Feature Interactions in
Telecommunication Networks 1V

Edited by

P. Dini, R. Boutaba and L. Logrippo

Sponsored by

IEEE Communications Society
Centre de recherche informatique de Montréal

With the participation of

University of Ottawa
Université de Montréal
Bell Laboratories, Lucent Technologies

r

[¢]

e

T —
2 Q3
i & &

]

Amsterdam, Berlin, Oxford, Tokyo, Washington, DC

138 Feature Interactions in Telecommunications
and Distributed Systems IV

P. Dini et al. (Eds.)

10S Press, 1997

Petri-Net Based Detection Method for
Non-Deterministic Feature Interactions
and its Experimental Evaluation

Masahide Nakamura, Yoshiaki Kakuda and Tohru Kikuno
Department of Information and Computer Sciences,
Faculty of Engineering Science, Osaka University
1-3, Machikaneyama-cho, Toyonaka-shi, Osaka 560, Japan
{masa-n, kakuda, kikuno} @ics.es.osaka-u.ac.jp

pmaT e e

Abstract: Non-deterministic feature interaction is one of the most typical feature
interactions such as the one between CW & CFV features. The conventional detec-
tion algorithm for this interaction generally requires the reachable state enumeration,
which may cause the state explosion problem. As a result, it takes a lot of time and
space when it is applied to complex services including many users.

To resolve this problem, we have already devised a new detection algorithm based
on a Petri-Net model. The new method is characterized by the P-invariant of the
Petri-Net which is utilized to check the reachability of the states. Since the checking
is efficiently carried out without any state enumeration, we can reduce both the time
and space drastically. However, the P-invariant generally gives only necessary condi-
tion and thus may detect non-determinism which does not actually occur.

So, in this paper, we evaluate the new algorithm from two viewpoints: detection .
quality and scalability, through experiments. In the experiments, we have prepared
five service specifications for the practical telecommunication services. The experi-
mental results show that the new algorithm achieves such high detection quality that
all detected non-determinisms actually occur, and also has a good scalability for
complex services such as teleconference including many users. Thus, the Petri-Net
based detection method enables us to verify non-deterministic feature interactions in
the more complex communication service specification.

P S o e L .

ey

»

T T S 5 O
poecen R

1. Introduction

Along with the enrichment of new telecommunication services in Intelligent Net-
work(IN)[14], feature interaction becomes quite a serious problem which prevents the rapid
creation of the new services[2]. As a result, it is strongly required to develop efficient meth-
| ods for the detection and elimination of feature interaction from a given service specifica-
| tion. In order to attain the efficiency, it is desirable that the feature interactions are detected
and eliminated in the early stage of service development (that is, service design process)
rather than later stages (coding and execution processes)[8].

Therefore, we try to detect and resolve feature interaction at the service specification
level. In this paper we adopt the rule-based method for the description of service specifica-
tions since it is widely studied toward the practical use such as STR[6] and declarative tran-
‘ sition rule[4]. The rule-based description specifies the service as a set of rules, each of which
5 % describes a feature of the service. Feature interactions on the service specification have been

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions 139

classified into several types of interactions: deadlock, livelock, non-determinism, transition
to abnormal states, etc.[3][8][12]. In this paper, we especially focus on “Non-determinism”,
and discuss the detection of feature interaction caused by non-determinism.

As studied in [12], telecommunication services can be often modeled by a state transition
machine, in which a state consisting of local states of the service users successively moves to
a next state by a trigger of user’s event. If multiple transitions are allowed to be executed for
a certain pair of a state and a user’s event, then a non-deterministic transition occurs and it
may cause an illegal state change against the user’s intention. The interaction between Call
Forwarding & Call Waiting and the interaction between Answer Calling & Call Waiting are
typical examples of non-deterministic interaction.

So far, Harada et al. proposed an interaction detection algorithm[5], denoted by Algo-
rithm EXH, for the rule-based specifications. This algorithm consists of the following two
phases:

(Phase 1)Enumerate all possible reachable states by the state enumeration, then

(Phase 2)By checking each enumerated state, detect a pair of rules which non-deterministi-
cally conflict with each other.

This method can detect the non-deterministic interactions based on necessary-sufficient con-
dition. However, it takes a lot of time and space, because the number of reachable states
exponentially increases (so-called state explosion problem occurs) depending on the com-
plexity of the service(i.e., the number of rules) and the number of users in the service. For
complex services with many users, such as teleconference, the state explosion problem is
quite a serious problem, and thus Algorithm EXH cannot be applied to analyze it.

In order to overcome this problem, we have devised an alternative new detection algo-
rithm, denoted by Algorithm Q based on the P-invariant of a Petri-Net model[11], which
requires no state enumeration. Kawarazaki et al. also indicated an analysis method using the
T-invariant of Petri-Net (instead of our P-invariant)[8] to reduce the state space. But this
method is also based on the state enumeration, and thus unfortunately it gives no practical
evaluation method. In Algorithm €, we at first transform the given service specification to
the Petri-net, then obtain all pairs of rules which may cause the non-determinism. Next,
based on the obtained rules, we determine a set of states at which the non-determinisms may
occur. Finally, we check if the determined states are reachable from the initial state. For this
checking, we extensively utilize the P-invariant of the Petri-net. Since this checking can be
performed without any state enumeration, we can succeed in reducing time and space, dras-
tically. However, the P-invariant provides a necessary condition for the reachability check-
ing of the state. Thus, theoretically speaking, the detected pairs of rules do not always cause
the non-determinism. So, we have to evaluate the quality of Algorithm Q by applying it to
the practical service specifications.

