
NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 1

Design and Evaluation of Feature Interaction Filtering
with Use Case Maps

Pattara Leelaprute�, Masahide Nakamura�, Ken-ichi Matsumoto� and Tohru Kikuno�

�Graduate School of Information Science and Technology, Osaka University, Japan
�pattara, kikuno�@ist.osaka-u.ac.jp

�Graduate School of Information Science, Nara Institute of Science and Technology, Japan
�masa-n, matumoto�@is.aist-nara.ac.jp

ABSTRACT — Feature interaction (FI, in short) is a functional conflict among multiple telecom-
munication services, which is never expected from services in isolation. Detecting all possible FIs is an
expensive and even infeasible task, due to the combinatorial explosion in the number of service com-
binations and scenarios. To reduce the cost of FI detection, FI filtering is known as a low-cost process
conducted prior to FI detection, which identifies FI-prone service combinations. However, each FI-
prone combination usually contains many service scenarios. Deriving only FI-prone scenarios in the
combination makes the FI detection process more efficient.

This paper proposes a new FI filtering method consisting of two phases. The proposed method ex-
tensively uses the requirement notation Use Case Maps (UCMs). We characterize each service by a
stub configuration of UCMs. The stub configuration is formalized as a matrix form, called SC-matrix.
With the SC-matrix, Phase 1 derives FI-prone service combinations. Next, in Phase 2 we derive the
FI-prone scenarios based on two heuristics: (H1) FI tends to occur when two (or more) services are
activated, or (H2)FI tends to occur when a service bypasses a feature of the other service.

Through a practical experiment, we have evaluated the proposed method with respect to; scenario
coverage, filtering quality and reduction ratio in the number of scenarios. The result showed that
the FI-prone scenarios obtained successfully covered all scenarios that lead to actual FIs. Also, the
proposed method derived only 10% of the total number of scenarios as FI-prone ones, which implies
that 90% reduction of the cost for the scenario investigation was achieved.

KEY WORDS — Feature Interactions, Telecommunication Services, FI filtering, Use Case Maps

1. Introduction

In recent years, as seen in the Advanced Intelligent
Network [32], Mobile Network, the Next Generation IP
Network [22] and such, communication networks have
gone through a phenomenal evolution. Owing to these
developments, communication services are diversifying
from the conventional “Call waiting” and “Call forward-
ing when busy” to multimedia services such as elec-
tronic mails [12], video-conferences, and WEB services
[29, 34]. The flood of services results in functional con-
flicts which are never caused by a single service alone.
These conflicts are widely recognized as Feature Inter-
action [5, 33] (FI, for short). The FIs seriously hamper
the development of new services [6]. Detecting all pos-
sible FIs among complex services requires a significant
cost due to the nature of communication services; con-
currency, branches of complex scenarios, and the massive
number of service combinations.

In practical service development, the analysis of fea-
ture interactions has been conducted in an ad hoc manner
by subject matter experts. However, as the number and

complexity of services grow, the ad hoc analysis does not
work in a feasible way, which leads to time-consuming
service design and testing without any interaction-free
guarantee.

Much research has been conducted to tackle the FI
problem [17]. Most of the communication services are
usually modeled by finite state machines: FSMs. In this
model, a global state consisting of user’s local states suc-
cessively moves to the next state by the occurrence of a
user’s event [27, 31], and FIs are defined on certain states
in the FSM where some undesirable properties hold. The
way to detect FIs in the FSM is to enumerate all possi-
ble states and to identify undesirable states that cause FIs
[6, 7, 10, 19]. The advantage of this model is that it can
detect all existing FIs. However, due to the concurrent
characteristics of telecommunication services, the num-
ber of states in the model becomes exponential in the face
of the number of services and users. This is called the
state explosion problem.

Thus, research that aims to reduce the number of states
exists. Cameron et al. [6] proposed the tool CADRES-

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 2

FI which utilizes state abstraction based on heuristics.
Static FI detection methods that do not have to enumerate
reachable states in the state transition model also exist.
By using Petri Net to reduce the transition states, Naka-
mura et al. [23] proposed the P-invariant and Kawarazaki
et al. [16] proposed the T-invariant. Yoneda et al. [30]
reduced complexity by using the structure of a rule-base
specification, STR (State Transition Rules) [15, 27], and
Harada et al. [13] proposed the detection algorithm EXH
for rule-base specification.

As an alternative approach to reducing the cost of
FI detection, Kimbler [20] proposed a low-cost method
called FI filtering, which is conducted before the FI de-
tection process. FI filtering indicates whether or not the
combination of services is likely to cause FI, or has a
possibility in causing FI. Therefore before FI detection,
we concentrate on only combinations that are likely to
cause FI (FI-prone). Moreover, in each FI-prone combi-
nation, there exists several scenarios, some of which are
not relevant to the actual FIs. Hence, deriving only rel-
evant scenarios from the FI-prone combinations helps us
to concentrate on the problematic scenarios in the latter
process.

This paper proposes a new FI filtering method at the re-
quirement stage of telecommunication services and fea-
tures. Implementing FI filtering at the requirement stage
is more efficient for eliminating FI at the former process,
the requirement stage (the service design stage) than at
the latter process, the coding and execution processes
[16]. We employ a requirement notation method, called
the Use Case Maps (UCMs) [2, 4]. So far, several no-
tations have been proposed. Aho et al. [1] proposed an
event-base language known as “Chisel” at the require-
ment level. Chisel’s well-defined semantics based on
trace equivalence provided the framework for FI detec-
tion, but it is unable to describe the concurrent behav-
iors of its characteristics. Also, because the feature ad-
dition is performed by “gluing nodes” in the chisel dia-
gram, the scenario of the entire system cannot be seen.
For the other service description methods, SDL (Spec-
ification and Description Language)[28], LOTOS (Lan-
guage Of Temporal Ordering Specification) [3, 9] and
STR [15, 27], are also proposed. However, these are for-
mal description methods which should be adopted at the
specification level. Therefore, it is not quite easy to apply
them directly to the requirement level, in which system
details are not yet determined.

The reasons we chose UCMs for FI filtering are sum-
marized as follows: (1) in the entire picture of global call
scenarios at the requirement level, UCMs do not require
understanding the details of system behaviors or com-
plicated semantic models. (2) in concurrencies, alterna-
tives and hierarchical designs which are indispensable to
requirements level notation can be easily achieved with
UCMs, (3) the tool called UCM navigator [8] necessary

for syntactically correct UCM notations is provided.
The proposed FI filtering method consists of two

phases. In the first phase, we identify FI-prone service
combinations. Next, in the second phase, we derive FI-
prone scenarios from each FI-prone combination.

In UCMs, we use the concept of stub plug-in to add
features into a basic call model (or POTS — Plain Ordi-
nary Telephone Service). Specifically, we describe the
basic call scenarios in the top-level UCMs, which are
called a root map. Then we represent supplementary fea-
tures as a set of sub UCMs, which are called submaps.
Next, we put them into places (called stubs) in the root
map to extend or modify the basic call. The key idea for
the first phase is to characterize each service by a stub
configuration in the root map, and then see how the stub
configuration changes according to the service combina-
tion. To facilitate the representation of the stub configu-
ration and feature combination, we propose the stub con-
figuration matrix and a combination operator of the ma-
trices. Consequently, the first phase derives one of the
following verdicts for each feature combination: (a) FI
occurs, (b) FI never occurs and, (c) FI-prone.

At the second phase, we derive FI-prone scenarios
from the FI-prone combinations of the two services. The
derivation method is based on two heuristics: (H1) FI
tends to occur in scenarios where both services are acti-
vated, and (H2) FI tends to occur in scenarios when the
activation of one service bypasses the activation of the
other service. Deriving only the scenarios relevant to the
potential FIs makes the FI detection process efficient.

As an experimental evaluation, we conducted FI filter-
ing and subsequently scenario derivation on the 8 types
of services taken from the FI Detection Contest held at
the International Conference FIW2000 [21]. We evalu-
ated the proposed method from the viewpoints of cov-
erage, filtering quality and scenario reduction ratio. As
a result, we confirmed the legitimacy of the proposed
method, since all actual FI-occur scenarios are covered
by the derived FI-prone scenarios. Also, if a feature com-
bination does not have any scenarios derived by Heuris-
tic H1 or H2, then the combination does not cause actual
FIs. Therefore, we can improve the filtering quality by
concluding such combinations to be (b) FI never occurs.
It was also shown that the derived scenarios were only
10% in the total number of scenarios. Thus, the proposed
method was able to filter 90% of the irrelevant scenarios,
which implies a significant cost reduction of the scenario
investigation.

