
Adopting Model-Driven Development for Integrated Services and Appliances in
Home Network Systems

Hiroshi Igaki1, Masahide Nakamura2, Ken-ichi Matsumoto2, Mikio Aoyama1

1Department of Information and Telecommunication Engineering,
Nanzan University, 27 Seirei, Seto 489-0863, Japan

igaki@nanzan-u.ac.jp, mikio.aoyama@nifty.com
2Graduate School of Information Science, Nara Institute of Science and Technology, Japan

{masa-n, matumoto}@is.naist.ac.jp

Abstract

The technology of a home network system (HNS) allows
integration of several kinds of home appliances to provide
a user with value-added integrated services. Development
of the integrated HNS services requires implementation of
the appliance components (with APIs) and the services, ac-
cording to each home-network environment. There are var-
ious implementation standards such as DLNA, ECHONET,
OSGi and Jini for the HNS applications. Therefore, even if
a developer can choose the optimal one, it’s very difficult
to develop the integrated services by composing a new HNS
implementation. In this paper, we propose a model-driven
development of integrated HNS service applications. In
our former manuscript, platform-independent design lan-
guage for verifying HNS service scenarios was proposed.
Our model-driven development method uses this design lan-
guage as a meta-model of integrated HNS services. By
model transformation to concrete implementation together
with verification by SMV(Symbolic Model Checking), pro-
ductivity and quality of this kind of HNS applications are
improved.

1 Introduction

A home network system (HNS) is an emerging domain
of ubiquitous applications that intends to provide users with
smart and convenient home services [12][18]. A HNS con-
sists of multiple networked appliances. The appliances in-
clude general household appliances and sensors, such as
TVs, DVDs, ventilators, air-conditioners, thermometers,
which are connected to LANs at home. Each appliance usu-
ally exhibits a set of device control interfaces (i.e, APIs) to
the network, by which the users or external software agents
can control the appliances via the network. Each appliance

Theater

API
API

API API

thermometer
(inside)thermometer

(outside)
air-conditioner

home
server

ventilator
PARTY
HVAC

API
00 00 0000 00 00

DVD

TV

API

Figure 1. An Example Home Network System

communicates with others through an underlying HNS pro-
tocol.

An advantage of HNS lies in integration of features of
multiple appliances via the network. For instance, integrat-
ing a thermometer, a ventilator and an air-conditioner would
implement energy-saving air-conditioning service, typically
called an HVAC service as illustrated in Figure 1. Similarly,
orchestrating a TV, a DVD player, speakers, lights and cur-
tains would implement Theater services, where a user can
watch movies in a theater-like atmosphere through a single
point of operations. Thus, integration of appliances real-
izes various value-added services [14][15]. We call such
services integrated HNS services.

Multiple implementation platforms are currently being
proposed to develop such HNS applications [9], such as
DLNA [3], HAVi [7], ECHONET [4], Jini [10], OSGi [17],
and X-10 [22]. Developers need to choose the optimal com-
bination of HNS implementation standards for each HNS
application. Such complexity on heterogeneous platform
erodes quality and productivity of application development.
Especially, in integrated HNS service, service quality, relia-

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

bility, and maintainability are critical subjects, because this
kinds of applications are closely related to a user’s everyday
life.

Software quality, such as portability, maintainability and
reliability are usually guaranteed only in a specific platform,
since HNS applications are usually developed based on a
single implementation platform, conventionally. As a re-
sult, several problems, such as quality deterioration and in-
crease of development cost, may be caused by the complex-
ity of multiplatform environment.

Therefore, in the domain of HNS applications, the mech-
anism, which does not depend on a specific platform, of ver-
ifying the service quality and reliability, is important. De-
velopment framework which supports various implementa-
tion protocol and generation of actual implementation arti-
facts will greatly improve the quality and productivity of the
created HNS application.

In this article, we propose MDD(Model-Driven De-
velopment) framework to support verifying platform-
independent model of integrated services with
SMV(Symbolic Model Verifier), and to generate ac-
tual implementation artifacts semi-automatically. Our
MDD framework adopts an application architecture [8]
which can integrate multiple HNS standards together.
This architecture provides abstraction and encapsulation
of appliance features in service component layer. The
exhibited features can be accessed with common interface
from external. The combination of the features is published
as an integrated service.

In our MDD framework, we apply rule-based trans-
formation to platform-independent model to appliance
components and integrated services. In an appli-
ance component, since a skeleton independent of de-
vice/middleware is directly generated, developers imple-
ment only device/middleware-specific parts. In an inte-
grated service, since the whole of implementation artifacts
are generated automatically. It becomes possible to develop
high-quality integrated HNS services at low-cost by com-
bining verification process and code generation process.

We actually implemented a HVAC service with our
MDD framework. System model which defines appliances
and home environment in HNS, is transformed to a program
skeleton of each appliance component for Java Web ser-
vices. Service model which presents concrete scenarios for
integrated services, is transformed to an integrated service
implementation for Perl script. We show a part of generated
source codes in Section 4.

In Section 2, we state about the application framework
which can use several HNS standards, and integrated HNS
service models which does not depend on any platform and
can be verified and model checked by SMV. In Section 3,
our MDD framework and transformation rules from service
and system models to actual implementations are denoted.

In Section 4 and Section 5, we introduce actual development
about HVAC service. Service model and system model of
HVAC is inputted to our MDD framework, and outputted
actual implementation artifacts.