The goal of this paper is to show the effectiveness of Algorithm £2 through the experi-
mental evaluation. We have performed two experiments. The first experiment evaluates
Algorithm Q from the view points of detection quality and performance. The second experi-
ment examines the scalability, that is, the applicability of Algorithm € to the complex ser-
vice specifications including many users. The experimental results show that Algorithm Q
can achieve high detection quality and scalability for the practical service specifications.

This paper is organized as follows: Section 2 defines the service specification, formalizes
the non-deterministic interactions and reviews the previous algorithm EXH. Next, we
explain a new algorithm Q based on the P-invariant of the Petri-net model in Sections 3 and
4. Section 5 presents two experimental evaluations (Experiment 1 and Experiment 2) of
Algorithm Q Finally Section 6 concludes this paper with future works.

140 M. Nakamura et al. / Petri-Net Based Method for Feature Interactions

2. Definitions
2.1 Service Specification

In this paper, a service specification is defined as a set of rules of service logic. This ser-
vice description method is particularly relevant to the existing methods such as STR[6] and
declarative transition rules[4] and it enables non-expert to design the service logic[12].

A service specification is defined by S = (R, sp) , where R denotes a set of rules and s, is
a state called initial state.

A rule r e R is defined by the following form:

r: pre-condition [event] post-condition

A pre(post)-condition of rule r is an AND-conjunction of predicates p(x, e X)S,
where p is a predicate symbol and x;” s are variables. Especially, the pre-condition is
allowed to have the negation —p(x,, ..., x;) which implies predicate p(x,, ..., x,) does not

holds. Next, an event is a predicate e(xy, ..., X;) where e is an event symbol.

A global state (or simply state) is also an AND-conjunction of all instances of predicates
play, ..., a;)’s, where a;’ s are constants representing the service users. For convenience, we
list up only the instances that take true value.

A state s can be changed to the next state s* by applying a rule re R. Let r6 be an
instanciation of a rule r based on the substitution 6. If any predicate in pre-conditions of 6
takes the true value at s, then we say r is enabled for © at s. At this time, a next state s’can
be generated by deleting all instances in pre-condition of r@ from s and then adding all
instances in post-condition to s (in a similar way to the rewriting operation of production
system). Then, we say that state s moved to s’ by the trigger of the event of r8.

A state s is reachable iff there exists at least one sequence of states sg, §p, .-, §; = § such

that s; (1 <i<j) is anextstate of 5;_,.

Example 1: The following shows an example of service specification S = (R, s¢)

which specifies a simplified POTS (Plain Ordinary Telephone Service) with four users (A,
B, C and D).
R={ potsl: idle(x) [offhook(x)] dialtone(x).
pots2: dialtone(x) [onhook(x)] idle(X).
pots3: dialtone(x) , idle(y) [dial(x,y)] calling(x.,y).
pots4: dialtone(x) , ~idle(y) [dial(x,y)] busytone(x).
pots5: dialtone(x) [dial(x,x)] busytone(x).
pots6: calling(x,y) [offhook(y)] path(x,y) , path(y,x).
pots7: calling(x,y) [onhook(x)] idle(x) , idle(y).
pots8: path(x.,y), path(y.x) [onhook(x)] idle(x) , busytone(y).
pots9: busytone(x) [onhook(x)] idle(x). }
5o = idle(A) , idle(B) , idle(C) , idle(D)
At the initial state s, rule pots1 is enabled for the substitutions <x=A>, <x=B>, <x=C> and
<x=D>. For example, we apply potsl for <x=C> to sq. Then, idle(C) in sg is removed
(because it is included in the pre-condition of potsl<x=C>) from s, and dialtone(C) is
newly added (because it is in the post-condition of pots1<x=C>) to sg. Thus, we obtain the

next state

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions 141

51 = idle(A), idle(B), dialtone(C), idle(D).
Next, let us apply pots3 for the substitution <x=C,y=D> to s;. Then, we obtain the succes-
sive next state

s, = idle(A), idle(B), calling(C,D).
Both states s; and s, are reachable. The above sequence of the rule applications describes a
typical scenario of POTS: [All users A, B, C and D are idle (sg)], then [if user C offhooks,
then C receives a dialtone (sg-0ffhook(C)->s;)], and finally [if C dials D, then C is calling D
(s7-dial(C,D)->s5)].

2.2 Problem Formalization

Here, we formalize the non-deterministic interaction on the service specification. Intu-
itively, non-deterministic behavior arises when at least two different rules (called conflict
rules) with the same event are simultaneously enabled at a certain reachable state.

For a given service specification S = (R, s,) , we say that rules r;, r € R conflict iff there

exists such a state s that satisfies both of the following conditions P1 and P2.
Condition P1: s is reachable from s,

Condition P2: there exist two substitutions ;and 6, such that r; and r; are enabled for 6;

and @; at s, respectively, and that the triggered events of r;0; and r;8; are identical.

Example 2: Consider the following pair of rules cw1 and cfv14 and state s.

cwl: CW(x), path(x,y), dialtone(z) [dial(z,x)] CW(x), path(x,y), CW—rlngmg(z X).

cfvl4: CFV(y), forward(y,z), midle(y), idle(z), dialtone(x)

[dial(x,y)] CFV(y), forward(y,z), calling(x,z).

s = CW(A), CFV(A), forward(A,D), path(A,B), path(B,A), idle(D), dialtone(C).
The rule cw1 represents a CW feature saying that CW user x can receive an additional call
from the third party z while x is talking with someone y. Next, cfv14 implies a CFV feature
saying that CFV user y, who sets the forwarding address to z, can forward the incoming call
from x to z. Then, state s means that A subscribes both CW and CFV features, A sets the for-
warding address to D, A is talking with B, D is idle and C is ready to dial. Now, suppose that
s is reachable.