2. Feature Interaction

In the literature, the terms “features” and “supplemen-
tary services” are often used interchangeably. We use
feature to refer to a set of service functionalities that ex-
tend or modify the basic call.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 3

2.1. Feature Examples

Throughout this paper, we use the following features
as examples.

(a) Calling Number Delivery Blocking (CNDB): This
service blocks the provision of the caller’s number at
the terminating side. Suppose that user � subscribes
to the CNDB, when � dials �, �’s telephone number
will not appear on �’s telephone.

(b) Terminating Call Screening (TCS): This service al-
lows a subscriber to screen incoming calls based on
a screening list. Suppose that user � registers � in
the screening list, then any call from � to � would
be screened.

(c) Call Forwarding on Busy (CFB): A subscriber of
this service can forward incoming calls to another
pre-determined number when the subscriber is busy.
Suppose that user � sets the forwarding number to �,
and that � is busy. If � dials �, then the call would
be forwarded to � and � would be connected to �.

(d) Reverse Charging (RC): This service is known as
freephone billing, and allows the subscriber to be
charged for the calls in which the subscriber is the
terminating party. Suppose that user � subscribes
to the RC, when � dials �, � will pay the telephone
charge instead of �.

(e) Splitting Bill (SB): This service allows the sharing
of costs between the partners in a call. A company
might provide local call charge lines to customers as
a service, in which case the customer (the originator
of the call) pays the local charges and the company
pays the rest. Suppose that user � subscribes to the
SB and allows the originator who calls � to only pay
the local call charge. When � dials �, � will pay the
local call charge and � will pay the rest of the long-
distance call charge.

2.2. Practical Examples of Feature Interac-
tions

Let us look at practical examples of FIs. In the follow-
ing, �, �, � denote actual users. Note that these FIs do
not occur if the services are used in isolation.

FI-(a) - Interaction RC & SB: Suppose that � sub-
scribes to RC and SB. If � dials �, it cannot be
determined that the call should be charged 100% to
� by the function of RC, or charged by the rule of
the payment of SB which � had set.

FI-(b) - Interaction TCS & CNDB: Suppose that �
subscribes to TCS and puts �’s telephone num-
ber on the screening list, and that � subscribes

to CNDB. Now, if � dials �, because of the call
number delivery blocking function of �, � can not
screen the incoming call from � because � cannot
know whether or not the phone number of incoming
call is �’s.

FI-(c) - Interaction CFB & RC: Suppose that � sub-
scribes to RC, and that � subscribes to CFB and sets
the forwarding address to �. If � dials � when �
is busy, then CFB forwards the call to �. When �
forwards the call to �, the RC function is bypassed,
and thus inactivated. As a result, � has to pay the
call charge, although � is the freephone subscriber.

3. Use Case Maps for Service De-
scription

3.1. Basic Principles

Use Case Maps1(UCMs in short) is a requirements no-
tation method designed to bridge the gab between the
requirement (use cases) written in the natural language
and the detailed design written in some strict specifica-
tion language.

UCMs describe a system by a set of scenario paths
with causally-ordered responsibilities (events). In this
paper, we briefly review some concepts used in this pa-
per. Additional details can be found in [2, 4].

(a) The core notation consists of only scenario paths
and responsibilities along the paths. A path starts at
a starting point (depicted by a filled circle) and ends
at an end point (shown as a bar). The starting point
can be associated with a precondition and the end
point can be associated with a postcondition, both
of which are represented in square brackets []. Be-
tween the start and end points, the scenario path may
perform some responsibilities along the path, which
are depicted by crosses � with labels. Responsibili-
ties are abstract activities that can be refined in terms
of functions, tasks, procedures, events, and are iden-
tified only by their labels. Tracing a path from the
start to the end is used to explain a scenario as a
causal sequence of events.

(b) Several paths can be composed by superimposing
common parts and by introducing fork and join.
There are two kinds of forks/joins. One is the
OR-fork/join, describes alternative scenario paths,
which mean that one of the paths is selected to pro-
ceed at each branch. The other type is the AND-

1Strictly speaking, the UCMs discussed here are unbound UCMs
without system components shown explicitly since this paper focuses
on the requirements entities for FI filtering.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 4

fork/join, depicted by branches with bars, which de-
scribes concurrent scenario paths.

(c) A stub plug-in concept allows UCMs to have a hier-
archical path structure, to defer details, and to reuse
the existing scenarios. A stub, depicted by a dotted
diamond, identifies a place where path details in the
UCM are described by other UCMs, called submaps
(or sub-UCMs). On the other hand, the UCM with
the stub is called a root map (or root-UCM). In this
paper, we assume that submaps are not allowed to
contain stubs. This assumption is for simplicity, and
will be relaxed in future research.

A submap can be plugged into a stub in a root map.
This is done by binding the start and end points of
the submap to the corresponding entrances and exits
of the stub in the root map, respectively, in accor-
dance with labels on the start and end points.

3.2. Describing Services by UCMs

In the domain of telecommunication services, such as
the ones in IN (Intelligent Networks)[32], sophisticated
service functions are usually implemented by a basic ser-
vice and its supplementary services (features). In the tele-
phony services, the basic service is known as the basic
call model (or POTS — Plain Ordinary Telephone Ser-
vice). The basic service is the base for every supplemen-
tary service; the addition of supplementary services is
achieved by the reuse of almost all the functions, as well
as partial alteration or extension of the basic service.

Focusing the basic/supplementary service provision,
we make use of the UCMs to describe the service. First,
we describe the basic call model as the root map of
UCMs. Second, for the scenario of the basic service, we
plug the default submap 2 into the root map. Finally, we
describe the supplementary services as the submaps of
UCMs, and plug them into the root map to make changes
to the default scenario.

3.2.1. Basic Call Model Figure 1 represents UCMs for
the basic call model according to the second FI detection
contest specifications [21]. This basic call model is the
so-called global call model of the end-to-end view [11],
which contains both the caller’s and the callee’s scenarios
in one model.

There are eight UCMs in Figure 1 and each is iden-
tified by a name (identifier), e.g. root, def�. The re-
sponsibilities in the diagram are those explained in [21].
Symbols �� �� �� � refer to constants representing ac-
tual users (subscribers). Symbols �� 	�
� � are vari-
ables to which constant values are assigned dynamically.
In this example, � is the caller, whereas � is the callee.
Since � is a variable, the callee may change depending

2For convenience, we call the submaps for basic call scenarios de-
fault submaps.

on the destination of the call. When � calls �, for in-
stance, then � is �.

For instance, take UCM def� in Figure 1(b). This UCM
explains a scenario where busytoneA occurs. Each sce-
nario path can be associated with a pre-condition. The
pre-condition is a condition for the path to start with. For
example, a pre-condition “[� = idle]” in �� represents
the scenario which starts only when � is idle.

An example of an OR-fork would be, UCM def� in
Figure 1(b), which contains an OR-fork describing two
possible scenarios: “�������� occurs, and the scenario
ends at ����” or “�������� occurs, and the scenario
ends at ����”. It is also possible to explicitly spec-
ify conditions for path selection. This is done by using
guards, represented with square brackets [] at the OR-
fork. For example, a guard [Y = idle] at an OR-fork in a
UCM root implies that the scenario proceeds to the upper
path when Y is idle.

As an example of AND-fork/join, in the upper part
of UCM Root Map in Figure 1, one AND-fork and one
AND-join appear between out41 and in61. After out41,
two scenario paths start concurrently. As a result, ring-
backY and alertA are performed in any order (by inter-
leaving semantics). The concurrent paths are synchro-
nized at the AND-join, and then the scenario ends before
in61.

For the example of the stub plug-in, the root map in
Figure 1(a) contains seven stubs. All other UCMs are
submaps. Let us plug a submap def� into stub 1 in root.
The starting point ���� is connected to the stub entry
����, and end points ���� and ���� are connected to
the exits ���� and ����, respectively. Similarly, other
submaps def��� � � � �� are plugged into the corre-
sponding stubs ��� � � � ��, which completes the whole
scenario path structure of the basic call model.

3.2.2. Supplementary Features As mentioned in sub-
section 3.2, adding the supplementary features extends
the scenarios of the basic call model. In our framework,
this is achieved in a simple way by using the stub plug-in
concept of UCMs. Intuitively, we only replace some de-
fault submaps with specific ones, called feature submaps
which describe the features’ scenarios. In this subsection,
we explain only how to add each single feature at a time
to the basic call. Adding multiple features is achieved by
combining the individual features using a combination
operator �. This operator will be presented in Section 5.

