
 1

Detecting Semantic Ambiguity in Service Description of
Internet Telephony

Pattara Leelaprute1, Masahide Nakamura2, Tohru Kikuno1

1Department of Informatics and Mathematical Science,
Graduate School of Engineering Science Osaka University, Japan

2Graduate School of Information Science
Nara Institute of Science and Technology, Japan

pattara@ics.es.osaka-u.ac.jp

Abstract

The Call Processing Language (CPL, in short),
recommended in RFC 2824 of IETF, is a service
description language for the Internet Telephony. The
CPL allows users to define their own services, which
dramatically improves the choice and flexibility in
service creation by the users. However, there are
enough rooms for non-expert users to make semantic
mistakes in the service logic. In this paper, we
propose six classes of semantic warnings for the CPL
service description. These warnings are not
necessarily errors, but will help users to find
ambiguity, redundancy and inconsistency in their
own service description. We also present a tool,
called CPL semantic checker for detecting the
semantic warnings. The tool performs not only
detection of the proposed semantic warnings, but
also checking syntax well-formedness and DTD
conformance for the given CPL script.

Key-Words: Internet telephony, semantic warnings,
VoIP, CPL, Feature Interaction

1. Introduction

As the Internet is widely spread in society, high-
quality services with the Internet are required.
Among the various Internet services, this paper
especially focuses on the Internet telephony [3],
which is also called Voice over IP, (VoIP, in short).
The Internet telephony has been widely studied and
standardized at the protocol level (i.e., H323[5] by
ITU-T, SIP[4] by IETF). Now, the concern is shifting
to the service level; how to provide supplementary
services (e.g., call forwarding, voice mail, etc.) on the
Internet telephony.

One of the major issues is the programmable
service, which allows users to define and create their
own supplementary services. The Call Processing
Language [2] (CPL, in short), based on XML, is

recommended as a service description language in
RFC2824 of the Internet Engineering Task Force
(IETF) [1]. Users can deploy their own service just
by putting the CPL scripts in the local VoIP server
(called signaling server). This improves the range of
user’s choice and flexibility in service creation,
significantly.

There is, however, a drawback of the
programmable service. The service description of
non-experts cannot always achieve the high quality.
Also, users might make faults in the CPL scripts that
lead to serious system down.

To cope with this problem, this paper tries to
characterize semantic warnings of service description
written in the CPL. As seen in many programming
languages, the warnings are not necessarily errors.
However, they could cause ambiguity, redundancy
and inconsistency, which are often the major source
of errors. We believe that the proposed warnings will
help users to improve the quality of the CPL scripts.

2. Describing services with CPL

Let us define a new service based on the
following requirements, using CPL:

- I (pattara@example.com) want to receive
incoming calls only from domain example.com.

- I want to reject all calls from malicious crackers
(belonging to crackers.org).

- I want to redirect any other calls to my voice
mail (pattara@voicemail.example.com).

Figures 1 and 2 depict the requirement and an
implementation of the service, respectively. The first
two lines are for the declaration of XML and DTD
(Document Type Definition). The tag <cpl> means
the start of a body of the CPL script. The portion
surrounded by <subaction> </subaction>
defines a subaction, which is a sub-routine called
from the main-routine. <incoming> tag specifies
actions activated when an incoming call is received.

 2

Next, <address-switch> allows the CPL to
have a conditional branch with respect to the
addresses. In this example, the condition is extracted
from the host address of the caller (field=
"origin" subfield=host). If the host’s
domain matches example.com (<address
subdomain-of= "example.com">), then the
location is set to sip:pattara@example.com,
and the call is proxied there (<proxy />). If the
domain matches crackers.org, the call is
rejected (<reject status="reject" />).
Otherwise, the subaction voicemail is called. In the
subaction voicemail, the location is set to
pattara@voicemail.example.com, and the
call is redirected there. That is, the caller places the
call again to the new address. For the detailed
definition of CPL, please refer to the full
specification [2].