By the definition of rule application, cwl is enabled for <x=A,y=B,z=C> under s. Also,
cfvl4 is enabled for <x=C,y=A,z=D> under s. At this time, since the both events of
cwl<x=A,y=B,z=C> and cfvl4<x=C,y=A,z=D> are identically “dial(C,A)”, Condition P2
is satisfied. So, rules cw1 and cfv14 conflict. This is exactly the well-known feature interac-
tion between CW and CFV{[3][12]{13].

The detection problem of the non-deterministic interaction for the given service spec-
ification is defined as the detection of the pairs of conflict rules. In other words, the problem
is to identify the states which satisfy both of the conditions P1 and P2. The following shows
a schematic classification of states.

-'U
Spl.°

Figure 1. Classification of states

142 M. Nakamura et al. / Petri-Net Based Method for Feature Interactions

In Figure 1, U denotes a set of all global states, Sp; denotes a set of states satisfying Con-
dition P1, and Sp, denotes a set of states satisfying Condition P2. Then, the intersection of
Spy and Sp, (depicted by the shaded part) is a set of states at which the non-deterministic
interactions occur.

2.3 Detection Algorithm by Harada et al.

Harada et al. have proposed a detection algorithm[5], denoted by Algorithm EXH in the
following, which intuitively consists of the following two phases.

Phasel: Enumerate all possible reachable states by exhaustive applications of rules.

Phase2: Check non-deterministic interaction for each state obtained at Phasel.

U U

Phase 2:

Figure 2. Outline of Algorithm EXH

Figure 2 describes the outline of Algorithm EXH. At first, Phase 1 identifies the set Sp,
by the exhaustive state enumeration (so-called reachability analysis), and then Phase 2
checks Condition P2 for each state in Spy. It is clear that this algorithm can extract the inter-
section of Sp; and Spy. That is, all pairs of conflict rules are exactly determined for a given
service specification. However, this algorithm takes a lot of time and space because the size
of Sp; exponentially grows in accordance with the complexity of the service specification
(i.e., the number of rules) and the number of users in the service specification. So, it may be
impossible to apply Algorithm EXH to the complex services including many users (which
will be mentioned in Section 5).

3. Petri-Net Model
3.1 Service Specification Net

This section presents a Petri-Net model which is logically equivalent to the rule-based
service specification defined in Section 2. Here, we give an intuitive explanation of our Petri-
Net model using some examples. As for the formal definition of the model, please refer to
our earlier paper[11].

Basically, Petri-net[10] is a directed graph consisting of places (depicted by circles or
rounded rectangles), transitions (depicted by boxes) and arcs (depicted by arrows). In addi-
tion to them, our model (called labeled Pr/T net) has two kinds of labels: one is attached to
arcs, and the other is attached to transitions. An arc’s label is represented by a tuple of vari-

ables (denoted by (x,, ..., x,)), while the transition’s label is represented by predicates

(denoted by e(x, ..., x;)). For a label (x,, ..., x;} on any arc which is incident on a place p,

k is a specific number associated with p and is called arity of place p. Furthermore, the
labeled Pr/T net can include inhibitor arc (depicted by arrows with a circle).

dialtone calling

Figure 3. A labeled Pr/T Net

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions 143

A place p is input(or output) place of a transition ¢ iff there exists a directed arc from p to
t (or t to p). For convenience, we denote an arc from a to b by (a,b). An arc is called sur-
rounding arc of transition # iff it is specified between ¢ and input/output places of ¢.

Figure 3 shows an example of a labeled Pr/T net. This net has three places (idle, dialtone
and calling), two transitions(t1 and #2), five arcs and no inhibitor arc. Transitions ¢1 and 2
have.labels offhook(x) and dial(x,y), respectively. Each arc is attached a label such as <x> or
<x,y>. Input places of ¢2 are idle and dialtone, the output place of £2 is calling. Surrounding
arcs of r2 are (idle,r2), (dialtone,r2) and (£2,calling). Note that all labels on arcs around a
place are tuples with the same arity (e.g., two arcs around place idle have labels of 1-tuple,
the arc around place calling has a label of 2-tuple).

Each place p may contain dynamically varying number of constant tuples (denoted by
(ay, ..., a,) where kis arity of p), which are called tokens. An arbitrary distribution of tokens
on the places is called a marking and it is also expressed by a vector. Consider again
Figure 3. Place idle have four tokens <A>,,<C> and <D>, and other two places have no
token. Thus, this marking(say, M) is expressed as:

idle dialtone calling

My= [{£A),(B),(C),(D)} ¢ ¢]

~ Consider a transition ¢t and a marking M. Let 6 denote a substitution of all variables

appearing on labels of surrounding arcs of ¢ with constants. Then, we say transition ¢ is
enabled for 8 under M iff each input place of ¢ contains at least the number of tokens pre-
scribed by the substituted labels of the corresponding input arcs (If the input arc is an inhib-
itor arc, the input place never contains the corresponding token).

<y>
dialtone calling

(@

®)

Figure 4. Example of firing
Consider a marking M, in Figure 4(a) which is also specified by

idle dialtone calling

M, = [{{A).(B), (D)} {{O)} ¢]

For example, take transition £2. Since there are two variables x and y on the labels of sur-
rounding arcs of £2, consider a substitution 8 =<x=C,y=D>. Then, the label on arc (dial-
tone,r2) is substituted with <C>, and arc (idle,2) is substituted with <D>. For this
substitution, since both input places of #2, dialtone and idle, respectively contain tokens <C>
and <D>, £2 is enabled for 6 under M.

