the other hand,
if B onhooks, the call is also held by A’s EMG without being disconnected.
Symmetrically, this is true when B onhooks first. Thus, neither A nor B can
disconnect the call. As a result, the call falls into a trap from which it never
returns to the idle state.

Example 3. (Violation of invariant) Suppose that (1)A is an OCS subscriber
who restricts the outgoing calls to C, and (2)B is CF subscriber who sets the
forwarding address to C. At this time, if A dials B, the call is forwarded to C,
so A will be calling C. This nullifies A’s call restriction to C.

3 Proposed Method

3.1 SMV Programs

SMV (Symbolic Model Verifier)[7] is a software tool for symbolic model checking;
it is publicly available and has been especially successful in verifying hardware

646 T. Hamada et al.

systems. In this section, we describe how we can use SMV to detect feature
interactions.

In SMV, services (features) are described in a special language called the
SMV language. We refer to a service description written in the SMV language
as an SMV program.

An SMV program describes both the state space and the property to be
verified. The property is expressed in a temporal logic called CTL (Computation
Tree Logic). The model checker extracts a state space and a transition system
represented as an OBDD from the program and uses an OBDD-based search
algorithm to determine whether the system satisfies the property. If the property
does not hold, the verifier will produce an execution trace that shows why the
property is falsified.

MODULE main
VAR request:boolean;

state:{ready, busy};
INIT state = ready
TRANS (state = ready & request)

& next(state) = busy
SPEC AG(request -> AF state = busy)

Fig. 2. An SMV program.

Figure 2 shows an example of an SMV program. The keyword VAR is used
to declare variables. The variable request is declared to be a Boolean in the
program, while the variable state can take on the symbolic values ready or
busy.

The property to be checked is described as a formula in CTL under the
keyword SPEC. The SMV model checker verifies that all possible initial states
satisfy the CTL formula. In this case, the property is that invariantly if request
is true, then eventually the value of state is busy.

In this example, the transition relation is specified directly by a Boolean
formula over the current and next versions of the state variables. Similary, the
set of initial state is specified by another Boolean formula over the current version
of state variables. These two formulas are accomplished by the TRANS and INIT
statements, respectively.

The initial states are a set of states where the Boolean formula defined in the
INIT statement holds. The transition relation is a set of the pairs of the current
state and the next state that satisfy the Boolean formula defined in the TRANS
statement. The expression next(x) is used to refer to the variable x in the next
state.

Using Symbolic Model Checking to Detect Service Interactions 647

3.2 Translating Service Specifications into SMV Programs

In this subsection, we show how to translate a given service specification into an
SMV program. This process consists of three steps.

First, necessary variables are declared. Basically, we use one Boolean variable
for each instance of a predicate. The variable represents whether or not the
corresponding instance of the predicate holds. For example, suppose that P =
{idle(x), path(x, y)} and U = {A,B}. Then the variable declaration part will be

VAR idle_A : boolean; idle_B : boolean;
path_A_B : boolean; path_B_A : boolean;

The second step is to produce the INIT part. In this part, the initial state is
specified by a Boolean formula over the variables that evaluates to true exactly
for the initial state. For example, when s0 = (idle(A), idle(B)), the INIT part
will be

INIT idle_A = 1 & idle_B = 1 & path_A_B = 0 & path_B_A = 0

The third step is to specify the transition relation by giving a Boolean formula
over the variables and the next version of the variables.

The formula is expressed by a disjunction of many subformulas each of which
represents an instance of each rule. Given an instance i of a rule, its corresponding
formula Fi is

∧

p∈Pre[i]

p ∧
∧

p∈Post[i]

p′ ∧
∧

p∈P̂ re[i]\Post[i]

¬p′ ∧
∧

p�∈P̂ re∪Post

(p ↔ p′).

where p′ denotes the next version of an instance p of a predicate. In the SMV
language, this formula must be expressed as a formula over the declared vari-
ables. For example, consider rule idle(x) , ¬idle(y) [dial(x, y)] path(x, y) and
substitution (x, y) = (A,B). Then the above formula is represented in SMV as

idle_A = 1 & idle_B = 0
& next(idle_A)=0 & next(idle_B)=idle_B
& next(path_A_B)=1 & next(path_B_A)=path_B_A

Thus the formula that represents the transition relation is
∨

i

Fi ∨ (
∧

i

¬Fi ∧
∧

p

(p ↔ p′))

The subformula
∧

i ¬Fi∧
∧

p(p ↔ p′) is necessary, since the transition relation
must be total; that is, the next state must be specified for any states. This
requirement stems from the fact that both the CTL semantics and the CTL
model checking algorithm depend on this assumption. Intuitively, the subformula
signifies that if no transition is possible, then the next state will be the same as
the current state.

