
Defining Semantic Guideline in XML-based Programmable Service Environment

Pattara Leelaprute�, Masahide Nakamura�, Ken’ichi Matsumoto� and Tohru Kikuno�

�Graduate School of Information Science and Technology, Osaka University, Japan
�pattara, kikuno�@ist.osaka-u.ac.jp

�Graduate School of Information Science, Nara Institute of Science and Technology, Japan
�masa-n, matumoto�@is.aist-nara.ac.jp

1. Introduction
Traditionally, network services have been deployed by

service providers in a ready-made form. The implemen-
tation and configuration of the services are carefully per-
formed by expert staffs. The end users just subscribe to
the ready-made services to use them. For instance, the con-
ventional telephony services, like Call Forwarding and Call
Number Blocking, are managed by telecom carriers.

Recently in the Internet, a paradigm shift in managing
services occurs with standardized protocols and powerful
terminals with intelligent agents. The end users (or third
parties) can create and control their own services within
the local servers. Thus, the services become more and
more programmable, which extends the range of the user’s
choice and flexibility. The programmable service is gener-
ally specified with a certain language. In recent years, many
XML-based languages are proposed for the service de-
scription (e.g., WSDL for Web Services, CPL for VoIP[1],
VoiceXML for interactive voice services).

Most of these XML-based languages are syntactically
defined by DTDs or XML Schemas. However, these do not
usually cover the semantic aspect of the programmable ser-
vices. Indeed, the compliance with the DTD or the XML
Schema is not a sufficient condition for the correctness of
the service. Since the end users are not as expert as the con-
ventional service providers, there is enough room for naive
users to create semantic flaws in the service. This signifi-
cantly reduces quality and dependability of the services.

To cope with this problem, it is essential to establish a se-
mantic guideline, by which the end users can debug the ser-
vice and validate its semantic correctness. In our previous
research[2], we have proposed a notion of semantic warn-
ings for Call Processing Language (CPL) of VoIP. The idea
was borrowed from the program compilation, which iden-
tifies problematic structures in the code (XML text in this
context). The warnings are not necessarily errors, but often
lead the service to undesirable behaviors as shown in our
experiment. In the research, we have defined eight classes
of warnings. However, there is no guarantee that these eight

classes are complete. Further classes of warnings may be
found in the future. Therefore, for the XML-based pro-
grammable service environment (not limited to the CPL),
we consider it inevitable to have a more general framework,
by which we can specify the semantic guidelines themselves
in a programmable way.

For this purpose, this paper presents an application of an
XPath-based language, SGSL (Simple Guideline Specifica-
tion Language) [3], which was originally developed to for-
mulate the Web Contents Accessibility Guideline by W3C.
Specifically, by describing the CPL semantic warnings in
the SGSL, we examine what features are essentially needed
for the general semantic guideline.

2. CPL semantic warnings
The CPL allows a user to describe freely how his/her

calls should be processed by the VoIP server. The user can
specify the signaling action (proxy, redirect, or reject), as
well as the next location where the call is to be directed. The
user can also specify conditional branches using switches
based on address, time, etc (see [1]). Focusing on the se-
mantic aspects of telephony services, we defined eight types
of semantic warnings in [2]. Due to limited pages, we here
present only three of the eight warnings.

Call rejection in all execution paths (CRAE)
Definition: All execution paths terminate at <reject>.
Example: By the script in Figure 1(a), any incoming call is
rejected, no matter who the originator is. All actions and
evaluated conditions are in vain after all, which just wastes
resources of the VoIP servers.
Address set after address switch (ASAS)
Definition: When <address> and <otherwise> tags
are specified as outputs of <address-switch>, the
same address evaluated in the <address> is set in the
<otherwise> block.
Example: When the user makes an outgoing call, the script
in Figure 1(b) checks the destination of the call. The call
is rejected if the destination is bob@example.com. How-

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">

<address is="anonymous">
<reject status="reject" reason=
"I don’t accept anonymous calls"/>

</address>
<address is="guest">

<reject status="reject" reason=
"I don’t accept call from guest"/>

</address>
<otherwise>

<reject status="reject" reason=
"I don’t accept call from anyone"/>

</otherwise>
</address-switch>

</incoming>
</cpl>

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<outgoing>
<address-switch field="original-destination"
subfield="user">
<address is="sip:bob@example.com">

