Detecting Feature Interactions in Telecommunication Services with a SAT Solver

Tatsuhiro Tsuchiya
Osaka University
t-tutiya@ist.osaka-u.ac.jp

Abstract

Feature interaction is a kind of inconsistent conflict be-
tween multiple communication services and considered an
obstacle to developing reliable telephony systems. In this
paper we present an automatic method for detecting fea-
ture interactions in service specifications. This method uses
bounded model checking, a SAT-based automatic verifica-
tion technique.

1. Introduction

Feature interaction refers to situations where a combina-
tion of different services behaves differently than expected
from the single services’ behaviors. For example, consider
a situation where user A has subscribed to the service Orig-
inating Call Screening (OCS) and does not want calls to
user C to be put through, and user B has activated the ser-
vice Call Forwarding (CF) to user C. In this situation, if A
calls B, the intention of OCS not to be connected to C will
be invalidated since the call is put through to C by way of B.
In today’s intelligent telecommunication networks, feature
interaction is considered a major obstacle to the introduc-
tion of new features and the provision of reliable services.
In practical service development, however, the analysis of
interactions has often been conducted in an ad hoc man-
ner. This leads to time-consuming service design and test-
ing without any interaction-free guarantee.

Many techniques have been explored to overcome this
situation [4]. Among them, formal approaches have re-
ceived much attention as a means of detecting feature inter-
actions in communication service specifications. In this pa-
per we propose a new formal approach which uses bounded
model checking [1, 7]. The central idea behind bounded
model checking is to reduce the model checking problem to
the propositional satisfiability (SAT) checking problem and
to look for counterexamples that are shorter than some fixed
length k for a given property.

In the literature, it has been reported that this method
can work efficiently, especially for the verification of dig-
ital circuits. On the other hand, it does not work well for
asynchronous systems, because the encoding scheme into

Masahide Nakamura
Nara Institute of Science & Technology
masa-n@is.aist-nara.ac.jp

Tohru Kikuno
Osaka University
kikuno@ist.osaka-u.ac.jp

propositional formulas is not suited for such systems. When
applying this technique to asynchronous systems, a large
formula is required to represent the transition relation, thus
resulting in large execution time and low scalability.

Recently we developed an alternative encoding method
for 1-bounded Petri nets [8]. However this method can-
not be directly applied to feature interaction detection, be-
cause it does not consider inhibitor arcs (which correspond
to negations of predicates in preconditions of rules in spec-
ifications). In this paper we extend the method to deal with
the interaction detection problem.

2. Model
2.1. Specifications

In this paper we adopt a variant of State Transition Rules
(STR) [3] to formally describe services.

A service specification is defined as 6-tuple
(U,V,P,E, R, Sinit), where U is a set of constants
representing service users, V' is a set of variables, P is a set
of predicates, F is a set of events, R is a set of rules, and
Sinit 18 the (initial) state. Each rule » € R is in the form
r : pre—condition [event] post—condition.

A predicate is of the form p(x1,...,xzx) where p € P
and z; € V. Pre-condition consists of predicates or nega-
tions of predicates, or both, while Post-condition consists
of predicates only. An event is of the form e(xy, ..., zx),
wheree € Fand x; € V.

Figure 1 shows an example of a specification. This spec-
ification describes the Plain Old Telephone Service (POTS).
Additional communication features can be described by
modifying this specification (for example, adding rules or
predicate symbols). We assume that at the initial state, all
users are idle and no user subscribes to any service yet.

An STR specification specifies the state transition sys-
tem defined as follows. For r € R, let z1,...,2,
(x; € V) be variables appearing in r, and let § =
(x1lat, ..., xnlan) (a;i € U,a; # a;(i # j)) be a sub-
stitution replacing each z; in r with a,;. Then, an instance
of r based on 6 (denoted by r6) is defined as a rule obtained

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)
0-7695-1852-4/02 $17.00 © 2002 IEEE

U={A, B}
V={z,y}
P = {idle(x), dialtone(z), busytone(z), calling(z,y), path(z,y) }
E = {onhook(z), offhook(x), dial(z,y) }
R={
potsl : idle(z) [offhook(x)] dialtone(z).
pots2 : dialtone(z) [onhook(z)] idle(z).
pots3 : dialtone(z),idle(y) [dial(z,y)] calling(z,y).
potsd : dialtone(z), ~idle(y) [dial(z,y)] busytone(z).
pots5 : calling(x,y) [onhook(z)] idle(z), idle(y).
pots6 : calling(z,y) [offhook(y)] path(x,y), path(y, z).

potsT : path(z,y), path(y, z) [onhook(x)] idle(z), busytone(y).

pots8 : busytone(z) [onhook(z)] idle(x).
pots9 : dialtone(z) [dial(z, z)] busytone(x).

