
Characterizing Semantic Warnings of Service Description in
Call Processing Language on Internet Telephony

Pattara Leeraplute�, Tomokazu Taki�, Masahide Nakamura�, Tohru Kikuno�

�Department of Informatics and Mathematical Science
Graduate School of Engineering Science Osaka University, Japan

Tel: +81-6-6850-6567 , Fax: +81-6-6850-6569
E-mail: pattara@ics.es.osaka-u.ac.jp

�Graduate School of Information Science
Nara Institute of Science and Technology

Tel: +81-743-72-5312 , Fax: +81-743-72-5319
E-mail: masa-n@is.aist-nara.ac.jp

Abstract: The Call Processing Language (CPL, in short),
recommended in RFC 2824 of IETF, is a service description
language for the Internet Telephony. The CPL allows users
to define their own services, which dramatically improves the
choice and flexibility of the users.

The syntax of the CPL is strictly defined by DTD (Docu-
ment Type Definition). However, compliance with the DTD
is not a sufficient condition for correctness of a CPL script.
There are enough rooms for non-expert users to make se-
mantical mistakes in the service logic, which could lead to
serious system down.

In this paper, we present six classes of semantic warnings
for the CPL service description: MF, IS, CR, AS, US, OS.
For each class, we give the definition and its effects with an
example script. These warnings are not necessarily errors.
However, these warnings will help users to find ambiguity,
redundancy and inconsistency in their own service descrip-
tion.

1. Introduction
As the Internet is widely spread in society, high-quality

services with the Internet are required and developed, such
as Video on Demand, e-learning, on-line banking and Web
services. Among the various Internet services, this paper es-
pecially focuses on the Internet telephony[3], which is also
called Voice over IP, (VoIP, in short). The Internet telephony
has been widely studied and standardized at the protocol
level (i.e., H323[5] by ITU-T, SIP[4] by IETF).

Now, the concern is shifting to the service level; how to
provide supplementary services (e.g., call forwarding, voice
mail, etc.) on the Internet telephony. One of the major is-
sues is the programmable service, which allows users to de-
fine and create their own supplementary services. The Call
Processing Language [2] (CPL, in short), based on XML, is
recommended as a service description language in RFC2824
of the Internet Engineering Task Force (IETF) [1]. Users
can deploy their own service just by putting the CPL scripts
on the local VoIP server (called signalling server). This im-
proves the range of user’s choice and flexibility, significantly.

There is, however, a drawback of the programmable ser-
vice. The service description of non-experts cannot always
achieve the high quality. Also, users might make faults in the
CPL scripts that lead to serious system down.

To cope with this problem, this paper tries to characterize

proxyexample.com pattara@example.com

noname@crackers.org

nakamura@example.com

other@instance.com

reject

redirect
pattara@voicemail.example.com

Figure 1. Behavior of the requirement

semantic warnings of service description written in the CPL.
As seen in many programming languages, the warnings are
not necessarily errors. However, they could cause ambigu-
ity, redundancy and inconsistency, which are often the major
source of errors. We believe that the proposed warnings will
help users to improve the quality of the CPL scripts.

2. Describing services with CPL
Let us define a new service based on the following re-

quirements, using CPL:
� I (pattara@example.com) want to receive incom-

ing calls only from domain example.com.
� I want to reject all calls from malicious crackers (be-

longing to crackers.org).
� I want to redirect any other calls to my voice mail (pat-
tara@voicemail.example.com).

Figure 1 summarizes the requirement. Figure 2 shows
an implementation of the service. As in the XML, the
CPL tags describe nested structures, starting from <tag>
and ending with </tag>. <tag /> is an abbreviation of
<tag> </tag>. The first two lines are for the declara-
tion of XML and DTD (Document Type Definition). The tag
<cpl> means the start of a body of the CPL script. The por-
tion surrounded by <subaction> </subaction> de-
fines a subaction, which is a sub-routine called from the
main-routine. <incoming> tag specifies actions activated
when an incoming call is received.

Next, <address-switch> allows the CPL to have a
conditional branch with respect to the addresses. In this ex-
ample, the condition is extracted from the host address of
the caller (field= "origin" subfield=host). If
the host’s domain matches example.com (<address

subdomain-of= "example.com">), then the location
is set to sip:pattara@example.com, and the call is
proxied there (<proxy />) . If the domain matches
crackers.org, the call is rejected (<reject />). Oth-
erwise, the subaction voicemail is called. In the subaction
voicemail, the location is set to
pattara@voicemail.example.com, and the call is
redirected there. That is, the caller places the call again to
the new address.

For a formal definition of CPL, please refer to the full
specification [2].