Figure 2 shows feature submaps for the features pre-
sented in Section 2.1. Each submap has a name (identi-
fier) with an index which represents a stub location of the
root map to be plugged into. For example, let us add SB
to the basic call. Adding SB to the basic call is done by
plugging feature submaps ���� in Figure 2 into stub 2 of
the root map in Figure 1(a). As a result, def� is replaced
by ���� and all other submaps def��� � �� �� �� �� 	� ��
remaining to be reused in the corresponding stubs.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 5

in11 out11 in21 out21 out71in31 out31

root

out41in41

out42

out51

out52

in71
1 2 3

4

5

6

7

[Y=idle]offhookA

dialA,Y

ringbackY

alertA offhookY

onhookA

Pre-Condition: [A is idle]

disconnect

[Y=busy]
in51

stopalertA

connectAY
out61

out62
in61

out72

Pre-Condition:
 [default]

dialtoneA

def

Pre-Condition:
 [default]

def

Pre-Condition:
 [default]

def

Pre-Condition:
 [default]

def

Pre-Condition:
 [default]

def

Pre-Condition:
 [default]

def

[timeout]
TOtoneA

Pre-Condition:
 [default]

def

busytoneA

in11 out11 in21 out21

out71

in31 out31 out41in41

out42

out51 in71in51 out61

out62

in61

out12

out12

(a) Root Map

(b) Submaps

765

4321

Figure 1. Use Case Maps for the basic call model

setA,anonymous

Pre-Condition:
 [true]

cndbA

(a) CNDB

3

Pre-Condition:
 [Y = TCS subscriber(=V)]

tcsV
[A is in
TCSlist]

Announce
Screened

chkTCSlist

(b) TCS

4

Pre-Condition:
 [Y = RC subscriber(=V)]

rcV

billing_reverseA,Y

(d) RC

2

Pre-Condition:
 [Y = SB subscriber(=V)]

sbV

billing_splitA,Y

(e) SB

2cfbV

setY,fwd(V)

Pre-Condition:
 [Y = CFB subscriber(=V)]

(c) CFB

5

in31 out31 out41in41

out52

in51

out42

out21in21 out21in21

Figure 2. Submaps for supplementary features

In UCMs, a stub is allowed to contain multiple
submaps, whose selection can be determined at run-time
according to a submap selection policy 3, which helps
to describe dynamic situations in scenarios. The selec-
tion policy is usually described with pre-conditions of
submaps. When there are several submaps for one stub,
the submap whose pre-condition takes true value is cho-
sen to be plugged into the stub. If two or more pre-
conditions hold simultaneously, then we cannot decide
which submap should be plugged in. This is a problem-
atic situation called non-determinism [24] and it must
be avoided. For convenience, let ����� �� denote a pre-
condition of a submap ��.

3In this sense, the stubs discussed here are called dynamic stubs,
strictly speaking.

Let us illustrate how to plug multiple submaps into a
stub. For example, suppose that � is an SB subscriber.
In case of � subscribing to this service, � can set the
percentage of the telephone charge he/she wants to pay.
If � sets to pay the long-distance call charge for the orig-
inator, when the caller � makes a call to �, � pays only
the local call charge and � will pay the remaining long-
distance charge. When � calls �, however � pays all of
the call charges normally. Thus, the call scenario dynam-
ically changes depending to whom � makes a call.

To explain this, let us take a submap ���� shown in
Figure 2. The variable � in ���� represents an SB sub-
scriber. We assign a value � to � . Then, the submap
���� and its pre-condition ��������� �
� � � � are in-
stantiated to ���� and
� � ��. ���� is plugged into

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 6

2

Pre-Condition:
 [default]

def2

in21 out21

billing_splitA,B

out21in21

Pre-Condition:
 [B = SB subscriber]

sbB2

in21 out21

[Y = B][Y = B]

Figure 3. Plugging two submaps into one stub

stub 2 only when
� � �� holds, i.e. the callee � is
�. On the other hand, a submap def� in Figure 1(b)
is also for stub 2, which describes default scenarios in
the basic call. The ��������� is a default, which means
def� is plugged in when none of the other submap’s pre-
conditions hold. One of ���� or def� is chosen to be
entered in stub 2 depending on whom � calls (see Fig-
ure 3). This shows that SB applies only when � calls
�. If the callee � is �, the call proceeds to the default
scenario.

For different submaps �� and ��, if ������� and �������
hold simultaneously, then the submap selection policy
does not work correctly. When two pre-conditions are
satisfied at the same time, a non-deterministic behavior
occurs regarding which of �� and �� should be chosen to
be plugged into stub �. If ������� and ������� are not si-
multaneously satisfiable, we say that �� and �� are mutu-
ally exclusive, denoted by ������� ���. In general, since
UCMs do not force any formalism on pre-conditions,
evaluating these UCMs without human input is difficult.

Therefore, we assume that for any pair � � and �� given,
the scenario designer can always tell whether ������� ���
holds or not. All the submaps for the same stub must
be mutually exclusive to achieve a consistent selection
policy.

For instance, since def� and ���� are mutually ex-
clusive as shown in Figure 3, mex(def�� ����) holds.
However, ���� and ���� are NOT mutually exclusive,
since both preconditions of ���� and ���� are
� � ��
(See Figure 2). As a result, scenarios in ���� and ����

cause non-determinism when
� � �� holds. The non-
deterministic behavior is well known as a typical situa-
tion of FIs [24].

4. Characterizing Feature Interac-
tion

Researchers agree on an informal definition of FI: FI
occurs iff combining multiple features changes the re-
quirements properties of each feature in isolation. The
definition is not formal enough to perform FI detection.
Hence, researchers have been trying to give formal def-

initions of FIs. As a result, different definitions are pro-
posed for different FI detection frameworks.

However, the aim of this work is not to present an FI
detection method, but to propose an FI filtering method,
which is supposed to be a quick and rough evaluation de-
ployed before the FI detection process. In order to make
the proposed method generic, i.e. applicable to differ-
ent FI detection frameworks, we briefly characterize FIs
by a necessary condition and a sufficient condition with
respect to call scenarios of users.

Let us consider again the informal definition above.
First, we can say that the requirement properties do not
change unless each user’s call scenario changes. So, if FI
occurred, some call scenarios must have been changed by
the feature combination. Therefore, we have:

Condition C1 If FI occurs, then the combination of mul-
tiple features changes some user’s call scenarios in
an individual feature.

All FIs in Section 2.2 can be explained by Condition
C1. In every example, the user’s call scenarios have been
changed somehow by feature combination.

Next, we focus on a typical type of FI, called non-
determinism [24]. This type of FI occurs when the fea-
ture combination changes a call scenario in a way that
multiple scenarios can be triggered in the same condi-
tion. Note that, however, not all FIs are caused by this
non-determinism.

Condition C2 If a combination of multiple features en-
ables different call scenarios to be performed under
the same conditions, then FI occurs.

A typical FI characterized by C2 is FI-(a), as shown
in Section 2.2. Note that the reverse of each condition
does not necessarily hold. Thus, our characterization of
FI by the above conditions is relatively weak. However,
the characterization is essential in performing FI filtering
with low cost.

5. Phase 1: Identifying FI-prone
Feature Combinations

We have 2 phases in our proposed Feature Interaction
Filtering. The key idea of the first phase is to categorize
each service according to the stub configuration, devise
the service scenario for each user, and see how each stub
configuration changes according to a concurrent execu-
tion of multiple features. For this purpose, we propose a
matrix representation of the stub configuration, called the
SC-matrix. With the SC-matrices, the first phase derives
one of the following verdicts for each feature combina-
tion: (a) FI occurs, (b) FI never occurs and (c), FI-prone.
Next, at the second phase, we derive FI-prone scenarios
from the FI-prone combinations.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 7

5.1. Stub Configuration Matrix (SC-
matrix)

The stub plug-in concept in UCMs enables us to iso-
late specific scenarios of features from common scenar-
ios. That is, the specific scenarios for a feature are given
as a set of feature submaps, while the common scenarios
are given as a root map with default submaps, into which
the feature submaps are plugged. We can then charac-
terize features in terms of stub configurations, i.e. infor-
mation regarding which feature submap is plugged into
which stub in the root map. In this section, we propose a
matrix representation, called a stub configuration matrix
(SC-matrix), to characterize features.

Definition 5.1 Let �� denote the set of all given
submaps. A matrix element is recursively defined as fol-
lows: (a) � � �� is a matrix element, (b) if � and �
are matrix elements consisting of submaps plugged into
the same stub, then ��� are matrix elements, where � is a
deterministic choice operator.