If a transition ¢ is enabled for 6 under M, then ¢ can fire. Firing of t changes the current
marking M into the next marking M’. The effect of a firing is that tokens are removed from
input places and added to output places. The removed/added tokens are specified by the

ol i S

AT B e 5 AR S 8 S I A 5 5 S8 5 e 5 A N i e RS AR O e 3w 17 ARG

144 M. Nakamura et al. / Petri-Net Based Method for Feature Interactions

labels on input/output arcs of ¢, substituted by 6. A marking M is reachable from M, iff
there exists at least one sequence of markings My, M, ..., M; = M,where M, (1<i<j)isa
next markingof M,_ .

Consider again the marking M; in Figure 4(a). Suppose that 2 fires for 8 =<x=C,y=D>
under M. Then tokens <C> and <D> are respectively removed from input places dialtone
and idle. Moreover, a new token <C,D> is added to output place calling because 6 substi-
tutes the label on arc (£2,calling) with <C,D>. Thus, we obtain the next marking M, shown

in Figure 4(b), which is also specified by:
idle dialtone calling

M,= [{{A),(B)} ¢ {(C.D)}]

The behavior of the labeled Pr/T net reflects an important aspect of the service specifica-
tion. Suppose that we interpret a marking on the net as a state of the service specification as

follows: “when an instance of predicate p(a,, ..., a,)holds at state s, place p of the net con-
tains a token (a,, ..., ;) under marking M.” Then, the firing of the net is just the same as the

rule application of the service specification. Moreover, on a firing of a transition 7 for a sub-
stitution 8, we can correspond the label of evaluated by 6 to a triggered event.

For example, the markings M, M; and M, mentioned above are interpreted as the follow-
ing three states sq, sjand s,, respectively.

so =idle(A), idle(B), idle(C),idle(D)
sy =idle(A), idle(B), dialtone(C), idle(D)
sy =idle(A), idle(B), calling(C,D)

The firing sequence from M, through M, is just a sequence of rule applications from s to
s5, which is explained in Example 1.

Of course, in order to completely trace the behavior of the given service specification, the
labeled Pr/T net has to possess a specific net structure for the given service specification. We
call this particular labeled Pt/T net service specification net.

A service specification net N(S) for a given service specification S is a labeled Pr/T net

which satisfies the following seven conditions:
(1) The set of places in N(S) is a set of all predicate symbols inS.
(2) Each transition ¢, in N(S) corresponds to exactly one rule r; in S.

(3) Each transition z; in N(S) has an event of rule r; as a label.

(4) For each predicate p;;(x;;, .., X;) in pre-condition of rule r;, N(S) has exactly one arc
(pyj» 1) with a label (x;, ..., x;) -

(5) For each negation of predicate —p;;(x;, ..., x;) in pre-condition of rule r;, N(S) has
exactly one inhibitor arc (p;;, t;) with a label (x;, ..., X s

(6) For each predicate p,;(x;y, ..., Xy) in post-condition of rule r;, N(S) has exactly one arc
(t;, py) with alabel (x;;, ..., x;)

(7) If the initial state sy of S includes an instance of predicate p(a,, ..., q;), then N(S) has a
token {a,, ..., a;) on place p.

Remark 1: A similar Petri-Net model for the rule-based service specification is presented in
[8]. However, our service specification net can describe the service specification more precisely in
the sense that (1) inhibitor arcs are introduced to deal with the negations in preconditions of rules,
(2)the label is attached to each transition to explicitly represent an event of the corresponding rule.

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions 145

For example, consider again the labeled Pr/T net in Figure 3. Then, we can easily under-
stand that this net is a service specification net N(S) for the service specification § = (R, sy) .

where
R ={ rl: idle(x) [offhook(x)] dialtone(x).
r2: dialtone(x), idle(y) [dial(x,y)] calling(x,y). }
so = 1dle(A), idle(B), idle(C), idle(D)
We can completely simulate the behavior of S on N(S). The following lemma holds for
N(S) which implies that N(S) is logically equivalent to S with respect to the reachable states.

Lemma 1: For a given service specification S and a service specification net N(S) for S, there
exists one-to-one correspondence between a set of reachable markings of N(S) and a set of reachable
states of S.

3.2 P-invariant Method

A P-invariant is known as a powerful tool for the analysis of Petri-Net and it provides an
important condition with respect to the reachable marking. The P-invariant of a service spec-
ification net with m places is expressed by an m-dimensional vector Y whose elements are
linear functions and can be calculated from only net structure(i.e., independent of the mark-
ing(state)). This implies that the P-invariant is obtained independent on the number of users.
Since the P-invariant of our service specification net is the same as that of the colored Petri-
net[7], we omit the detail of it in this paper. For the formal definition and calculation method
of the P-invariant, readers can refer to [1][7]. The following theorem is well-known theorem
with respect to the reachability of markings.

Theorem 1: Let Y be a P-invariant of the service specification net N(S). If marking M is
reachable from the initial marking M, then Y*M'=Y*M, where * is a formal product operation of
matrix[1][7].

Remark 2: The equation Y*M'=Y*M,' is only necessary condition for any reachable marking

M. Hence, even if Y¥M'=Y*M, holds, we cannot conclude, in general, that M is reachable.

Intuitively, the P-invariant generates an equation which always holds for any reachable
marking. In other words, for an arbitrary marking M which violates this equation, we can
conclude that M is not reachable without any state enumeration. Since a state s uniquely cor-
responds to a marking M according to Lemma 1, thus we can check the reachability of any
state s by the P-invariant.

Example 3: Consider again the service specification net N(S) in Figure 3, and markings
My, M and M, discussed in Section 3.1. Then, the P-invariant of N(S) is
idle dialtone calling
Y= [id id pl+p2]

where, id, p1 and p2 are linear functions such that (1) id is identity function: id<x>=<x>, (2)
pl and p2 are projection functions: pl<x,y>=<x> and p2<x,y>=<y>. Let us apply Y to
markings M, M; and M,. In the following, + denotes a union operation defined on multiset,
and we suppose (pl+p2)<x,y>=pl<x,y>+p2<x,y>. Intuitively, operation Y*M is performed
like inner product of two vector: (1) evaluate the tokens on each place in M by the corre-
sponding linear function of P-invariant ¥, then (2) make a union of multiset of obtained
results.