}
sinit = {idle(A),idle(B)}

Figure 1. Rule-based specification for POTS.

from r by applying 0 = (x1|a1,...,xn|ay) to r. We rep-
resent the event and the post-condition of an instance 76 of
arule as e[rf] and Post[rd], respectively. In addition, we
denote by Pre[rf] and Pre[rf] the set of predicates in the
pre-condition and the set of predicates whose negations are
in the pre-conditions. Hence the precondition of an instance
r0 of arule is Pre[rf] UU,c p, (0 {P}-

A state is defined as a set of instances of predicates
p(ai,...,ax)’s where p € P and a; € U. We think of
each state as representing those that hold in the state.

Let s be a state. We say that an instance of rule, 6, is
enabled for e[rf)] at s iff all instances in Pre[r6] hold and no
instances in Pre[rd] hold at s. The execution of the enabled
rule causes the next state s’ of s by deleting all instances in
Pre[r6] from s and adding all instances in Post[r] to s;
thatis, s’ = (s\ Pre[rf]) U Post[rd]. For each instance ¢ of

arule, we define a relation L, over states as follows: s % s
iff the execution of ¢ causes s’ from s. We also define a
computation as a sequence of states sgsj - - - sg. such that
foreach 0 <i <k, (i) s; BN S;+1 for some ¢, or (ii) no rule
is enabled at s; and s; = s;11. We think of the length of the
computation as k.

For example, suppose that r is pots4 in Figure 1, 6 =
(x| A,y|B), and s = {dialtone (A), dialtone(B)}. Then
Pre[rf] = {dialtone(A)}, Pre[rf] = {idle(B)}, Post[rf]
= {busytone(A)}, and r6 is enabled for event dial(A, B).
If subscriber A dials B, that is, this event happens, then
a state transition occurs, resulting in the next state s’ =
{busytone(A), dialtone(B)}.

2.2. Feature Interactions

In this paper, we focus primarily on detection of non-
determinism, which is one of the best known types of fea-
ture interactions [2, 5, 6]. Nondeterminism refers to a sit-
uation where an event can simultaneously activate two or
more functionalities of different services, and as a result, it

cannot be determined exactly which functionality should be
activated.

In the model, nondeterminism occurs iff the system can
reach a state where different rules are simultaneously en-
abled for the same event. That is, nondeterminism occurs at
a state s iff there are two enabled instances ¢, ¢’ of rules in
s such that e[t] = e[t']. Thus detecting this type of feature
interaction requires to check the reachability to any of the
nondeterministic states from the initial state s;,,;¢.

3. Bounded Model Checking

3.1. Symbolic Representation

To apply bounded model checking to service specifica-
tions, it is necessary to encode the state space and the transi-
tion relation by Boolean functions. Let P = {p1,- -, pm }
be the set of all instances of predicates and let 7 =

{t1,---,t,} be the set of all instances of rules (m = |P|
and n = |7T]). A state s can then be viewed as a Boolean
vector s = (by, - - -, by,) such that b; = true iff an instance

p; of a predicate holds in that state.

Any set of states can be represented as a Boolean func-
tion such that f(s) = true iff s is in the set. We say that f
is the characteristic function of the state set.

For example, the characteristic function E;(s) of the set
of states where ¢t € 7 is enabled is

Et(s) = /\piEPT‘E[t] bi A /\pielsre[t] ~bi.

Any relation over states can be similarly encoded since

they are simply sets of tuples. For example, the relation 4
is represented as Boolean function T3 (s, s’) as follows.

Et(s) A /\piePost[t]\Pre[t] b; A /\p,;ePre[t]\Post[t] _‘b;
/
A /\p,; €(P\(Pre[t]JUPost[t]))U(Pre[t)NPost[t]) (bi A bz‘)'

where s’ = (lla o 'abin)'

3.2. Existing Scheme

Let G be the set of states whose reachability is to be
decided and let f¢(S) be the characteristic function for G.
Although there are some variations [7], the basic formula
used for checking reachability in bounded model checking
is:

I(s9) ANT(s0,81) AT (s1,82) - ANT(Sk—1, Sk)
Afa(so) V-V fa(sk))

where I(S) is the characteristic function of the set of the
initial states, and T'(s, s’) = true iff (i) s’ is reachable from
s in one step or (ii) s has no next states and s = s'.

Clearly, I(so)AT (so, $1)AT (81, 82) - -AT(8k—1, Sk) =
true iff sg, s1, - - -, Sx 1S a computation from an initial state.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)
0-7695-1852-4/02 $17.00 © 2002 IEEE

Hence the above formula is satisfiable iff there is a state
that is in G and reachable from one of the initial states in at
most k steps. By checking the satisfiability of the formula,
therefore, the verification can be carried out.