The matrix elements are regarded as expressions in the
language composed by submap identifiers and operator
�. These elements are used to represent which submaps
are plugged into each stub. A matrix element ������ ���
means that exactly one submap �� of ��� � �� is deter-
ministically chosen and plugged into the stub, according
to a certain selection policy. Consider again the UCMs in
Figure 1 and 2. Then, for instance, def�, ����, ���� and
def������ are all matrix elements.

Next, we express the configuration of all stubs in a
root map, in terms of a vector representation, which intu-
itively describes a subscriber profile.

Definition 5.2 Suppose that a given root map has �
stubs. A stub configuration vector (or simply SC-vector)
is an �-dimensional vector � �
!�� � !��, where !� is
a matrix element for �-th stub.

Consider again all UCMs in Section 3. Let us briefly
characterize �’s scenarios for individual features, in
terms of an SC-vector.

In this UCM, when the user does not subscribe to any
feature, his/her scenario is characterized by an SC-vector:

����� ����� ����� ����� ����� ����� �����

This SC-vector means that, all of the default submaps are
plugged into the stub of the root map.

First consider the stub configuration where �, who is
the caller, subscribes to the originating feature; the fea-
ture that is activated only when � makes a call. Let us
take CNDB as an example of the originating feature. In
this case, submaps ������ is plugged into stub 3, and all
other stub � contain the default submap def �. Hence, �’s
scenarios are characterized by an SC-vector:

����� ����� ������� ����� ����� ����� �����

Next, consider the stub configuration where �, who is
the callee, subscribes to the terminating feature; the fea-
ture that is activated when � accepts a call. Let us take
TCS as an example of the terminating feature. When �
subscribes to TCS, then the caller’s scenario is character-
ized by:

����� ����� ����� ����������� ����� ����� �����

where the inclusion of ����� or def� is determined by
whether � calls � or another user who does not subscribe
to TCS.

Thus, the individual features on �’s scenarios are con-
cisely characterized by SC-vectors.

In order to represent clearly all possible user scenar-
ios, we replicate the root map for each user’s scenar-
ios, as shown in Figure 4. The replication of the root
map makes sense, since common scenarios described
in the root map are the same for all users, due to the
“equivalently-served” constraint [25]4 in telecommuni-
cation services. The stub configuration describes the al-
location of feature submaps to stub in the root maps of all
users. Accordingly, the SC-vector is extended to a matrix
form, called the SC-matrix.

Definition 5.3 Suppose that a given root map has �
stubs, and that we have � users. A stub configuration
matrix (or simply SC-matrix) is an � � �-dimensional
matrix:

" �

�
����

��
��
...

��

�
���� �

�
����

!�� !�� � � � !��

!�� !�� � � � !��

...
... � � �

...
!�� !�� � � � !��

�
����

where �� is an SC-vector for the �-th user, and !�� is a
matrix element for the #-th stub in the �-th user’s root
map. Usually an SC-matrix for a feature is specified on
the basis of the feature named $ and of its subscriber �.
For convenience, we introduce a notation $� to denote an
SC-matrix where the user � subscribes to feature $.

For example, consider all submaps in Figure 1(b) and
Figure 2, and root maps in Figure 1(a). Here we suppose
that there are three users, �, � and �, as introduced in
[21]. Since the root map has seven stubs, the SC-matrix
is a � � � matrix. Let us express the stub configura-
tion where � is a CNDB subscriber. Submaps ������

is plugged into stubs 3 in �’s root map. Similarly we can
describe the stub configuration that � is a CNDB sub-
scriber just by swapping � and �.

����� ��
���� ���� ���	
� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ����

�

4Suppose that
 and � subscribe to the same feature � . Therefore,

 and � are guaranteed to be able to use � in the same way.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 8

A's scenario
Caller A
Callee B or C

B's scenario
Caller B
Callee C or A

C's scenario
Caller C
Callee A or B

32

4 6
[Y=idle]

Pre-Condition: [A is idle]

[Y=busy]
7

5

1

def1, def2, def3, def4|tcsB4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, def2, def3, def4|tcsB4, def5, de6, def7

stub1 stub2 stub3 stub4 stub5 stub6 stub7

user A
user B
user C

4 def4|tcsB4

32

4 6
[Y=idle]

Pre-Condition: [B is idle]

[Y=busy]
7

5

1

32

4 6
[Y=idle]

Pre-Condition: [C is idle]

[Y=busy]
7

5

1

Figure 4. Extending a root map for three users
(when B subscribes to TCS)

����� ��
���� ���� ���� ���� ���� ���� ����
���� ���� ���	�� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ����

�

By looking at the matrix row-wise, we can visualize
how each user’s scenario is configured, under a certain
feature subscription. Next, let us give an SC-matrix,
% ���:

��� ��
��	� ��	� ��	� ��	��
���� ��	� ��	� ��	�
��	� ��	� ��	� ��	� ��	� ��	� ��	�
��	� ��	� ��	� ��	��
���� ��	� ��	� ��	�

	

Note that �’s subscription to TCS affects call scenar-
ios of both � and �, since TCS applies when � (or �)
calls � (i.e. the condition
� � �� holds). Here, we do
not consider the case where � calls him/herself. There-
fore, � follows the default scenario. Figure 4 shows
a correspondence between the root maps and the SC-
matrix % ���. The shaded stubs represent the submaps
for TCS, which are plugged into those stubs.

One useful guideline for systematically constructing
an SC-matrix is to classify the features into two cate-
gories: originating features or terminating features. The
originating features are the features whose subscriber is

on the caller side, while terminating features are the fea-
tures whose subscriber is on callee side. In our example,
CNDB is the originating feature, whereas TCS, SB, RC
and CFB are the terminating features [21]. Note that the
root map in our example is described from the caller’s
point of view. Subscribing to originating features affects
the scenarios of only the subscriber. On the other hand,
subscribing to terminating features affects the scenarios
of all users, except the subscriber. Based on this observa-
tion, let us give SC-matrices &�� and ��� :

��� ��
��	� ��	����� ��	� ��	� ��	� ��	� ��	�
��	� ��	� ��	� ��	� ��	� ��	� ��	�
��	� ��	����� ��	� ��	� ��	� ��	� ��	�

	

�� ��
��	� ��	������ ��	� ��	� ��	� ��	� ��	�
��	� ��	� ��	� ��	� ��	� ��	� ��	�
��	� ��	������ ��	� ��	� ��	� ��	� ��	�

	

Note that it is possible to represent feature configura-
tions for arbitrary subscribers in terms of SC-matrices.
This representation is accomplished by instantiating fea-
ture submaps with a value of the subscriber and allocating
such submaps to appropriate rows of the SC-matrix. For
instance, &�� can be obtained from &�� by swapping
the second and third rows, and by letting � � � instead
of � � � in submap ����.

5.2. Feature Combination

Once each individual feature is characterized by an
SC-matrix, we combine different configurations, in order
to examine FI filtering between multiple features. The
combination is carried out by a well-defined SC-matrix
combination as shown in this section. First, we define
the combination operator for two submaps:

Definition 5.4 Suppose that � and � are given submaps,
which can be plugged into the same stub in a root map.
Let def denote any default submap describing the basic
call scenarios. Let �� 5 denote a special identifier not
contained in the given submaps. Then, a combination of
� and �, denoted by � � �, is defined as follows:

� � � � � � � �
�
�

� (if � � �) �
��
� (if � � ���) �
��
� �� (if �� �� ��� ��� � �� ��� � and ������� ���) �
��
�� (if �� �� ��� ��� � �� ��� � and �������� ���) �
��

The intuitive semantics of the combination is explained
as follows: (A1) a combination of the same submaps
yields the same submap, (A2) a feature submap � can
override a default map for the basic call scenario, (A3)
two different feature submaps can be composed with a

5The �� here stands for “no good”.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 9

deterministic choice when � and � are mutually exclu-
sive and (A4) two different feature submaps cannot be
plugged into the same stub when � and � are not mutu-
ally exclusive, since a non-deterministic behavior arises
between � and �.

Then, the combination operator is extended for matrix
elements containing “�”, by the following definition:

Definition 5.5 Let � � ������ ��� and � � ������ ���
be matrix elements. Then, the combination of � and � is
defined by applying � to all pairs of submaps � � and �� :

� � � � �� � ����� � ��� ��� � �� ����

The following proposition is useful for simplifying the
combination results.

Proposition 5.6 Let �� � and � be matrix elements. The
following properties are satisfied: (B1) ��� � �, (B2)
��� � ���, (B3) ������� � �������, (B4) ���� � ��.

For example, consider SC-matrices &�� and ��� in the
previous section. Let us compose two matrix elements
def������ and def������, with respect to stub 2.