Y*My = id{<A>,,<C>,<D>}+id{ } +(pl+p2){ }={id<A>, id, id<C>, id<D>}

= {<A>,,<C>,<D>}

146 M. Nakamura et al. / Petri-Net Based Method for Feature Interactions

Y*M| = id{<A>,<D>}+id{<C>}+(pl+p2){ }={<A>,<C>,<D>} = Y*M,
Y*M, =id{<A>}+id{}+(pl+p2){<C,D>}={id<A>,id}+{p1<C,D>}+{p2<C,D>}
= {<A>,}+{<C>}+{<D>} = {<A>,<C>,<D>}=Y*M,

Next consider the following marking M and apply P-invariant Y to M
idle dialtone calling

M= [{(A),(B)} {(A)} {(C,D)}]
Y*M = id{<A>,}+id{<A>}+(p14+p2){<C,D>}={<A>}+{<A>}+{<C>}+{<D>}
= {2<A>,<C>,<D>} # Y*M,
Thus, we can conclude M is not reachable from M. Note that this fact is derived without any

marking (state) enumeration.

4. New Detection Algorithm €
4.1 Definition of Algorithm Q

Now we present a new detection algorithm, denoted by Algorithm €, using the P-invari-
ant. Figure 5 depicts an outline of Algorithm € At first, Phase 1 obtains a set Sp; of states

which satisfy Condition P2 based on the rules of the given service specification S. Any state
in Sp; can be easily calculated by joining pre-conditions of such two rules that have the same
event symbol. Then, in Phase 2, we delete the states using the P-invariant which are not
reachable from the initial state.

L U
Ph 1. llase 2

Figure 5. Outline of Algorithm Q

The following shows a brief description of the new detection algorithm £ In the next
subsection, we will give a detailed explanation of each step using examples.
Detection Algorithm Q:
Phase 0(Preliminary): Construct a service specification net N(S) for a given service specifi-
cation S=<R,s,>. Then calculate the P-invariant Y of N(S). Initialize a set Sp, to be empty.

Phase 1(Decision of States in Sp,):
Step 1: Select two rules r;and r; from R whose event symbols are identical.
Step 2: Apply a pair of substitution 6, and 6, to rules r;and r, respectively, such that two
events of r,8; and r,8; are identical.
Step 3: For two pre-conditions c; and c; of r;8; and r;8;, respectively, obtain a condition
C;; = cic;. If C; forms a null condition, we conclude that r; and r; never conflict(i.e.,

ij
mutual exclusive) with each other, and go to Step 5. Otherwise, go to Step 4.

Step 4: Based on predicates in C;;, put tokens to the corresponding place of N(S). Then, for
each place p, put the wild-card of token Z{x,, ..., x,;) where x,,; is a variable to which any
constant value can be assigned, and k is arity of p. Let a marking M ; to be the resultant mark-
ing. Finally, put M;; into Spy.

Step 5: If some pairs of rules to be selected still remain, then go to Stepl.

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions 147

Phase 2(Check of Reachability using P-invariant): For each marking M; in Sp,, evaluate
an equation ¥’ *M,-j’ = Y*M,'". If there exists no assignment of constant value to wildcards of

M;; such that Y *M,-j’ = Y*M,' holds, then we conclude M jj 1s not reachable (that is, rules r;
and r; never conflict with each other), and delete M;; from Sp,.

As for Algorithm €2, the following theorem holds{11].

Theorem 2: For the given service specification S = (R, sq), if rules r, r; € R conflict, then
the resultant set Sp, obtained by Algorithm S surely contains the marking Mij constructed at Step4.

Using this theorem, we can convince that, for a given service specification S, rules r; and ri
never conflict if the resultant Sp, does not include M;;. Moreover, if the resultant Sp,
becomes an empty set, then S is free from the non-deterministic interaction.

Since Algorithm Q requires no state enumeration, the time and space needed to the anal-
ysis are thus drastically reduced compared with Algorithm EXH. Instead, theoretically
speaking, the resultant Sp, may contain such states that do not belong to the intersection of
Sp1 and Spy(see Figure 5), because the converse of Theorem 2 does not necessarily hold(the
reason is that the P-invariant is used as necessary condition of reachability). That is, 2 may
detect the redundant pairs of rules which does not actually conflict. So, in order to show the
effectiveness of the algorithm for the practical use, we must evaluate the quality of detection

“(i.e., how small the number of such redundant pairs is) by applying €2 to practical service
specifications.

Remark 3: In order to exactly determine the intersection of Sp; and Sp,, we have to apply the
reachability analysis to the resultant Sp,. Thus, in our earlier paper{11], additional Phase 3 is

introduced for the reachability analysis. However, the cost needed to the reachability analysis may
be, at the worst case, as expensive -as that of Algorithm EXH. So, in this paper, we discuss only
Phases 0, 1 and 2, and evaluate the result obtained by the necessary condition.