Figure 1. Behavior of the requirement

Figure 2. Example of a CPL script

3. Characterizing Semantic Warnings
The CPL is a relatively simple language, as it has

no variables, loops, or ability to run external
programs. This allows simple but strict syntax
definition by the DTD, and minimizes such complex
semantic errors as the ones in the general
programming languages [2]. However, compliance
with the DTD is not a sufficient condition for
correctness of a CPL script. There are enough rooms
for non-expert users to make various mistakes, which
make the CPL scripts complex, ambiguous and
inconsistent.

Here we propose six classes to be considered as the
semantic warnings. These might not be necessarily
errors, but should be avoided. In the following
subsections, we present a definition and its effects.
To help the comprehensions, we also give an
example for each semantic warning. Due to the
limited pages, we reuse the script in Figure 2, and
modify the script so that it contains a typical semantic
warning. These examples are also available at
http://www-kiku.ics.es.osaka-u.ac.jp/~pattara/CPL/ .

3.1 Multiple forwarding addresses (MF)
Definition: After multiple addresses are set by
<location> tags, <proxy> or <redirect>
comes.
Effects: The CPL allows calls to be proxied (or
redirected) to multiple address locations by cascading
<location> tags. However, if the call is redirected
to multiple locations, the caller would confuse to
which address the next call should be placed. Or, if
the call is proxied, a race condition might occur
depending on the configuration of the proxied
terminals. As a typical example, if a user
simultaneously sets the forwarding address to his
handy phone and voice mail that immediately
answers the call. Then the call never reaches his
handy phone.
Example: Figure 3 shows an example. The call from
anybody@example.com is proxied to the
terminal and voicemail simultaneously. If the voice
mail is configured so as to immediately answer the
call, then the call never reaches the terminal.

3.2 Identical switches with the same parameters
(IS)
Definition: After a switch tag with a parameter, the
same switch with the same parameter comes.
Effects: The CPL has no variables or no loop. So, a
condition evaluated in the former switch tag never
changes in the latter switch tag. Hence, the
conditional branch specified in the latter switch is in
vain, since the condition must have been evaluated
already. This would increase the ambiguity of the
CPL script.

1: <?xml version="1.0" ?>
2: <!DOCTYPE cpl PUBLIC "-//IETF//DTD
3: RFCxxxx CPL 1.0//EN" "cpl.dtd">
4: <cpl>
5: <subaction id="voicemail">
6: <location url="sip:pattara@voicemail.example.com">
7: <redirect/>
8: </location>
9: </subaction>
10: <incoming>
11: <address-switch field="origin" subfield="host">
12: <address subdomain-of="example.com">
13: <location url="sip:pattara@example.com">
14: <proxy />
15: </location>
16: </address>
17: <address subdomain-of="crackers.org">
18: <reject status="reject" />
19: </address>
20: <otherwise>
21: <sub ref="voicemail"/>
22: </otherwise>
23: </address-switch>
24: </incoming>
25: </cpl>

 3

Example: Figure 4 shows an example. When a call is
arrived, this script will check the originator’s host
domain. If it matches example.com, the call will
be proxied to pattara@example.com. Otherwise,
the call processing proceeds to <otherwise> block.
However, here the originator’s domain is checked
again if it matches example.com. This condition
has been already evaluated, and it never holds since it
is in <otherwise> block. As a result, the subaction
voicemail is never executed. Thus, the second switch
is redundant and meaningless.

3.3 Call rejection in all paths (CR)
Definition: All execution paths terminate at
<reject>.
Effects: No matter which path is selected, the call is
rejected. No call processing is performed, and all
executed actions and evaluated conditions are
nullified. This is not a problem only when the user
wants to reject all calls explicitly. However, complex
conditional branches and deeply nested tags will
make this problem difficult to be found, on the
contrary to user’s intention.
Example: Figure 5 shows an example. By this script,
any incoming call is rejected, no matter who is the
originator. All actions and evaluated conditions are
meaningless after all.