����������� � �����������

� ��	� � ��	����	� � �������� � ��	����� � ���� ���	
� ��	�������������� � ���� ���	
� ��	������������� ���	6

� �� ���	

Here, we can define a combination operator of SC-
matrices as:

Definition 5.7 Let $ and ' be given SC-matrices. Then,
the combination of $ and ', denoted by $�', is defined
as $ �' �
��� ��
��� � �
��� � ��� �

combination of two SC-matrices is carried out by apply-
ing � to each pair of corresponding matrix elements. For
instance, let us compose % ��� and �(��� shown in
the previous subsection 5.1.

���� � ����� ��
��	� ��	� ��	� ��	��
���� ��	� ��	� ��	�
��	� ��	� ��	� ��	� ��	� ��	� ��	�
��	� ��	� ��	� ��	��
���� ��	� ��	� ��	�

	

�

�
��	� ��	� ������ ��	� ��	� ��	� ��	�
��	� ��	� ��	� ��	� ��	� ��	� ��	�
��	� ��	� ��	� ��	� ��	� ��	� ��	�

	

��
��	� ��	� ������ ��	��
���� ��	� ��	� ��	�
��	� ��	� ��	� ��	� ��	� ��	� ��	�
��	� ��	� ��	� ��	��
���� ��	� ��	� ��	�

	

6Note that the precondition of rcB2 and sbB2 are both [Y=B], i.e.
���������� �	���, see Figure 2(d) and (e), and replace V with B.

5.3. FI Filtering

We assume that a root map, a set of default submaps,
sets of submaps for features, and SC-matrices for indi-
vidual features are given.

Figure 6 depicts the correspondence between matrix
combination and related root maps. The stubs depicted
by shaded diamonds represent that some feature submaps
are plugged into the stubs.

First, we provide two theorems used for the proposed
FI filtering method. These theorems are derived from the
FI characterizations (Condition C1 and C2) presented in
Section 4. Let $ and ' be given SC-matrices, and let
" � $ �'. Let ��, �� and �� be �-th rows in $, ' and
" , respectively.

Theorem 5.8 If there exists �� in " , then FI occurs
(non-determinism).

Proof: By Definition 5.4, an �� entry appears in � iff a submap
��� in � and a submap ��� in � are not mutually exclusive.
Since ��� and ��� are plugged into a stub � simultaneously,
different scenarios are possible under the same (pre-)condition
with respect to user �. According to Condition C2, we can con-
clude that FI occurs.

The example in Figure 6(a) illustrates the verdict (a)
“FI occurs” for the combination of &�� and ���. After
the combination, an �� entry appears in stub 2 of �’s and
�’s root map. This is a non-deterministic interaction:
“Suppose that � subscribes to RC and SB. If � calls �,
should the call be charged 100% to � by the function of
RC, or should the call be charged by the rule of payment
of SB, which � had set”.

Theorem 5.9 If
�� � �� or �� � ��� holds for all �,
then FI does not occur.

Proof: Each row in an SC-matrix is an SC-vector that character-
izes one user’s scenario. The condition [�� � �� or �� � ��]
holds iff for user �, the stub configuration �� yielded by the
combination had been already expected in the individual feature
� (=��) or � (=��). This fact means that no stub configuration
is changed by the combination. Hence, no scenario change oc-
curs with respect to the user �. If the condition [�� � �� or
�� � ��] holds for all �, then no user’s scenario is changed by
the combination. According to a contraposition of Condition
C1, we can conclude that FI never occurs.

The example in Figure 6(b) illustrates the verdict (b)
“FI never occurs” between % ��� and �(��� . The
condition [�� � �� or �� � ��] holds for � � �� �� �
(for users �,�,�). In this case, the scenarios of users �
and � had been expected in % ��� before the combina-
tion, whereas the scenarios of user � had been found in
�(��� . As a result, no scenario change occurs, and
thus we can conclude that there is no FI.

With the above theorems, we finally present the filter-
ing method (Phase1) in Figure 5. The method gives one

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 10

Feature Interaction Filtering Method (First Phase)

Input : Stub configuration matrices

$ �

�
��

��
...
��

�
�� and ' �

�
��

��
...
��

�
��

Output : One of the following verdicts
(a) FI occurs (non-determinism).
(b) FI never occurs.
(c) FI-prone.

Procedure :

Step1 : Make a composed matrix

" �

�
��

��
...

��

�
�� � $ �'.

Step2 : If some �� elements exist in " , conclude
(a) FI occurs (by Theorem 5.8). Otherwise, go
to Step 3.

Step3 : For each row �� of " , check a condition
[�� � �� or �� � ��].

Step3-1 : If the condition holds for all � �� �
� � ��, conclude (b) FI never occurs (by
Theorem 5.9). Otherwise,

Step3-2 : Conclude (c) FI-prone.

Figure 5. Feature Interaction filtering method

of the verdicts: (a) FI occurs (non-determinism), (b) FI
never occurs, (c) FI-prone, for two given SC-matrices $
and '.

Since Theorems 5.8 and 5.9 at Steps 2 and 3 can be
checked easily, the filtering procedure is quite simple and
easy to use. Step 1 is used simply for making a composed
matrix " from $ and '. Step 2 is used to check the non-
determinism caused by the combination by Theorem 5.8.
Step 3 is used for checking if any scenario changes occur
due to the combination using Theorem 5.9. If we reach
Step 3-2, this means that non-determinism does not exit,
but some scenarios change in the combination. We can-
not definitely conclude the existence of FI at this point.
The verdict is “FI-prone” and some detection method has
to be employed.

The example in Figure 6(c) is for the verdict (c) “FI-
prone” between % ��� and �(���. Due to the com-
bination, user �’s scenarios have been changed, which
can be interpreted as follows: “Suppose that � subscribes
to TCS and sets � to the screening number, and that �
subscribes to CNDB. Since � subscribes to CNDB, �’s
number may not be displayed on �’s telephone. There-
fore, the screening function of � may not work prop-

erly.” Whether this is an FI or not depends on the exact
definition of FI adopted in the subsequent detection pro-
cess. The only thing we can say here regarding filtering
process is that the system is FI-prone. Note that even if
the feature combination is the same (as in Figure 6(b)),
we can still get a different verdict depending on who the
subscribers are.

The proposed filtering method is applied to all pos-
sible combinations of SC-matrices, derived from given
features.

The number of combinations increases combinatori-
ally with the number of users and features. However, the
number of combinations can be reduced by using sym-
metry. For example, if we have analyzed a combina-
tion % ��� � �(���, then we no longer need to try
% �����(��� , since all subscribers of a feature can
use the feature in the same way. Due to space limitations,
the detailed definition of symmetry is omitted here. In-
terested readers can refer to relevant papers [18, 25].

Note that we have only shown the example where one
user subscribes to only one feature at a time. However,
the proposed method can be used when one user sub-
scribes to more than two features as well. Suppose that
user A subscribes to feature � , �, and !. In this case,
the combinations to be analyzed will be, � � �, � � !
and � � !. Generally for � features, the number of the
combinations will be ���.

6. Phase 2: Deriving FI-prone Sce-
narios

In the second phase, we derive FI-prone scenarios from
the (c) FI-prone combinations. The FI-prone service
combinations do not always cause actual FIs. To make
the FI filtering more accurate, we derive the scenarios
which may be relevant to actual FIs. For this, we propose
two heuristics on the scenario paths.

6.1. Observations on FI-prone Scenarios

In the first phase of FI filtering, the verdict of FI-prone
is derived by Condition C1 (in Section 4). That is, some
user’s scenarios in the root maps have been changed by
the feature combination. What we have to consider next
is how the scenarios change and which scenarios have the
potential of FIs.

Let us consider again the examples FI-(b) and FI-(c)
in Section 2. As shown in Figure 7(I), FI-(b) occurs in
a scenario where � subscribes to TCS and � puts �’s
telephone number on the screening list, � subscribes to
CNDB and calls � while � is idle. In this scenario, both
TCS and CNDB services are activated.