4.2 Aplication to POTS Specification

We explain Algorithm €2 through an application to POTS specification in Example 1.
Phase O(Preliminary):
First, the mapping of the specification S onto net model N(S) can be easily done based on the
definition of N(S). Then, we calculate the P-invariant Y of N(S) by applying any available
method[1][7], and make the set Sp, to be empty. For example, from POTS specification §

shown in Example 1, we can obtain the following P-invariant Y and initial marking M,

idle dialtone calling busytone path
Y=1[id id pl+p2 id plt]

idle dialtone calling busytone path

My= [{(A), (B),(C), (D)} ¢ ¢ ¢ ¢ 1
Phase 1(Decision of States in Sp,):
As an example, let us consider rules pots1 and pots6 from POTS specification. By apply-

ing substitutions <x=A> and <x=B, y=A> to potsl and pots6, respectively, we get

pots 1<x=A>: idle(A) [offhook(A)] dialtone(A).

pots6<x=B,y=A>: calling(B,A) [offhook(A)] path(A,B), path(B,A).
Then by combining two pre-conditions of these rules, we get a condition Cy4 as follows:

Ci6 = idle(A), calling(B,A)

148 M. Nakamura et al. / Petri-Net Based Method for Feature Interactions

Note that the combined condition C;; sometimes forms null condition because of the nega-
tion of predicate. At this time, we conclude that rules r; and r; never conflict(e.g., pots3 and

pots4 never conflict).
Next, consider the following states s’ and s” both of which include Cg:
s’ = idle(A), calling(B,A), path(C,D), path(D,C)
s” =1idle(A), calling(B,A), idle(C), busytone(D)
Then, it is clear that both s’ and s” satisfy Condition P2, because rules pots] and pots6 are
enabled for <x=A> and <x=B,x=A> under s’ (also s”), respectively, and the events of both
rules are identical to “offhook(A)”. That is, any state including C}¢ must satisfy Condition

P2. Generally speaking, there are a lot of different states including predicates of Cy¢ such as
s’ and s”. So, in order to deal with all possible states satisfying C;¢ in a convenient way, we
suppose that all predicates, except those of Cy, should be “don’t care” and we assign wild-

cards to them. The wildcard is expressed as a multi-set of tokens with variables to which any
constant value is allowed to be assigned[11].
For example, we obtain the following marking M from C;4 and extend M to M6 by put-

ting a wild card on each place. Considering the arity of each place, we put five wildcards as
follows:

idle dialtone calling busytone path

M=[{{A} ¢ {(BA} ¢ 9]

idle dialtone calling busytone path
M16= [{<A>’ Z<x|>} Z<x2> {<B, A), Z<x3,x4>} 2(x5> 2<x6,x7)]

From the interpretation of marking discussed in Section 3, we understand that M corre-
sponds to C;4. Here, we show that Mg represents any arbitrary state including C,4. Con-

sider the following two assignments a1l and a2 of tokens to wildcards.
al = [T<x1>=T<x2>=3 <x3,x4>=2X<x5>=¢ , ¥ <x6,x7>={<C,D>,<D,C>}]
a2 = [T<x1>={<C>}, T <x2>=% <x3,x4>=% <x6,x7>=¢, <x5>={<D>}]
If we respectively apply al and a2 to M4, we can get the following markings M and M
idle dialtone calling busytone path

M=[{A o (BA}Y ¢ {CD)(D,O}]

/

idle dialtone calling busytone path

M”=[{{A) (O} ¢ {(BA} D)} ¢]

Then, M’ and M” respectively correspond to state s’ and s”, and thus we can see that Mg
surely represents any state including C;¢. Finally, the marking M is put into Sp; as a candi-

date of a state at which rules pots! and pots6 conflict.
Phase 2(Check of Reachability by P-invariant):

According to Theorem 1, if the equation Y*M, ijt = Y*M, does not hold, then we conclude
that Mij is not reachable, i.e., rules r; and rj never conflict. On the evaluation of Y *Mij’ =

Y*M', if there is no assignment of tokens to wild-cards such that Y*M;;" = Y*M,'’ holds, then
the equation never holds and thus we delete M;; from Sp,. Otherwise, we cannot derive any
decision on the reachability of Mj;, thus we leave M;; in Spy(see Remark 2).

As an example, let us evaluate Y*M ¢’ = ¥’ *My'.
Y*M, = id{<A>,<C>,<D>}+id{ } +(p1+p2){ }+id{ }+p1{} = {<A><C>,<D>}

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions 149

Y*M ¢ = id{<A>,Z(x)) }+id{ Z{x,) }+(p1+p2){<B,A>,Z(x3, x4) }+id{ Z(xs) }+ pl { Z(x¢, x7) }
= {2<A>,, Z(x), Z{xp) ,X{x) , Z{x,) . Z(x5),Z(x¢) }

For this, no matter how nicely we choose the assignment to the wild-cards, Y*M,¢' = Y*M,)'
never holds, that is, Mg does not satisfy Condition P1. So, we can conclude that rules pots1
and pots6 never conflict. Similarly, to other markings in Sp,, we apply the P-invariant.
Finally, resultant Sp, of POTS specification has become empty. Thus, we can conclude that
POTS specification is free from conflict rules, and that non-determinism never occurs.

5. Experimental Evaluation

To measure the applicability of the proposed method to the practical feature interaction
detection, this section presents two experiments.

5.1 Preliminaries

For the experiments, we have developed a software written in C language about 5000
lines of code, which can execute both Algorithm EXH[5] and Algorithm £ The experiments
were performed on a UNIX Workstation (Sun Sparc UA-1) with 448MB main memory.
UNIX’s “time” command was utilized for measuring the execution time.

Next, we have prepared the rule-based service specifications for the following practical
telecommunication services: CW(Call Waiting), CFV(Call Forwarding Variable), DC(Direct
Connect), DO(Dined Origination) and DT(Denied Termination). These service specifica-
tions were described based on ITU-T Recommendations[14] and BellCore’s LSSGR[15],
which are also referred in [6][4][12]. Finally, we have combined each pair of service speci-
fications in order to analyze the non-deterministic interaction between any two services.
Thus, we obtained total ten(= 5C,) combined specifications: (1) CW&CFV, (2) CW&DC,

(3) CW&DO, (4) CW&DT, (5) CFV&DC, (6) CFV&DO, (7) CFV&DT, (8) DC&DO, (9)
DC&DT and (10) DO&DT.