Since we assume that exactly one rule is executed at a
time, T'(s, s) will be

T, (s, 8)V - VT (s,8)

V((Ap,ep bi = b)) A=E(s) A=+ A =By, (5))

It should be noted that this formula would be very large
in size. This becomes a major obstacle to applying bounded
model checking to feature interaction detection, because
usually the running time of a SAT procedure critically de-
pends on the size of the input formula in textual form.

3.3. Proposed Encoding

Our proposed scheme alleviates the above problem with
a new encoding. Let di(s,s’) = Ti(s,8") V A\, cp(bi <
b;). Then dy(s, s’) is

((Ap,eprefty bi N Ny, eprepy ~0i
A /\p7 €Post[t]\ Pre[t] b/L A /\piEPre[t]\Post[t] _‘b/L)
V Apie(Prefjupostit\(Pretjnpostit]) (0i < b5))
pi €(P\(Pre[t)UPost[t]))U(Pre[t)NPost[t]) (b < b;)

It is easy to see that d;(S,S") = true iff S L 8 or
S = S’. In other words, d;(S, ") differs from T3(S, S")
only in that d;(S, S") evaluates to true also when S = 5’.
Using this property, a step (or more) can be represented by
a conjunction of d;. Note that this is contrast to the tradi-
tional encoding, where a disjunction of T3(S, S’) is used to
represent one step. Specifically, our proposed scheme uses
the following formula ¢ for the verification.

I(s0)
Ndy, (50, 81) Ndiy(51,82) A=+ ANdy, (Sn—1, 5n)
/\dt1 (S'IL7 5n+1) A dt2(87l+17 5n+2) JARERIAN dtn(52n—1a 52n)

Ndy, (S(k—l)*m S(k—l)*n-H) ARRENA dtn(sk*n—la Sk*n)
/\fG(Sk*n)

If the formula ¢ is satisfiable, then we can conclude that
there is a state in G that can be reached in at most k * n
steps, because ¢ evaluates to true iff (i) sg = s;n4t, (i) for
any 0 <i<kxn,s; 4 Si+1 forsome t € T or s; = S;41,
and (iii) sg«n € G. Therefore sy..,, which belongs to G, is
reachable from s;,;; in at most k * n steps. An important
observation here is that the method may be able to find a
state in (G that requires more than & transition executions to
reach.

More importantly, ¢ can be converted into a much suc-
cinct formula that is not logically equivalent but has the

same satisfiability. Let s; = (b14,b24,-,bmq). The
key is that all variables that correspond to the predicates
in P\ (Pre[t] U Post[t]) orin Pre[t] N Post[t] can be omit-
ted by substituting an earlier version of the variable (that is,
b; ;- for some j' < j) for it.

More specifically, for each di(s;,s;+1) in ¢, term
(bi; < bij+1) can be omitted for all p; € (P\(Pre[t] U
Postlt])) U (Pre[t] N Post[t]) by quantifying b; ;11 away.
That is, d; in ¢ can be replaced with

(/\pv:EPre[t] bi A /\pieﬁre[t] —b;

/
A /\piePost[t]\Pre[t] b/L A /\piePre[t]\Post[t] _‘E)L)
v /\pi6(Pre[t]UPost[t])\(Pre[t]ﬂPost[t]) (bl A bL)

by appropriately replacing some variables. For exam-
ple, when ¢ is the instance of the rule pots4 in Fig-
ure 1 with substitution (x,y) = (A, B), the above for-
mula will be (dialtone(A) A —idle(B) A busytone(A)" A
—dialtone(A)") V ((dialtone(A) < dialtone(A)') A
(busytone(A) « busytone(A)')).

3.4. Representing Nondeterministic States

The remaining problem is to represent states where non-
determinism occurs by Boolean function f(s). When two
rules, r1 and 72, triggered by the same event e are given,
the set of states where they are enabled simultaneously is
represented by

V{91,92}:e[r191]=e[r292] Er101 A Eraga

Thus the characteristic function for the set of all states
where nondeterminism occurs is

V{rl,r2}:r1,r2€R \/{91,92}:5[7"191]:5[7"292] Er101 A Eraga

Although we limit our discussion to detecting nondeter-
minism in this paper, other types of interactions, for exam-
ple, deadlock or violation of invariant properties, can also
be detected by the proposed method by setting f(s) ap-
propriately.

4. Experimental Results

In order to evaluate the effectiveness of the proposed
method, we conducted experimental evaluation for practi-
cal services. The experiments were performed on a Linux
workstation with a 500 MHz Pentium III processor. The
number of users was assumed to be four. ZChaff was used
as a SAT solver.

We selected the following seven services (features) to
consider: Call Forwarding (CF), Originating Call Screening
(OCS), Terminating Call Screening (TCS), Denied Origina-
tion (DO), Denied Termination (DT), and Direct Connect
(DCO).