Next, FI-(c) occurs in a scenario where � subscribes
to CFB and sets the forwarding address to �, and � sub-
scribes to RC (see Figure 7(II)). If � calls � when � is

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 11

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2
4

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2
4

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2
4

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2
4

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2
4

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2
4

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

def1, def2|rcB2, def3, def4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, def2|rcB2, def3, def4, def5, de6, def7

def1, def2|sbB2, def3, def4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, def2|sbB2, def3, def4, def5, de6, def7

def1, NG, def3, def4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, NG, def3, def4, def5, de6, def7

(a) RCB SBB = FI occurs

def1, def2, def3, def4|tcsB4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, def2, def3, def4|tcsB4, def5, de6, def7

def1, def2, def3, def4, def5, de6, def7
def1, def2, cndbB3, def4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7

def1, def2, def3, def4|tcsB4, def5, de6, def7
def1, def2, cndbB3, def4, def5, de6, def7
def1, def2, def3, def4|tcsB4, def5, de6, def7

def1, def2, def3, def4|tcsB4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, def2, def3, def4|tcsB4, def5, de6, def7

def1, def2, cndbA3, def4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7

def1, def2, cndbA3, def4|tcsB4, def5, de6, def7
def1, def2, def3, def4, def5, de6, def7
def1, def2, def3, def4|tcsB4, def5, de6, def7

(b) TCSB CNDBB = FI never occurs

(c) TCSB CNDBA = FI prone

=

=

=

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2
4

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2
4

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2
4

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2
4

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2
4

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2
4

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

3

6[Y=idle]

dialC,Y [Y=busy]offhookC

root C

5

71 2
4

3

6[Y=idle]

dialA,Y [Y=busy]offhookA

root A

5

71 2
4

3

6[Y=idle]

dialB,Y [Y=busy]offhookB

root B

5

71 2
4

rcB2

rcB2

sbB2

sbB2

NG

NG

4

4

4

4

tcsB4

tcsB4

tcsB4

tcsB4
4

4

4

4

tcsB4

tcsB4

tcsB4

tcsB4

3

3

cndbB3

cndbA3

3

3

cndbB3

cndbA3

Figure 6. Illustrative examples of FI Filtering

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 12

CNDB TCS

A B (idle)

both features activated

(I) FI-(b) TCSB and CNDBA

CFB RC

A (busy) B

bypassed

(II) FI-(c) CFBA and RCB

C

Figure 7. The example of FI-(b) and FI-(c)

busy, CFB of � is activated and � creates a new path
to originate the new call to � directly without passing
the RC feature of �. As a result, in this scenario, a fea-
ture of RC which allows the subscriber � to be charged
for the calls, is not activated because of the activation of
CFB of �. Thus, we can see that the activation of RC
is bypassed by the activation of CFB. Examining many
other practical examples, we have reached the following
observations of FIs.

Observation 1: FI tends to occur in scenarios where two
different features are sequentially activated.

Observation 2: FI tends to occur in scenarios where the
execution of one feature bypasses the execution of
the other feature.

The above two observations will be mapped into the
two heuristics defined on the scenario paths of UCMs, in
Section 6.4.

6.2. FI-prone Root Map

Each FI-prone combination obtained in Phase 1 has
multiple root maps, each of which corresponds to a user.
From them, we first pick up only root maps that con-
tain problematic scenarios. Specifically, we only pick up
the root maps whose stub configurations is changed be-
fore/after the service combination.

According to Condition C1 (see Section 4), the FI-
prone scenarios must be contained in a root map in which
the stub configuration is modified by a feature combina-
tion. For instance, let us take Figure 6(c). For this com-
bination, FI-prone scenarios must be contained in ���
only, but neither in ��� nor ��� .

f

 [cond.] [default]

 [cond.]

def

 [default]

dialA,Y

dialA,B

dialA,C

(a)

(b)

f

def

Figure 8. Expanding dynamic elements

6.3. Expansion of Dynamic Elements in Sce-
narios

If a root map contains dynamic elements such as vari-
ables and dynamic stubs, a scenario path can represent
multiple scenarios dynamically depending on run-time
conditions (see Section 3). In such a situation, we have
to consider both the scenario path structures and the run-
time conditions, simultaneously.

To avoid confusion, we eliminate the dynamic ele-
ments by expanding them into static ones, before de-
riving FI-prone scenarios. In the resulting root map, a
scenario path exactly corresponds to a concrete scenario.
Therefore, we can only concentrate on the path structure
to derive FI-prone scenarios. The elimination of the dy-
namic elements is performed by replacing the dynamic
elements with branches (fork/join) for all possible condi-
tions, which is specifically described below.

For responsibilities with variables, we use a fork to
describe a possible branch with respect to the range of
the variable. For example, Figure 8(a) shows the case of
a responsibility “dialAY”, where callee Y is a variable.
Assume that the range of Y includes � and �. Thus,
two subsequent scenarios are possible, where � calls �
or � calls �. Therefore, “dialAY” is expanded into two
(static) responsibilities “dialAB” and “dialAC”.

As mentioned before, the dynamic stub can have mul-
tiple submaps to be plugged into. The selection of the
submaps is determined at run time by a selection pol-
icy that is usually specified in the pre-conditions of the
submaps. The dynamic stub can be also expanded into
a branch of the static stubs (denoted by solid diamonds).
Let us examine Figure 8(b). In the figure, two submaps
��� and � can be plugged into the dynamic stub, thus al-
lowing two possible scenarios. Therefore, we expand the
scenario into two using a branch with guards (taken from
the pre-conditions of the submaps). Thus, for each sce-
nario, we place a static stub in which submap � or ���
is plugged. In addition, for the submaps that have post-
conditions modifying conditions in a scenario, merging

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 13

3

64
[B=idle]

dialA,B [B=busy]offhookA

root A
cndbA2

tcsB4

[A dials B]

5

71 2

Figure 9. Heuristic H1

some expanded scenarios might be necessary. For this
situation, we use a join.

The root map in which all dynamic elements are elim-
inated is called an expanded root map.

6.4. Deriving FI-prone Scenarios

After eliminating the dynamic elements on the root
map, here we derive FI-prone scenarios in the suspected
root map. Among all scenario paths in the expanded root
map, a feature is activated in a path passing through a
static stub with the feature submap. According to Obser-
vations 1 and 2 in Section 6.1, we propose the following
heuristics H1 and H2 for deriving FI-prone scenario paths
from the expanded root map.

Definition 6.1 Let � and � be feature submaps of fea-
tures $ and ', respectively. Then, derive any scenarios
on the expanded root map based on the followings:

Heuristic H1: Derive a scenario path that passes
through both � and �.

Heuristic H2: Derive a scenario path in which � is by-
passed by �, and vice versa.

Figure 9 illustrates Heuristic H1, which derives an FI-
prone scenario between �(��� and % ��� . The sce-
nario activates CNDB and TCS sequentially as explained
in Figure 7 (I).

On the other hand, Figure 10 describes Heuristic H2,
where a function of RC is bypassed by CFB. In the sce-
nario, an FI between �$ �� and &�� occurs as ex-
plained in Figure 7 (II). Note in the figure that the root
map ��� is expanded into two cases (a) � dials � or
(b) � dials �. The dotted line shows a scenario; after �
dials �, the call is forwarded to �, but ���� is bypassed.

Here we should note that the derived scenarios do not
guarantee the existence of actual FIs. That is, Heuristics
H1 and H2 derive only FI-prone scenarios. Hence, not all
derived scenarios contain FIs, and some of these scenar-
ios might even be FI-free. The exact FIs will be detected
in the FI detection process, which is the next step of FI
filtering. The goal of the proposed method is to provide
the FI-prone scenarios as essential information for effi-
cient FI detection.

3

6

5

71

4

2
cfbA5

[C dials A]

root C

rcB2

3

6
[B=idle]

dialC,B [B=busy]
5

71 2

[A=idle]

[A=busy]

4

dialC,AoffhookC

[C dials B]

Figure 10. Heuristic H2

7. Evaluation

7.1. Preliminary

We have applied the proposed method to the specifica-
tions of the eight features taken from the second FI de-
tection contest [21]. The features include: (1) Call For-
warding on Busy (CFB), (2) Teen Line (TL), (3) Termi-
nating Call Screening (TCS), (4) Reverse Charge (RC),
(5) Call Number Delivery Blocking (CNDB), (6) Ring
Back when Free (RBF), (7) Voice Mail (VM), and (8)
Split Billing (SB).

Since the contest specifications are given by Commu-
nicating Finite State Machines (CFSMs), we first con-
struct the UCMs (root map and default/feature submaps),
so that the causal relationships among events are pre-
served. The UCMs consist of a root map and default
submaps as shown in Figure 1, and feature submaps as
shown in Figure 2.

We combined each pair among the eight features in
the following two ways: (A) both features are allocated
to the same user, and (B) two users subscribe to different
features. Next, for each combination, we applied the first
phase of the proposed FI filtering method. Finally, for
combinations with (c) FI-prone, we applied the second
phase to derive FI-prone scenarios.

The evaluation is conducted from the following view-
points for both filtering phases:

Filtering quality: To check the quality of the proposed
filtering method, we evaluate the filtering quality
that can be defined by the number of feature com-
binations filtered at the FI filtering process.