Here, we present two kinds of experiments: Experiment 1 and Experiment 2. The objec-
tives of these experiments are summarized as follows.

Experiment 1: Investigate the quality of detections obtained by the proposed algorithm
€2 At the same time, measure the performance of Algorithm Q .

Experiment 2: Examine the scalability of Algorithm Q . That is, we study the applicabil-
ity to the complex services including many users by comparing the state space needed.

5.2 Experiment 1(Detection Quality and Performance)

In this experiment, we applied both Algorithm €2 and Algorithm EXH to ten practical ser-
vice specifications prepared in Section 5.1, and compared the detected pairs of conflict rules.

As mentioned before, for any service specification, the pairs of rules detected by Algo-
rithm EXH surely cause the non-deterministic interactions. On the other hand, Algorithm Q
may detect the redundant pairs of rules which do not actually conflict. So, by comparing the
detected pairs, we can measure the detection quality of Algorithm € That is, the fewer such
redundant pairs are, the better the quality of Algorithm Q is. As for the execution time, it is
expected that Algorithm € can attain the drastically better performance than that of Algo-
rithm EXH because Algorithm Q never faces with so-called state explosion problem. Since
the execution time may depend on the implementation of the tool, we especially devised the
programming so that Algorithm EXH can give the best performance by using several tech-
niques such as the compression of data and hash searching.

The number of users assumed in each service specification is only three. Because of
memory overflow of the workstation caused by state explosion, Algorithm EXH couldn’t

150 M. Nakamura et al. / Petri-Net Based Method for Feature Interactions

deal with more than three users on our environment (Of course, Algorithm Q can be applied
to the cases with more users. This will be discussed in Experiment 2).

Table 1 shows the result of Experiment 1. The contents of columns are: name of service
specification, the number of rules in the specification, the numbers of conflict pairs of rules
detected by Algorithm Q and Algorithm EXH, the execution times of Algorithm Q and
Algorithm EXH, and performance of Algorithm Q (ie., a ratio of the execution time of
Algorithm EXH to that of Algorithm).

Table 1. Result of Experiment 1

Specifications # of detected pairs l Execution time (sec.)

Services # of rules Q EXH + Q EXH Ratio
CW&CFV 43 5 5 34 58061.4 17076
CW&DC 27 0 0 1.4 270.4 193
CW&DO 26 0 0 1.3 89.3 69
CW&DT 26 1 1 1.3 187.2 144
CFV&DC 33 0 0 0.8 22046.9 27559
CFV&DO 32 0 0 0.7 7700.3 11000
CFV&DT 32 8 8 0.8 14984 18730
DC&DO 16 2 2 0.2 57.9 290
DC&DT 16 0 0 0.2 69.6 348
DO&DT 15 0 0 0.1 15.7 157

From this table, we can see Algorithm Q never detected the redundant pairs of conflict
rules. That is, we can conclude that, for these ten practical service specifications, Algorithm
Q achieved very high quality. All of the detected interactions are well-known non-determin-
istic interactions, as are often studied in many papers[2][4][12][13]. In addition to the qual-
ity, the performance of Algorithm Q is about 28000 times of Algorithm EXH on the
maximum. ‘

From this experiment, we can say our method provides both high detection quality and
much lower cost quite enough for the practical applications.

5.3 Experiment 2(Scalability) :

Experiment 2 examines a scalability of Algorithm Q (that is, applicability to more com-
plex services such as teleconference). As mentioned in Section 5.2, Experiment 1 was per-
formed under the very strict assumption that each service contains only three users. When
we allowed four users, the execution time of Algorithm EXH exponentially increased and
our tool ran out of memory(Actually, our work station began to use the virtual memory.
However, due to its frequent swapping, analysis of CW&CFV specification did not complete
even in four days). So, due to the lack of the scalability, it may be impossible to apply Algo-
rithm EXH to complex services including many users.

In Experiment 2, we try to investigate the scalability of Algorithm Q and compare it with
Algorithm EXH. We had selected POTS specification in Example 1 as the service specifica-
tion. Concretely, we have varied the number of users in the specification. Then, we measured
the number of states needed to each algorithm and observe the growth of state space with the
increase of the user. Actually, for Algorithm EXH the number of enumerated states is mea-
sured, on the other hand, for Algorithm Q the number of states determined in Phase 1 (i.e.,
the size of Sp,) is measured.

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions 151

of states

Algorithm Q
¥/ Execution time

Algorithm EXH

of states
Execution time(sec.)

of users # of users

(@) (b)

Figure 6. Result of Expriment 2: (a) Comparison of state space, (b) Cases with many users

Figure 6 shows the result of Experiment 2. In Figure 6(a), x and y axis represent the num-
ber of users and the number of states, respectively. From this graph, we can see that the state
space of our Algorithm Q grows much slower than that of Algorithm EXH. In the experi-
ment, our tool began to run out of memory from the case of 8 users of Algorithm EXH, and
the execution speed had slowed down. Finally, we could not apply Algorithm EXH to the
case of 9 users.

On the other hand, Algorithm Q could work well for cases of much more users.
Figure 6(b) shows the number of states and execution time needed to Algorithm €2 From
this graph, we can see that Algorithm €2 can execute even for the case of 100 users in a very
short time (86.44 sec.) and smaller space (800 states). Thus, we can say Algorithm Q has
much more scalability than Algorithm EXH as for POTS specification. Additionally, Algo-
rithm © could also handle CW&CFV specification with 40 users and its execution was fin-
ished in about an hour. .