3. Characterizing Semantic Warnings
The CPL is a relatively simple language, as it has no vari-

ables, loops, or ability to run external programs. This allows
simple but strict syntax definition by the DTD, and mini-
mizes such complex semantic errors as the ones in the gen-
eral programming languages.

However, compliance with the DTD is not a sufficient
condition for correctness of a CPL script. There are enough
rooms for non-expert users to make various mistakes, which
make the CPL scripts complex, ambiguous and inconsistent.

Here we propose six clasees to be considered as the se-
mantic warnings. These might not be necessarily errors, but
should be avoided. In the following subsections, we present
a definition, effects and an example script for each warning
class.

3.1 Multiple forwarding addresses (MF)

Definition: After multiple addresses are set by <loca-
tion> tags, <proxy> or <redirect> comes.

Effects: The CPL allows calls to be proxied (or redi-
rected) to multiple address locations by cascading<lo-
cation> tags. However, if the call is redirected to
multiple locations, then the caller would confuse to
which address the next call should be placed. Or, if the
call is proxied, a race condition might occur depending
on the configuration of the proxied terminals. As a typ-
ical example, if a user simultaneously sets the forward-
ing address to his handy phone and voice mail that im-
mediately answers the call. Then the call never reaches
his handy phone.

Example CPL: Figure 3 shows an example. The user
is setting the forwarding address to his handy phone
pattara@mobile.example.com and voice mail
pattara@voicemai.example.com, simultane-
ously. If the user configures the voice mail to imme-
diately answer the call, then no call reaches the mobile
phone.

3.2 Identical switches with the same parameters (IS)

Warning class: Identical switches with the same param-
eters (IS)

Definition: After a switch tag with a parameter, the same
switch with the same parameter comes.

Effects: The CPL has no variables or no loop. So, a con-
dition evaluated in the former switch tag never changes
in the latter switch tag. Hence, the conditional branch

specified in the latter switch is in vain, since the con-
dition must have been evaluated already. This would
increase the ambiguity of the CPL script.

Example CPL: Figure 4 shows an example. When a call
arrives the user, this script will check the originator’s
host name. If it matches home.org, the call will be
proxied to pattara@home.org. On the other hand,
the originator’s host name will be checked again if it
matches home.org or not. If yes, this script tries to
proxy the call to pattara@mobile.net. But in fact
this proxy is never executed. The second switch is re-
dundant and meaningless.

3.3 Call rejection in all paths (CR)

Definition: All execution paths terminate at <reject>.
Effects: No matter which path is selected, the call is re-

jected. No call processing is performed, and all ex-
ecuted actions and evaluated conditions are nullified.
This is not a problem only when the user wants to re-
ject all calls explicitly. However, complex conditional
branches and deeply nested tags will make this problem
difficult to be found, on the contrary to user’s intention.

Example CPL: Figure 5 shows an example. By this
script, any incoming call is rejected, no matter who is
the originater: ”anonymous”, ”pattara@example.com”
or others. All actions and evaluated conditions are
meaningless after all.

3.4 Address set after address switch (AS)

Definition: When <address> and <otherwise>
tags are specified as outputs of <address-switch>,
the same address evaluated in the <address> is set in
the <otherwise> block.

Effects: The <otherwise> block is executed when the
current address does not match the one specified in
<address>. If the address is set as a new current ad-
dress in <otherwise> block, then a violation of the
conditional branch might occur. A typical example is
that, after screening a specific address by <address-
switch>, the call is proxied to the address, although
any call to the address must have been filtered.

Example CPL: Figure 6 shows an example. When the
user make a (outgoing) call, this script will check the
destination of the call. The call should be rejected if
the destination address is pattara@example.com,
according to the condition specified in <address>.
However, in the <otherwise> block, the call is prox-
ied to pattara@example.com, which must have
been rejected.

3.5 Unused Subactions (US)

Definition: Subaction <subaction id= "foo" >
exists, but <subaction ref= "foo" > does not.

Effects: The subaction is defined but not used. The de-
fined subaction is completely redundant, and should be
removed to decrease server’s overhead for parsing the
CPL script.

Example CPL: Figure 7 shows an example. In this
script, a subaction ”mobile” that was declared in the
subsection part is not used in the body of the script. So,
the unused subaction ”mobile” is redundant and should
be removed.

3.6 Overlapped Conditions in Switches (OS)

Definition: The condition is overlapped among the mul-
tiple output tags of a switch.

Effects: According to the CPL specification, if there exist
multiple output tags for a switch, then the condition is
evaluated in the order the tags are presented, and the first
tag to match is taken. If the conditions specified in the
outputs are overlapped (or identical), then the former
tag is always taken. In extreme cases, the latter tag is
never executed, which is a redundant description.