3.4 Address set after address switch (AS)
Definition: When <address> and <otherwise>
tags are specified as outputs of <address-
switch>, the same address evaluated in the
<address> is set in the <otherwise> block.
Effects: The <otherwise> block is executed when
the current address does not match the one specified
in <address>. If the address is set as a new current
address in <otherwise> block, then a violation of
the conditional branch might occur. A typical
example is that, after screening a specific address by
<addressswitch>, the call is proxied to the
address, although any call to the address must have
been filtered.
Example: Figure 6 shows an example. When the user
makes an (outgoing) call, this script will check the
destination of the call. The call should be rejected if
the destination address is pattara@example.com,
according to the condition specified in <address>.
However, in the <otherwise> block, the call is
proxied to pattara@example.com, which must
have been rejected.

1: <?xml version="1.0" ?>
2: <!DOCTYPE cpl PUBLIC "-//IETF//DTD
3: RFCxxxx CPL 1.0//EN" "cpl.dtd">
4: <cpl>
5: <subaction id="voicemail">
6: <location url="sip:pattara@voicemail.example.com">
7: <redirect/>
8: </location>
9: </subaction>
10: <incoming>
11: <address-switch field="origin" subfield="host">
12: <address subdomain-of="example.com">
13: <location url="sip:pattara@example.com">
14: <proxy />
15: </location>
16: </address>
17: <address subdomain-of="crackers.org">
18: <reject status="reject" />
19: </address>
20: <otherwise>
21: <address-switch field="origin" subfield="host">
22: <address subdomain-of="example.com">
23: <sub ref="voicemail"/>
24: </address>
25: </address-switch>
26: </otherwise>
27: </address-switch>
28: </incoming>
29: </cpl>

Figure 3. Example of MF

1: <?xml version="1.0" ?>
2: <!DOCTYPE cpl PUBLIC "-//IETF//DTD
3: RFCxxxx CPL 1.0//EN" "cpl.dtd">
4: <cpl>
5: <subaction id="voicemail">
6: <location url="sip:pattara@voicemail.example.com">
7: <redirect/>
8: </location>
9: </subaction>
10: <incoming>
11: <address-switch field="origin" subfield="host">
12: <address subdomain-of="example.com">
13: <location url="sip:pattara@example.com">
14: <location url=
15: "sip:pattara@voicemail.example.com">
16: <proxy />
17: </location>
18: </location>
19: </address>
20: <address subdomain-of="crackers.org">
21: <reject status="reject" />
22: </address>
23: <otherwise>
24: <sub ref="voicemail"/>
25: </otherwise>
26: </address-switch>
27: </incoming>
28: </cpl>

Figure 4. Example of IS

 4

3.5 Unused Subactions (US)
Definition: Subaction <subaction id= "foo" > exists,
but <subaction ref= "foo" > does not.
Effects: The subaction is defined but not used. The
defined subaction is completely redundant, and
should be removed to decrease server’s overhead for
parsing the CPL script.
Example: Figure 7 shows an example. In this script,
a subaction “voicemail” that was declared in the
subsection part is not used in the body of the script.
So, the unused subaction ”voicemail” is redundant
and should be removed.

3.6 Overlapped Conditions in Switches (OS)
Definition: The condition is overlapped among the
multiple output tags of a switch.
Effects: According to the CPL specification, if there
exist multiple output tags for a switch, then the

condition is evaluated in the order the tags are
presented, and the first tag to match is taken. If the
conditions specified in the outputs are overlapped (or
identical), then the former tag is always taken. In
extreme cases, the latter tag is never executed, which
is a redundant description.
Example: Figure 8 shows an example. When a call
reaches the user, this script will check the destination
of the call. If the destination address contains
pattara, the call will be proxied to his home
address. If the destination address is
pattaraleelaprute, this script tries to proxy
the call to his mobile address. But in fact, the call is
never proxied to pattaraleelaprute, since
pattara is a substring of pattaraleelaprute,
thus the first branch is always taken.