648 T. Hamada et al.

3.3 CTL Formulas

The property to be verified by model checking must be described in CTL. CTL
is a branching time temporal logic. Here we only use two temporal operators:
AG and EF .

The formula AG p holds in state s iff p holds in all states along all sequences
of states starting from s. Clearly, the invariant property is expressed in CTL as
AG I where I is an invariant property intended to be satisfied.

EF p holds in state s iff p holds in state s if p holds in some state along
some state sequence starting from s. Thus, the freedom from deadlock and loop is
described as CTL formula AG EF initial state, where initial state represents
the initial state.

4 Experimental Results

In order to evaluate the effectiveness of the proposed method, we conducted
the experimental evaluation through interaction detection for practical services.
For comparison purposes, we used two methods: the proposed method, which
analyzes the state space symbolically, and a previous method[4], which searches
all reachable states explicitly from the initial state.

For each of the seven services prepared in the previous section, we have
created a rule-based service specification. In the following, we attempt to provide
a reasonable invariant property intended to be satisfied. We let IX denote the
invariant property for service X.

CF: There is no invariant property respected for CF. Therefore, we give an
invariant formula ICF = true.

OCS: A reasonable invariant property is considered to be “If x puts y in the
OCS screening list (denoted by OCS(x, y)), x is never calling y at any time”.
Therefore, we give an invariant formula IOCS = ¬OCS(x, y)∨¬calling(x, y).

TCS: A reasonable invariant property is considered to be “If x puts y in the
TCS screening list (denoted by TCS(x, y)), y is never calling x at any time”.
Therefore, we give an invariant formula ITCS = ¬TCS(x, y)∨¬calling(y, x).

DO: A reasonable invariant property is considered to be “If x subscribes to DO
(denoted by DO(x)), x never receives dialtone at any time”. Therefor, we
give an invariant formula IDO = ¬DO(x) ∨ ¬dialtone(x).

DT: A reasonable invariant property is considered to be “If x subscribes to DT
(denoted by DT (x)),, y is never calling x at any time”. Therefor, we give an
invariant formula IDT = ¬DT (x) ∨ ¬calling(y, x).

DC: There is no invariant property respected for DC. Therefore, we give an
invariant formula IDC = true.

EMG: There is no invariant property respected for EMG. Therefore, we give
an invariant formula IEMG = true.

In the experiment, we put the following assumption.

Using Symbolic Model Checking to Detect Service Interactions 649

Table 1. Result of interaction detection.

Service Spec. Unsafety Violation
EMG Detected None
CF+DC None None
CF+DT None Detected
CF+DO None None
CF+OCS None Detected
CF+TCS None Detected
DC+DT None Detected
DC+DO None None
DC+OCS None Detected
DC+TCS None Detected
DT+DO None None
DT+OCS None None
DT+TCS None None
DO+OCS None None
DO+TCS None None
OCS+TCS None None

(a) All users can subscribe to all services.
(b) At the initial state, all users are idle and no user subscribes to any service

yet.

This assumption is quite reasonable for telecommunication services. In order
to achieve Assumption (a), a pair of rules for the subscription registration and
its withdrawal is added to each service specification.

The experiments have been performed on a Linux workstation with a 700
MHz Pentium III processor and 512MByte memory. We varied the number of
users from three to five.

4.1 Results of Detection

First, we check if each of the seven specifications is safe, that is, free from
deadlock and loop. As a result, we have found that all services except EMG
are safe, while EMG contains the loop states as shown in Example 2 which is
interaction of EMG itself. Next, we have combined each pair of the remaining
six services, then tried to detect the interactions between any two services.

Table 1 summarizes the results. In this table, the column ‘Unsafety’ shows
whether deadlock or loop states are identified (detected) or not (none), and
the column ‘Violation’ shows whether violating invariant properties states are
identified (detected) or not (none). The results were the same regardless of the
number of users.

650 T. Hamada et al.

Table 2. Times required for detection (in seconds)

Service Proposed method Previous method
Spec. 3 users 4 users 5 users 3 users 4 users 5 users
EMG 0.59 118.46 N/A 0.55 13.01 298.00
CF+DC 11.01 N/A N/A 258.68 N/A N/A
CF+DT 5.83 825.75 N/A 141.66 N/A N/A
CF+DO 5.94 1066.58 N/A 62.58 N/A N/A
CF+OCS 6.93 942.96 N/A 518.22 N/A N/A
CF+TCS 6.88 931.91 N/A 516.64 N/A N/A
DC+DT 0.84 12.74 514.94 10.27 1371.97 N/A
DC+DO 0.61 11.13 544.26 8.56 1125.81 N/A
DC+OCS 1.00 20.95 11131.60 39.62 N/A N/A
DC+TCS 1.07 20.89 3239.47 39.43 N/A N/A
DT+DO 0.48 5.31 75.61 2.37 67.63 1877.40
DT+OCS 0.64 8.81 929.61 15.84 N/A N/A
DT+TCS 0.65 8.80 760.80 15.87 N/A N/A
DO+OCS 0.58 9.34 N/A 9.64 1767.65 N/A
DO+TCS 0.59 9.26 N/A 9.64 1767.82 N/A
OCS+TCS 1.02 16.42 4429.52 63.31 N/A N/A