<reject status="reject"
reason="I don’t want to call Bob" />

</address>
<otherwise>

<location url="sip:bob@example.com">
<proxy/>

</location>
</otherwise>

</address-switch>
</outgoing>

</cpl>

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">
<cpl>

<incoming>
<address-switch field="origin" subfield="user">

<address subdomain-of="family">
<location url="sip:mobile@example.com">

<proxy/>
</location>

</address>
<address subdomain-of="friend">
<location url="sip:mobile@example.com">

<proxy/>
</location>

</address>
<otherwise>
<location url="sip:mobile@example.com">

<proxy/>
</location>

</otherwise>
</address-switch>

</incoming>
</cpl>

(a) Example of CRAE (b) Example of ASAS (c) Example of IASS

Figure 1. Example CPL scripts

ever, for other destination address, the call is proxied to
bob@example.com, which must have been rejected.
Identical actions in single switch (IASS)
Definition: The same actions are specified for all conditions
of a switch.
Example: The script in Figure 1(c) specifies a condi-
tional branch of the caller’s address (origin). How-
ever, whatever the address is, the call is proxied to
mobile@example.com. Hence, the switch is redundant.

Note that neither DTD nor XML Schema of the CPL can
identify the semantic warnings. Indeed, all scripts in Figure
1 are syntactically valid against them.

3. Defining semantic warnings with SGSL

The semantic guidelines (including our warnings) are of-
ten defined on the XML’s tree structure. Specifically, they
are characterized by properties on a certain set of nodes in
the XML text. For this, the XPath could be an appropri-
ate means, since it can specify Boolean expressions (XPath-
BooleanExpresion) for the node properties, and expressions
for addressing any set of nodes (XPathNodeSetExpression).
However, the XPath basically evaluates the XML text in a
path basis. So, it cannot describe semantic guidelines de-
fined over the tree structure (e.g., CRAE).

Therefore, we attempt to apply a language called SGSL
(Simple Guideline Specification Language)[3]. The SGSL
extends the XPath so that it can manipulate multiple nodes
in different paths using some and every operators (see
Figure 2). It was originally designed to specify the Web
Content Accessibility Guidelines by W3C, such as “Provide
the ALT attribute for every IMG elements”. Using the
SGSL, the semantic warnings CRAE and ASAS in Section
2 can be described as follows:

CRAE: if every $x in [count(node())=0]

satisfies $x=reject then warn("CRAE")

Description: if every terminating node (having 0 children)
is equal to reject, then issue the warning CRAE.
ASAS: if some $x in //address-switch

satisfies $x/[address/@is = otherwise/locat

ion/@url] then warn("ASAS")

Description: For some child node of address-switch, if
the attribute is in address is equal to the attribute url in
location in otherwise, then issue the warning ASAS.

We found it impossible to specify IASS with the SGSL,
since neither the XPath nor the SGSL is capable of compar-
ing sub-trees in the XML text. After all, we confirmed that
all warnings except IASS can be specified by the SGSL.

In this research, it was shown that the XPath and even
its extension, the SGSL, could not achieve complete cov-
erage of the CPL semantic warnings. This implies that a
more expressive language is necessary to specify semantic
guidelines for general XML-based programmable services.
Through the application to the CPL, it was seen that what
lacked for the SGSL was the tree-wise comparison, where
the expression can test equality and inclusion of sub-trees in
the XML text.

Of course, the semantic guidelines vary depending on
the target services, so other necessary features still might
exist for different services. However, we believe that there
must exist common semantic properties for general XML-
based programmable services. Extracting such properties
and generalizing them for a universal semantic guideline
framework (e.g., language) are a quite crucial problem,
which is our research goal.

Checkpoint::= BooleanExpression
| if BooleanExpression then warn(String)

BooleanExpression::= XPathBooleanExpression
| every Variable in NodeSet satisfies BooleanExpression
| some Variable in NodeSet satisfies BooleanExpression

NodeSet::= XPathNodeSetExpression

Figure 2. Syntax of the SGSL (in BNF)

References

[1] J. Lennox and H. Schulzrinne, “CPL:A Language for User Control of
Internet Telephony Service”, Internet Engineering Task Force, Jan 2002,
http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-06.txt

[2] M. Nakamura, P. Leelaprute, K. Matsumoto and T. Kikuno, “On Detecting Fea-
ture Interactions in Programmable Service Environment of Internet Telephony”,
Journal of Computer Networks, Elsevier, (to appear).

[3] Y. Takata, T. Nakamura and H. Seki, “Automatic Accessibility Guideline Valida-
tion of XML Documents Based on a Specification Language”, 10th Int’l Conf.
on Human-Computer Interaction (HCI 2003), Vol.4, pp.1040-1044, June 2003.