1: <?xml version="1.0" ?>
2: <!DOCTYPE cpl PUBLIC "-//IETF//DTD
3: RFCxxxx CPL 1.0//EN" "cpl.dtd">
4: <cpl>
5: <incoming>
6: <address-switch field="destination" >
7: <address contains="pattara">
8: <location url="sip:pattara@home.example.com">
9: <proxy />
10: </location>
11: </address>
12: <address is="pattaraleelaprute">
13: <location url=
14: "sip:pattaraleelaprute@home.example.com">
15: <proxy />
16: </location>
17: </address>
18: </address-switch>
19: </incoming>
20: </cpl>

1: <?xml version="1.0" ?>
2: <!DOCTYPE cpl PUBLIC "-//IETF//DTD
3: RFCxxxx CPL 1.0//EN" "cpl.dtd">
4: <cpl>
5: <incoming>
6: <address-switch field="origin" subfield="host">
7: <address subdomain-of="example.com">
8: <location url="sip:pattara@example.com">
9: <reject status="reject" />
10: </location>
11: </address>
12: <address subdomain-of="crackers.org">
13: <reject status="reject" />
14: </address>
15: <otherwise>
16: <reject status="reject" />
22: </otherwise>
23: </address-switch>
24: </incoming>
25: </cpl>

Figure 5. Example of CR

1: <?xml version="1.0" ?>
2: <!DOCTYPE cpl PUBLIC "-//IETF//DTD
3: RFCxxxx CPL 1.0//EN" "cpl.dtd">
4: <cpl>
5: <outgoing>
6: <address-switch field="destination">
7: <address is="sip:pattara@example.com">
8: <reject status="reject"
9: reason="I don't call Pattara" />
10: </address>
11: <otherwise>
12: <location url="sip:pattara@example.com">
13: <proxy/>14: </location>
15: </otherwise>
16: </address-switch>
17: </outgoing>
18: </cpl>

Figure 6. Example of AS

1: <?xml version="1.0" ?>
2: <!DOCTYPE cpl PUBLIC "-//IETF//DTD
3: RFCxxxx CPL 1.0//EN" "cpl.dtd">
4: <cpl>
5: <subaction id="voicemail">
6: <location url="sip:pattara@voicemail.example.com">
7: <redirect/>
8: </location>
9: </subaction>
10: <incoming>
11: <address-switch field="origin" subfield="host">
12: <address subdomain-of="example.com">
13: <location url="sip:pattara@example.com">
14: <proxy />
15: </location>
16: </address>
17: <address subdomain-of="crackers.org">
18: <reject status="reject" />
19: </address>
20: </address-switch>
21: </incoming>
22: </cpl>