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)
0-7695-1852-4/02 $17.00 © 2002 IEEE

Table 1. Performance of feature interaction
detection.

k=11] k=2 | SVAL | length
CF+DT 1.8 - 2.7 5
CF+0CS 0.5 0.5 10.7 13
CF+TCS 1.8 - 9.0 5
DC+DO 0.2 - 0.2 2
DT+OCS 0.2 - 0.1 3
DT+TCS 0.1 - 0.1 2
OCS+TCS | 0.1 - 0.1 2

It has been known that out of a total of the 15 pairs of the
six services, seven pairs cause nondeterminism [6]. Since
the proposed method in itself cannot prove the absence of
feature interaction, we evaluated the performance of the de-
tection method for these combinations only.

Table 1 shows the running time, in seconds, required to
detect nondeterministic states in these specifications. In all
cases except the CF+OCS case, feature interaction was de-
tected when & = 1. For the CF+OCS case, a nondetermin-
istic state was detected when k£ = 2. The figures written in
the k = 1 and k = 2 columns are the times required for the
SAT solver to decide satisfiability.

For comparison purposes, we also measured the perfor-
mance of SVAL, a tool which we had developed [6]. The
SVAL tool does not use SAT; it employs explicit state enu-
meration with symmetry and partial order state reduction
techniques. The column ‘SVAL’ shows the time required
for this tool to find the first nondeterministic state for each
case. The column ‘length’ shows the length of the compu-
tation to this nondeterministic state, that is, the length of
the shortest counterexample showing that the specification
is not interaction-free. It should be noted that this length co-
incides with the value of & that would be needed for detec-
tion if the existing bounded model checking scheme were
used.

As can be seen in Table 1, the proposed method and
SVAL exhibited similar performance for four cases, namely,
DC+DO, DT+OCS, DT+TCS, and OCS+TCS. The com-
mon characteristic of these cases is that nondeterminism
occurs at a state that is very close to the initial state. In
these cases, therefore, it is possible to detect interaction by
exploring a small number of states, thus resulting in very
small detection time of SVAL.

On the other hand, for the remaining three cases (that
is, CF+DT, CF+OCS, and CF+TCS), computations of rel-
atively large length have to be examined to conclude the
existence of nondeterministic states. For these cases, the
proposed method outperformed the previous method, by ef-
ficiently exploring the large state space with symbolic rep-

resentation.

5. Conclusions

In this paper, we proposed to use bounded model check-
ing to detect feature interactions in telecommunication ser-
vices. We developed a new encoding scheme that is tai-
lored to this purpose and, by applying it to practical ser-
vices, demonstrated its effectiveness.

Acknowledgments

The authors wish to thank Mr. Takayuki Hamada and Mr.
Kazuhiro Kishigami for their technical supports. This work
was in part supported by Grant-in-Aid from the Ministry
of Education, Culture, Sports, Science and Technology of
Japan (No. 13224060 and No. 14019055).

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Proceedings of Tools
and Algorithms for the Analysis and Construction of Systems
(TACAS’99), number 1579 in LNCS, pages 193-207, 1999.

[2] A. Gammelgaard and E. J. Kristensen. Interaction detection, a
logical approach. In Proceedings of Second Workshop on Fea-
ture Interactions in Telecommunications Systems, pages 178—
196, 1994.

[3] Y. Hirakawa and T. Takenaka. Telecommunication service de-
scription using state transition rules. In Proceedings of IEEE
Int’l Workshop on Software Specification and Design, pages
140-147, October 1991.

[4] D. O. Keck and P. J. Kuehn. The feature and service interac-
tion problem in telecommunications systems: A survey. [EEE
Transactions on Software Engineering, 24(10):779-796, Oc-
tober 1998.

[5] A.Khoumsi. Detection and resolution of interactions between
services of telephone networks. In Proceedings of Fourth
Workshop on Feature Interactions in Telecommunications Sys-
tems, pages 78-92, 1997.

[6] M. Nakamura and T. Kikuno. Feature interaction detection
using permutation symmetry. In Proc. of Fifth Int’l. Workshop
on Feature Interactions in Telecommunication Networks and
Distributed Systems (FIW’98), pages 193-207, 1998.

[71 M. Sheeran, S. Singh, and G. Stdlmarck. Checking safety
properties using induction and a SAT-solver. In Proc. of Inter-
national Conference on Formal Methods in Computer-Aided
Design (FMCAD 2000), LNCS 1954, pages 108-125, 2000.

[8] T. Tsuchiya and T. Kikuno. A SAT-based model checking
method for asynchronous concurrent systems. /EICE Techni-
cal Report, 2002 (to appear).

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)
0-7695-1852-4/02 $17.00 © 2002 IEEE