Scenario coverage: We evaluate the scenario coverage
to check whether the scenarios derived by proposed
filtering method cover actual FIs scenarios or not.

Reduction ratio: From the viewpoint of cost reduction,
we evaluate the reduction ratio, which represents
the percentage of the irrelevant scenarios filtered by
the filtering process.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 14

Table 1. Filtering result in the first phase

same diff same diff same diff same diff same diff same diff same diff same diff
(c) (b) (b) (c) (c) (c) (c) (b) (c) (a) (c) (c) (c) (c) (c) CFB

(b) (b) (c) (b) (c) (c) (b) (c) (c) (c) (c) (b) (c) TL
(c) (c) (c) (b) (c) (c) (c) (c) (c) (c) (c) TCS

(c) (b) (c) (c) (c) (c) (c) (a) (c) RC
(b) (c) (c) (c) (c) (b) (c) CNDB

(c) (c) (c) (c) (c) RBF
(c) (c) (c) VM

(c) SB

CNDB RBF VM SBCFB TL TCS RC

Table 2. Filtering result in the second phase (scenario derivation)

same diff same diff same diff same diff same diff same diff same diff same diff
H1 (b) (b) Other H1 H1 H2 (b) H1 (a) H1 Other H1 H1 H2 CFB

(b) (b) H1 (b) H1 H1 (b) H1 H1 H2 H1 (b) H1 TL
Other H1 H1 (b) H1 Other H1 H2 H1 H1 Other TCS

Other (b) H1 H1 H1,H2 H1 H1 (a) Other RC
(b) H1 H1 H1 H1 (b) H1 CNDB

H1 H1 H1 H1 H1,H2 RBF
H1 H1 H1 VM

Other SB

CNDB RBF VM SBCFB TL TCS RC

As a reference of the actual FIs among the eight ser-
vices, we used FI detection results submitted by the team
of Ottawa University [26].

To justify the effectiveness of the proposed filtering,
we should compare the proposed method with other fil-
tering methods. However, although several FI filter-
ing method have been proposed [14, 18, 20], none of
them conducts quality evaluation for practical settings.
Therefore, carrying out comparative evaluation on filter-
ing quality is impossible.

7.2. Filtering Quality

We want to see how many service combinations can
be filtered by the proposed method. In other words, we
examine how many combinations have a definite answer;
(a) FI occurs or (c) FI never occurs. We define a metric
filtering quality as; (# of combinations with verdicts (a)
or (b)) / (total # of combinations).

Table 1 shows the filtering result obtained by the first
phase only. Table 2 shows the filtering result with both
first and second phases.

Each entry of the tables represent one of the verdicts:
(a) FI occurs, (b) FI never occurs or (c) FI-prone. The
same (or diff) represents two services allocated to the
same users (or different users, respectively), as men-
tioned in Section 7.1. The shaded entries represent the
combinations that cause actual FIs detected in [26].

Table 1 shows that all combinations causing FIs are
covered by the verdicts (a) or (c). For example, the com-
bination of % ��� and �(��� (in subsections 2.2 and
5.3) has the verdict of (c) FI-prone in the entry diff of
CNDB&TCS. Note that most combinations have the ver-
dict (c), and no concrete scenario is available at this time.
The number of combinations that have a definite answer,
i.e., (a) or (b), is 14, and 50 FI-prone combinations still
have to be examined at the subsequent FI detection pro-
cess. Therefore the filtering quality of the first phase of
the proposed method is 22.9% (=14/64).

On the other hand, in Table 2, for the combinations
with (c), concrete FI-prone scenarios are derived by
Heuristics H1 and/or H2. "� (and "�) in the table repre-
sents the combination with a scenario derived by Heuris-
tic H1 (and H2, respectively) 7.)�!�� means that no
scenario has been derived by neither H1 nor H2.

The table shows that scenarios in)�!�� do not cause
actual FIs. Therefore, if we conclude that the combina-
tions with)�!�� to be FI-free, then more combinations
can be filtered at the filtering process. Since the number
of combinations with (a), (b) or)�!�� is 22, the filtering
quality is improved to 34.4% (� ��*	�) with the infor-
mation of concrete FI-prone scenarios.

7Sometimes, however multiple scenarios are derived from a combi-
nation.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 15

7.3. Scenario Coverage

Next, we conduct a scenario-wise investigation to
check whether the derived scenarios surely cover actual
FIs or not. Here we define a metric scenario coverage
as follows. Let �� be the number of actual FI scenar-
ios contained in the derived scenarios, and let �
 be the
total number of actual FI scenarios. Then, the scenario
coverage is defined by ��*�
.

Table 3 shows the number of scenarios derived from
FI-prone combinations that were represented by (c) in
Table 1. Among the total 74 scenarios investigated, 48
scenarios were derived by Heuristic H1, while 6 scenar-
ios were derived by Heuristic H2. 20 scenarios matched
neither H1 nor H2. Out of the 25 scenarios containing ac-
tual FI identified in [26] (thus,�
 = 25), 20 were from the
scenarios derived by H1, and the remaining 5 scenarios
were from the scenarios derived by H2.

For example, as mentioned in subsection 6, FI-(b)
% ��� and �(��� was derived by H1, while FI-(c)
&�� and �$ �� was derived by H2.

From this result, it can be seen that all FI scenarios are
contained in the FI-prone scenarios derived by Heuristics
H1 and H2. None of the FI scenarios belong to the set
)�!��. In this experiment, the proposed method achieves
100% coverage (thus, �� � �� � � �� and �
 � ��).
Hence, it can be said that Heuristics 1 and 2 sufficiently
cover actual FI scenarios in the experiment.

7.4. Reduction Ratio

The proposed method (phase 2) derives only FI-prone
scenarios. In other words, it excludes (or filters) many
scenarios that are irrelevant to the FI analysis, which sig-
nificantly reduces the cost of scenario analysis. Our inter-
est here is to evaluate how many such irrelevant scenarios
can be filtered by the proposed method. We define a met-
ric reduction ratio as follows: Let �� be the number of
the derived scenarios, and let �
 be the total number of
existing scenarios in all combinations. Then, the number
of the irrelevant scenarios is �
 � ��. Thus, the reduc-
tion ratio is defined by ��
 ����*�
.

As shown in Table 3, 48 scenarios were derived by
Heuristic H1 and 6 scenarios were derived by Heuristic
H2. Then, the total number of the scenarios that were de-
rived by Heuristic H1 and H2 were 54 (�� = 48 + 6 =
54). On the other hand, the number of all scenarios exist-
ing in all combinations of the feature are 715 (�
 = 715).
Thus, the percentage of the scenario reduction is 92.44%
(��
 ����*�
 = ���� ��*���).

This means that, instead of applying the FI-detection
to all existing 715 scenarios, we can remove more than
90% of them and apply the FI-detection to only 54 sce-
narios that were derived by Heuristic H1 and H2. In other
words, we can also say that in this case study; the pro-
posed method could efficiently reduce more than 90% of

Table 3. Table of the result of scenario coverage

Filtering Method

The number of
scenarios derived

from FI-prone
combinations

The number of
scenario containing

actual FI

Derived by H1 48 20

Derived by H2 6 5

Derived by neither
H1nor H2

20 0

Total 74 25

the cost for FI-detection which is the next process after
FI-filtering.

Since the proposed filtering is a low-cost method,
which is performed just by visually investigating whether
or not the scenario satisfies two heuristics. Hence, it can
be said that overall, the proposed method is expected to
reduce considerable cost for FI detection process with a
small amount of cost.

8. Conclusion

In this paper, we have proposed a two-phase FI filter-
ing method based on UCMs. In the first phase, using
the stub plug-in concept of UCMs, we characterize each
feature in terms of its stub configuration. The stub con-
figuration represented by the SC-matrix introduced a no-
tational convention that is useful for representing features
with UCMs. The different stub configurations are com-
posed by means of a matrix combination. Basically, the
matrix combination is performed by checking only the
pre-conditions of the feature submaps, which are inde-
pendent of the detail of the submaps. Thus, the proposed
method is easy to use and scalable.

In the second phase, we have proposed a method to de-
rive the FI-prone scenarios. Based on the two heuristics,
the second phase derives FI-prone scenarios from root
maps of FI-prone combinations.

The experimental evaluation through the FI detection
contest showed that the derived scenarios successfully
covered all scenarios of the actual FIs. Also, the combi-
nation did not cause actual FIs when there is no FI-prone
scenario derived by the heuristics from a FI-prone combi-
nation. This fact implies that the heuristics are quite rea-
sonable and they can improve filtering quality. Further-
more, the experimental evaluation showed that the pro-
posed method could effectively filter 90% of the irrele-
vant scenarios, which implies a significant cost reduction
of the scenario investigation.