4.2 Performance

Next, we evaluate the performance of the proposed method. For each of the two
methods, we investigate how much time is needed to perform the interaction
detection. The measurement was performed in the same setting in the previous
experiment of detection quality.

Table 2 shows the results. In this table, an N/A indicates that data was not
collected because of memory shortage.

In this table, one can see that for all combinations of each pair of six specifi-
cations, CF, DC, DT, DO, OCS, and TCS, the proposed method outperformed
the previous method, in terms of time and memory required to perform the in-
teraction detection. For example, consider the case of DT+TCS. In this case,
the proposed method completed the detection process within around 13 minutes
when the number of users is five. In contrast, the previous method was not able
to carry out detection even when the number of users is four.

Exceptionally, the previous method outperformed the proposed method for
specification EMG. This can be explained as follows. The number of reachable
states is quite small for the case of EMG. Thus, the previous method can com-
plete detection with very small amount of time. In symbolic model checking,
however, an OBDD that represents the transition relation must be constructed
before state space traversal. In this case, the OBDD is very large, thus its con-
struction consumes long time, in spite of the small reachable state space.

Using Symbolic Model Checking to Detect Service Interactions 651

5 Conclusions

In this paper, we proposed to use symbolic model checking to detect feature
interactions in telecommunication. We present a method for translating service
specifications into the input language of the SMV system. We implemented this
method and, by applying it to practical services, showed the effectiveness of the
proposed approach. Future research includes, for example, the examination of
other model checking techniques. Specifically, the use of symmetry and partial
order equivalence for state space reduction has already proven to be effective
when explicit state representation is used [8]. We think that combining these
techniques with the proposed approach deserves further study.

References

1. E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-
state concurrent systems using temporal-logic specifications,” ACM Trans. Pro-
gramming Languages and Systems, vol.8, no.2, pp.244-263, 1986.

2. R. Dssouli, S. Some, J. W. Guillery, and N. Rico, “Detection of feature interactions
with REST,” Porc. of Fourth Workshop on Feature Interactions in Telecommuni-
cations Systems, pp.271-283, July 1997.

3. A. Gammelgaard, E. J. Kristensen, “Interaction detection, a logical approach,”
Porc. of Second Workshop on Feature Interactions in Telecommunications Systems,
pp.178-196 1994.

4. Y. Harada, Y. Hirakawa, T. Takenaka, and N. Terashima, “A conflict detection
support method for telecommunication service descriptions,” IEICE Trans. Com-
mun., vol.E75-B, no.10, Oct. 1992.

5. Y. Hirakawa and T. Takenaka, “Telecommunication service description using state
transition rules,” Proc. of IEEE Int’l Workshop on Software Specification and De-
sign, pp.140-147, Oct. 1991

6. A. Koumsi, “Detection and resolution of interactions between services of telephone
networks,” Proc. of Fourth Workshop on Feature Interactions in Telecommunica-
tions Systems, pp.78-92, July 1997.

7. K. L. McMillan, Symbolic Model Checking, Kluwer Academic, 1993.
8. M. Nakamura and T. Kikuno, “Exploiting symmetric relation for efficient feature

interaction detection,” IEICE Trans. on Information and Systems, vol.E82-D, No.
10, pp.1352-1363, 1999.

9. T. Ohta and Y. Harada, “Classification, detection and resolution of service in-
teraction in telecommunication services,” Porc. of Second Workshop on Feature
Interactions in Telecommunications Systems, pp.60-72 1994.

10. M. Plath and M. Ryan, “Plug-and-play features,” In W. Bouma, editor, Feature
Interactions in Telecommunications Systems V, IOS Press, pp. 150-164, 1998.

11. ITU-T Recommendations Q.1200 Series, Intelligent Network Capability Set 1
(CS1), Sept. 1990.

12. Bellcore, LSSGR Feature Common to Residence and Business Customers I,II,III,
Issue 2, July 1987.

	Introduction
	Preliminaries
	Services
	Specifications
	Feature Interactions

	Proposed Method
	SMV Programs
	Translating Service Specifications into SMV Programs
	CTL Formulas

	Experimental Results
	Results of Detection
	Performance

	Conclusions