Although this experimentation is performed only for the POTS specification, the above
fact implies that Algorithm € has a good scalability concerning the number of users. There-
fore, it is expected to be applied to the analysis of complex services including many users.

5.4 Discussion

Theoretically speaking, Algorithm EXH detects the conflict rules based on necessary and
sufficient condition, while Algorithm Q determines them by applying only necessary condi-
tion (i.e., Algorithm Q may sometimes detect the redundant pairs that do not actually con-
flict). Thus, we cannot directly compare these two algorithms. However, for a very complex
service specification containing many users, Algorithm EXH cannot avoid the state explo-
sion and thus may not be applied to the analysis in a short time. Then, it prevents the rapid
creation of new services and quick adaptation to the service requirement of customers.
Instead, Algorithm Q gives us a useful information of suspected conflicts (in the sense that
some redundant conflicts may be included) in a short time. Additionally, if we can resolve all
the suspected conflicts obtained by Algorithm Q, then the specification is sufficiently free
from non-deterministic interaction. This approach is quite reasonable and realistic for the
practical service development. This kind of resolution of non-deterministic interaction is
discussed in many papers, and is also one of our future research works.

The key idea of Algorithm Q is to utilize the P-invariant of the Petri-Net for the checking
of the reachability of states. For other types of interaction discussed in [8][12], this reacha-
bility of state is a fundamental and essential property needed to be detected (e.g., transition
to abnormal state[12]). Therefore, the P-invariant method on our Petri-net model is expected
to be applicable for the detection of other feature interactions as well as non-determinism.

152

M. Nakamura et al. / Petri-Net Based Method for Feature Interactions

6. Conclusion

In this paper, we have presented a new detection algorithm € for non-deterministic fea-
ture interaction based on the P-invariant of the Petri-net model. Then we also evaluated and
examined its effectiveness for the practical feature interaction problem through experiments.
The evaluation results showed that our method attain high quality of detection, drastic per-
formance improvement, and good scalability concerning the number of users. As a result,
we can expect that Algorithm € is applicable to the interaction detections of more complex
services with many users.

The followings summarize our future research works:

(a) Application of Algorithm € to other practical service specifications with many users.
(b) Improvement of Algorithm € in order to apply it to other types of feature interactions.
(c) Examination of an efficient resolution scheme for the detected interactions.

Acknowledgement

The authors would like to thank Mr. Nobuhiko Ido and Mr. Takuro Ikeda (of Kikuno
Lab.,Osaka Univ.) for their cooperation with the experiments and drawing figures. This
research was partly supported by Kokusai Denshin Denwa Co., Ltd. (KDD).

References

1 Alla, H., Ladet, P, Martinez and J., Silva-Suarez, M., “Modelling and validation of complex systems by col-
oured Petri-nets: Application to flexible manufacturing system,” Lecture Notes in Computer Science, Vol 188,
Springer-Verlag, pp.215-233, 1985.

[2] Cameron, E.J. and Velthuijsen, H., “Feature interactions in telecommunications systems,” IEEE Communica-
tion Magazine, Vol.31,)No.8, pp.18-23, 1993.

[3] Cameron, E.J., Griffeth, N.D., Lin, Y-J., Nilson, M.E., Schnure W.K.and Velthuijsen, H., “A feature interaction
benchmark for IN and Beyond,"Proc. of Second Workshop on Feature Interactions in Telecommunications Sys-
tems, pp.1-23, 1994.

[4] Gammelgaard, A. and Kristensen E.J., “Interaction detection, a logical approach,” Proc. of Second Workshop
on Feature Interactions in Telecommunications Systems, pp.178-196, 1994.

[5] Harada, Y., Hirakawa, Y., Takenaka, T. and Terashima, N., “A conflict detection support method for telecommu-
nication service descriptions,”IEICE Trans. Commun., Vol. E75-B, No.10, Oct., 1992.

[6] Hirakawa, Y. and Takenaka, T., “Telecommunication service description using state transition rules,” Proc. of
IEEE Int'l Workshop on Software Specification and Design, pp.140-147, Oct. 1991.

[7] Jensen, K., “Coloured Petri Nets,” FATCS Monographs on Theoretical Computer Science, Voll-2, Springer
Verlag, 1992. ,

[8) Kawarazaki, Y. and Ohta, T., “A New Proposal for Feature Interaction Detection and Elimination,” Proc. of
Third Workshop on Feature Interactions in Telecommunications Systems, pp.127-139, 1995.

[9] Murata, T, and Zhang, D., “A predicate-transition net model for parallel interpretation of logic programs,” I[EEE
Trans. on Software Engineering, Vol.14, No.4, pp.481-497, Apr. 1988.

(10} Murata, T., “Petri nets: properties, analysis and applications,” Proc. of IEEE, Vol.77, No4, pp-541-580,
Apr.1988.

[11] Nakamura, M., Kakuda Y, and Kikuno T., “Analyzing non-determinism in telecommunication services using P-
invariant of Petri-Net model,” Proc. of IEEE INFOCOM’97, Apr. 1997, to appear.

[12] Ohta, T. and Harada Y., “Classification, detection and resolution of service interactions in telecommunication
services,” Proc. of Second Workshop on Feature Interactions in Telecommunications Systems, pp.60-72, 1994.

[13] Wakahara, Y., Fujioka, M., Kikuta, H., Yagi, H. and Sakai, S., “A method for detecting service interactions,”
IEEE Communication Magazine, Vol.31, No.8, pp.32-37, 1993.

[14] ITU-T Recommendations Q.1200 Series., “Intelligent Network Capability Set 1 (CS1)”, Sept. 1990.

[15] Bellcore, “LSSGR Features Common to Residence and Business Customers I, I1, II1,” Issue 2, July 1987.

e