Our future work is summarized as follows. We are cur-
rently investigating an efficient framework to use the de-

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 16

rived FI-prone scenarios in the FI detection process (e.g.,
test case generation, etc). Also, we plan to apply the pro-
posed method to more services and features, which may
reveal more effective heuristics for FI filtering.

Acknowledgments: This research was supported partly
by a Grant-in-Aid for JSPS Fellow (No.100987) from the
Ministry of Education Japan.

References

[1] A. Aho, S. Gallangher, N. Griffeth, C. Schell and D.
Swayne, “�	���� /Sculptor with Chisel: Requirements
Engineering for Communications Services”, Proc. of Fifth
Int’l. Workshop on Feature Interactions in Telecommuni-
cations and Software Systems (FIW’98), pp.45-63, Oct.
1998.

[2] D. Amyot, L. Logrippo, R.J.A. Buhr and T. Gray, “Use
Case Maps for the capture and validation of distributed
systems requirements”, Proc. of Fourth Int’l Symposium
on Requirements Engineering (RE’99), pp.44-53, June
1999.

[3] R. Boumezbeur, L. Logrippo, “Specifying Telephone Sys-
tems in LOTOS”, IEEE Communications Magazine, Vol.
31, No. 8, pp.38-45, August 1993.

[4] R.J.A. Buhr, “Use Case Maps as architectural entities for
complex systems”, IEEE Transactions on Software Engi-
neering, Vol.24, No.12, pp.1131-1155, 1998.

[5] E.J. Cameron, and H. Veithuijsen, “Feature interactions
in telecommunications systems”, IEEE Communication
Magazine, Vol.31, No.8, pp.18-23, 1993.

[6] E.J. Cameron, K. Cheng, F-J. Lin, H. Liu, and B. Pinheiro,
“A formal AIN service creation, feature interactions anal-
ysis and management environment: An industrial appli-
cation”, Proc. of Fourth Int’l. Workshop on Feature Inter-
actions in Telecommunication Networks and Distributed
Systems (FIW’97), pp.342-346, June 1997.

[7] C. Capellmann, P. Combes, J. Pettersson, B. Renard,
and J.L. Ruiz, “Consistent interaction detection - A com-
prehensive approach integrated with service creation”,
Proc. of Fourth Int’l. Workshop on Feature Interactions
in Telecommunication Networks and Distributed Systems
(FIW’97), pp.183-197, June 1997.

[8] A. Daniel, “Use Case Maps Navigator”,
http://www.usecasemaps.org/tools/
ucmnav/index.shtml

[9] M. Faci, L. Logrippo, “Specifying Features and Analyz-
ing Their Interactions in a LOTOS Environment”, Fea-
ture Interactions in Telecommunications Systems, L. G.
Bouma, H. Velthuijsen (Eds.), IOS Press, pp.136-151,
1994.

[10] A. Gammelgaard and E.J. Kristensen, “Interaction detec-
tion, a logical approach”, Proc. of Second Int’l. Workshop
on Feature Interactions in Telecommunications Systems
(FIW’94), pp.178-196, 1994.

[11] A. Grinberg, “Seamless Networks: Interoperating Wire-
less and Wireline Networks”, Addison-Wesley, 1996.

[12] R. J. Hall, “Feature Interactions in Electronic mail”,
Proc. of Sixth Int’l. Workshop on Feature Interactions
in Telecommunications and Software Systems (FIW’00),
pp.67-82, May 2000.

[13] Y. Harada, Y. Hirakawa, T. Takenaka and N. Terashima,
“A conflict detection support method for telecommunica-
tion service descriptions”, IEICE Trans. Comm., Vol.E75-
B, No.10, pp.986-997, October 1992.

[14] M. Heisel and J. Souquieres, “A heuristic approach to de-
tect feature interactions in requirements”, Proc. of Fifth
Int’l. Workshop on Feature Interactions in Telecommuni-
cations and Software Systems (FIW’98), pp.165-171, Oct.
1998.

[15] Y. Hirakawa and T. Takenaka, “Telecommunication ser-
vice description using state transition rules”, Proc. of
IEEE lnt’l Workshop on Software Specification and De-
sign, pp.140-147, October 1991.

[16] Y. Kawarazaki and T. Ohta, “New Proposal for Feature
lnteraction Detection and Elimination”, Proc. of Third
Int’l. Workshop on Feature Interactions in Telecommuni-
cations Systems (FIW’95), pp.127-139, Oct. 1995.

[17] D.O. Keck and P.J. Kuehn, “The feature interaction prob-
lem in telecommunications systems: A survey”, IEEE
Trans. on Software Engineering, Vol.24, No.10, pp.779-
796, 1998.

[18] D.O. Keck, “A tool for the identification of interaction-
prone call scenarios”, Proc. of Fifth Int’l. Workshop on
Feature Interactions in Telecommunications and Software
Systems (FIW’98), pp.276-290, Oct. 1998.

[19] A. Khoumsi, “Detection and resolution of interactions be-
tween services of telephone networks”, Proc. of Fourth
Int’l. Workshop on Feature Interactions in Telecommu-
nication Networks and Distributed Systems (FIW’97),
pp.78-92, June 1997.

[20] K. Kimbler, “Addressing the interaction problem at the
enterprise level”, Proc. of Fourth Int’l. Workshop on
Feature Interactions in Telecommunication Networks and
Distributed Systems (FIW’97), pp.13-22, June 1997.

[21] M. Kolberg, E.H. Magill, D. Maples and S. Reiff, “Second
Feature Interaction Contest”, Proc. of Sixth Int’l. Work-
shop on Feature Interactions in Telecommunications and
Software Systems (FIW’00), pp.293-310, May 2000.

[22] Y. Nagatake, H. Sakai, T. Nohara and K. Takami, “An ad-
vanced IN control architecture for providing VoIP Supple-
mentary Services”, Technical report of IEICE. ISSE2000-
42, pp.1-6, June 2000.

[23] M. Nakamura, Y. Kakuda, and T. Kikuno, “Analyz-
ing non-determinism in telecommunication services us-
ing P-invariant of Petri-Net model”, Proc. of IEEE INFO-
COM’97, April 1997.

[24] M. Nakamura, Y. Kakuda and T. Kikuno, “Petri net based
detection method for non-deterministic feature interac-
tions and its experimental evaluation”, Proc. of Fourth
Int’l. Workshop on Feature Interactions in Telecommu-
nication Networks and Distributed Systems (FIW’97),
pp.138-152, June 1997.

NECTEC Technical Journal, Vol. x, No. xx. xxxx 2005. 17

[25] M. Nakamura, and T. Kikuno, “Exploiting symmetric re-
lation for efficient feature interaction detection”, IEICE
Trans. on Information and Systems, Vol.E82-D, No.10,
pp.1352-1363, 1999.

[26] M. Nakamura, T. Ding, J. Sincennes, X. Lu and L. Lo-
grippo, “Second Feature Interaction Contest - Contest
Report”, Proc. of Sixth Int’l. Workshop on Feature In-
teractions in Telecommunications and Software Systems
(FIW’00), pp.314-317, May 2000.

[27] T. Ohta and Y. Harada, “Classification, detection and res-
olution of service interactions in telecommunication ser-
vices”, Proc. of Second Int’l. Workshop on Feature Inter-
actions in Telecommunications Systems (FIW’94), pp.60-
72, 1994.

[28] B. Renard, P. Combes, F. Olsen, “An SDL/MSC Environ-
ment for Service Interaction Analysis”, ICIN, Bordeaux,
November 1996.

[29] M., Weiss, “Feature Interactions in Web services”, Proc.
of Seventh Int’l. Workshop on Feature Interactions in
Telecommunications and Software Systems (FIW’03),
pp.149-156, June 2003.

[30] T. Yoneda and T. Ohta, “A formal approach for definition
and detection of feature interactions”, Proc. of Fifth Int’l.
Workshop on Feature Interactions in Telecommunications
and Software Systems (FIW’98), pp.165-171, Oct. 1998.

[31] P. Zave, “Feature interactions and formal specifications
in telecommunications”, IEEE Computer, Vol.26, No.8,
pp.20-30, 1993.

[32] Bellcore, “Advanced Intelligent Network (AlN) Release
1, Switching Systems Generic Requirements”, Bellcore
Technical Advisory TA-NWT-OO1123 (1991)

[33] Feature Interaction in Telecommunications, Vol. I-VII,
IOS Press (1992-2003)

[34] W3C, “Web Services Activity”, 2004,
http://www.w3.org/2002/ws/