Figure 7. Example of US

Figure 8. Example of OS

 5

4. Developing CPL semantic checker
 Based on the proposed definitions, we have
developed software, called CPL semantic checker, to
detect the semantic warnings. For a given CPL script,
it can be used not only to detect the semantic
warnings, but also to perform the syntax checking.
That is, the CPL semantic checker performs (1)
checking well-formedness of XML syntax, (2)
validation of the CPL against the DTD, and finally
(3) detection of the semantic warnings.
The CPL semantic checker is a CGI program
implemented by the Perl language. By extensively
utilizing open-source modules XML::Parser and
XML::DOM::Parser, the CPL semantic checker itself
is a very light-weight program consisting of 518 lines
of codes. It is freely available at the URL
http://www-kiku.ics.es.osaka-u.ac.jp/~pattara/CPL/ .
When you access the URL by web browsers, then an
input interface, as shown in Figure 9, will appear.
The interface contains a text box for putting a CPL
script in. You can either directly write the CPL script
or paste it from clipboard. To reset the input CPL
script, click the “Reset” button. To validate the CPL
script, click “Validate” button below the CPL input
windows. Then the CPL semantic checker reports
syntax checking and semantic warnings described in
Section 3. The reports are shown sequentially below
“Validate” and “Reset” buttons. If input CPL script is
free from errors, a message “No error found.” would
be shown. If the given CPL script has semantic errors,
the following messages would be shown:
!!Error=MF, found after proxy (or redirect) in line
(line number).
!!Error=IS, parameter in line (line number) same as
parameter in line (line number).
!!Error=CR, call rejected in all paths.
!!Error=AS, address is="address" in line (line
number) same as location url="address" in line (line
number)
!!Error=US, declared "subaction name" in line (line
number) is unused.
!!Error=OS, "first condition" in line (line number)
contain "second condition" in line (line number)

Figure 5 shows an example of the execution,
showing that the input script contains semantic
warning｠ MF and US.

The CPL semantic checker also can be used as a
module for CPL feature server and/or SIP Proxy
server [6], in order to check the validity of the CPL
script at run time. We are currently extending its
interface.

5. Conclusion
 In this paper, we have proposed the six classes of
semantic warnings in CPL service description.
Although there might exist other types of semantic

warnings (thus, some quantitative evaluation is
needed), we believe that the proposed warnings
would contribute to describing consistent service
logic in the CPL. We have also presented a tool, CPL
semantic checker, to check the semantic warnings as
well as the syntax error and DTD conformance.
Once each individual service is guaranteed to be
consistent, then we have to tackle the next tough
problem: Feature Interaction [7]. The Feature
Interaction is known as a kind of inconsistent conflict
between multiple services. It refers to situations
where a combination of different services behaves
differently than expected from the single services’
behaviors. One of our future work is to establish a
framework to detect the Feature Interaction in the
CPL scripts. As a first step, we need to extend the
definition of semantic warnings so as to cover the
inconsistency over multiple scripts. As described in
[1], there has been no effective solution for the
Feature Interaction problem in the Internet Telephony,
since the CPL scripts can be updated anytime by
users. Therefore, we need to examine the architecture
for detecting and resolving the Feature Interaction at
run-time.

Acknowledgments

This work is partly supported by Grant-in-Aid for
Encouragement of Young Scientists (No.13780234),
from Japan Society for the Promotion of Scienc

12. References
[1] J.Lennox and H.Schulzrinne,“Call processing
language framework and requirements,” Request for
Comments 2824, Internet Engineering Task
Force,May 2000.
http://www.ietf.org/rfc/rfc2824.txt?number=2824
[2] J.Lennox and H.Schulzrinne,“CPL:A Language
for User Control of Internet Telephony Service,”
Internet Engineering Task Force,Jan 2002.
http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-
06.txt
[3] H.Schulzrinne and J.Rosenberg, “Internet
Telephony: Architecture and protocols - an IETF
perspective,” Computer Networks and ISDN Systems,
vol.31, pp.237-255, Feb 1999.
[4] M.Handley, H.Schulzrinne, E.Schooler, and
J.Rosenberg, “SIP: session initiation protocol,”
Request for Comments 2543, Internet Engineering
Task Force, Feb 2002.
http://www.ietf.org/internet-drafts/draft-ietfsip-
rfc2543bis-09.txt
[5] ITU-T Recommendation H.323, “Packet-Based
Multimedia Communications Systems,” February
1998.

 6

[6] VOVIDA.ORG, “Vovida Open Communication
Application Library (VOCAL)”,
http://www.vovida.org
[7] Keck, D.O. and Kuehn, P.J., “The feature
interaction problem in telecommunications systems:
A survey,” IEEE Trans. on Software Engineering,
Vol.24, No.10, pp.779-796, 1998.

Figure 9. Execution example