Example CPL: Figure 8 shows an example. When a call
reaches the subscriber, this script will check the des-
tination of the call. If the destination’s address con-
tains pattara, the call will be proxied to his home
telephone address. However, if the destination’s ad-
dress is pattaraleelaprute, this script tries to
proxy the call to his mobile phone. But in fact, if
the proxy to pattara has already occurred, proxy to
pattaraleelaprute will never occur.

4. Conclusion
In this paper we discussed the six semantic warnings of

service descriptions in the CPL: MF, IS, CR, AS, US, OS.
Although the evaluation is needed, we believe that the pro-
posed classes contribute to the quality improvement of the
programmable service in CPL.

Our primary future work is to apply the proposed classes
to the Feature Interaction problem in the Internet telephony,
which is known as functional conflicts among multiple ser-
vices. Also, there could be several other types of warnings to
be found. The quantitative evaluation of the proposed classes
is important research.

Acknowledgments
This work is partly supported by Grant-in-Aid for Encour-

agement of Young Scientists (No.13780234), from Japan So-
ciety for the Promotion of Science.

References

[1] J.Lennox and H.Schulzrinne,“Call processing language
framework and requirements,” Request for Comments
2824, Internet Engineering Task Force,May 2000.
http://www.ietf.org/rfc/rfc2824.txt?number=2824

[2] J.Lennox and H.Schulzrinne,“CPL:A Language
for User Control of Internet Telephony Ser-
vice,” Internet Engineering Task Force,Jan 2002.
http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-
06.txt

[3] H.Schulzrinne and J.Rosenberg, “Internet Telephony:
Architecture and protocols - an IETF perspective,”
Computer Networks and ISDN Systems, vol.31,
pp.237-255, Feb 1999.

[4] M.Handley, H.Schulzrinne, E.Schooler, and
J.Rosenberg, “SIP:session initiation protocol,” Request
for Comments 2543, Internet Engineering Task Force,
Feb 2002. http://www.ietf.org/internet-drafts/draft-ietf-
sip-rfc2543bis-09.txt

[5] ITU-T Recommendation H.323, “Packet-Based Multi-
media Communications Systems,” February 1998.

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url="sip:pattara@voicemail.example.com">
<redirect />

</location>
</subaction>

<incoming>
<address-switch field="origin" subfield="host">
<address subdomain-of="example.com">

<location url="sip:pattara@example.com">
<proxy />

</location>
</address>
<address subdomain-of="crackers.org">

<reject />
</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 2. Example of a CPL script

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<location url="sip:pattara@mobile.example.com">
<location url="sip:pattara@voicemai.example.com">
<proxy />

</location>
</location>

</incoming>
</cpl>

Figure 3. Example of MF

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<address-switch field="origin" subfield="host">
<address subdomain-of="home.org">

<location url="sip:pattara@home.org">
<proxy />

</location>
</address>
<otherwise>
<address-switch field="origin" subfield="host">

<address subdomain-of="home.org">
<location url="sip:pattara@mobile.net">

<proxy />
</location>

</address>
<otherwise>

<location url="sip:pattara@office.com">
<proxy />

</location>
</otherwise>

</address-switch>
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 4. Example of IS

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<address-switch field="origin">
<address is="anonymous">

<reject status="reject"
reason="I don’t accept anonymous calls" />

</address>
<address is="sip:pattara@example.com">

<reject status="reject"
reason="I don’t accept call from Pattara" />

</address>
<otherwise>

<reject status="reject"
reason="I don’t accept call from anyone" />

</otherwise>
</address-switch>

</incoming>
</cpl>

Figure 5. Example of CR

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">

<cpl>
<outgoing>

<address-switch field="destination">
<address is="sip:pattara@example.com">

<reject status="reject"
reason="I don’t call Pattara" />

</address>
<otherwise>

<location url="sip:pattara@example.com">
<proxy/>

</location>
</otherwise>

</address-switch>
</incoming>

</cpl>

Figure 6. Example of AS

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">

<cpl>
<subaction id="mobile">

<location url="sip:jones@mobile.example.com" >
<proxy />

</location>
</subaction>

<incoming>
<location url="sip:jones@example.com">
<proxy />

</location>
</incoming>

</cpl>

Figure 7. Example of US

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx

CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<address-switch field="destination" >
<address contains="pattara">

<location url="sip:pattara@home.example.com">
<proxy />

</location>
</address>
<address is="pattaraleelaprute">

<location url=
"sip:pattaraleelaprute@home.example.com">

<proxy />
</location>

</address>
</address-switch>

</incoming>
</cpl>

Figure 8. Example of OS