API API API API API API API API API

Service1 Service2 . . . Servicen

Device
Layer

Service
Component
Layer

Exported Methods

PARTY
Service

Theater
Service

HVAC
Service

Device-independent communication

Integrated
Service
Layer

00 00 0000 00 00

DLNAOSGiECHONET

Device-proprietary communication

Figure 2. Integrated HNS Service Application
Architecture

2 Integrated HNS Service

As shown in Section 1, there exists various middleware
implementation standards for HNS application. In [8], we
proposed a new HNS application architecture for integrated
service illustrated in Figure 2. In this architecture, the ser-
vice component layer aggregates the features of the appli-
ances as a set of services, and exports the services to the
network with exported methods. Such self-contained and
abstracted appliance features can be accessed from external
in a device-independent manner without considering plat-
form complexity.

Moreover, in [11], we established platform-independent
models verifiable with SMV(Symbolic Model Verifier
[13][20]) for integrated HNS services. HNS applications
need to be verified carefully because they are related to our
daly-life (For instance, wrong invocation of appliance fea-
ture whose power supply should be turned on beforehand).
Such wrong integrated service in HNS may exert danger on
a user. So it is important to verify integrated HNS service.

In the following Section 2.1, we state about some im-
portant definition to express integrated HNS service model.
The full specification is found in [11]

2.1 Model of Integrated HNS Services

Our integrated HNS service model consists of a system
model and a service model. Figure 3 is an example of the
system model which denotes a part of constitution of the

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

SYSTEM my_home {

TYPEDEF
tPower {ON,OFF};# power

for all appliances
tAC_Temp {18..28};# for

AirConditioner
tAC_Mode {COOLING,FAN};
tTemp {15..40};#

Temperature

ENVIRONEMT env {
Environment around the room

PROPERTY
tTemp Temp_in;
tTemp Temp_out;

}
APPLIANCE AirConditioner {

PROPERTY
tPower power:=OFF;
tAC_Temp tempSetting := 24;
#Temperature Setting for

air conditioner
tAC_Mode modeSetting :=

COOLING;
#Mode Setting for air

conditioner
METHOD
void ON() {
PRE true;
POST power=ON;}

void OFF() {
PRE true;
POST power=OFF; }

void setTemperature(tAC_Temp temp) {
PRE power=ON;
POST tempSetting=temp;
ENV_W env.Temp_in;}

void setMode(tAC_Mode mode) {
PRE power =ON;
POST modeSetting = mode;
ENV_W env.Temp_in;}

}
APPLIANCE Thermometer_inside {

PROPERTY
tPower power:=OFF;
tTemp currentTemp;

METHOD
void ON() {
PRE true;
POST power=ON;}

void OFF() {
PRE true;
POST power=OFF;}

tTemperature measureTemp() {
PRE power=ON
POST currentTemp=env.Temp_in;
ENV_R env.Temp_in;
RETURN currentTemp;}

}
}

Figure 3. Example of System Model Descrip-
tion

HVAC service stated in Section 1. Like this, the system
model defines HNS constitution of arranged appliances and
home environment.

The TYPEDEF section declares types commonly used in
the system. The proposed language supports three types:
Boolean (i.e., {true,false}), integer, or enumeration. An
integer type is specified by the range between upper and
lower bounds, e.g., {18..28}. An enumeration type is de-
fined by enumerating concrete elements, e.g., {ON,OFF}.

The ENVIRONMENT section defines an environment ob-
ject. In our HNS model, the environment consists of only
environment properties. In Figure 3, tTemp Temp in ex-
press the variable for temperature inside the home and its
type.

All appliances deployed in the HNS are declared in mul-
tiple APPLIANCE sections (blocks), each of which defines
an appliance object. An APPLIANCE block comprises of
definitions of properties and methods of the appliance. The
appliance properties are specified in the same way as in
the ENVIRONMENT section. Each method is described in a
METHOD subsection.

In the case of setTemperature method of AirCon-
ditioner, return value is void and argument is temp (its
type is tAC Temp). Each method has PRE, POST, ENV R,

ENV W, RETURN as its attributes. setTemperature

method requires that power property value is ’ON’ be-
fore its execution. This attribute is defined as PRE (pre
condition). POST (post condition) describes property
name and its value which changes after method execu-
tion. Namely, invocation of setTemperature changes

DEPLOYED_SYSTEM my_home;

SERVICE HVAC(tAC_Temp user_temp){

VAR
tTemperature Ti_temp,To_temp;
#Local variable

APPLIANCE
AirConditioner,

Themometer_inside,
Thermometer_outside, Ventilation;

CONTENT
WHILE (END()=0) {# For

repeatedly

running
Thermometer_inside.ON();
Thermometer_outside.ON();
Ti_temp :=

Thermometer_inside.measureTemp();
To_temp :=

Thermometer_outside.measureTemp();
AirConditioner.ON();

AirConditioner.setTemperature(user_
temp)

WHILE (Ti_temp > user_temp) {

AirConditioner.setMode('COOLING');
IF (Ti_temp > To_temp) {
WHILE (Ti_temp > To_temp)

{
Ventilation.ON() ;
Ti_temp :=

Thermometer_inside.measureTemp();
To_temp :=

Thermometer_outside.measureTemp();
}
Ventilation.OFF() ;

}
}

AirConditioner.setMode('FAN');
}
Thermometer_inside.OFF();
Thermometer_outside.OFF();
AirConditioner.OFF();

}

Figure 4. Example of Integrated HNS Service
Model Description

value of tempSetting to value of temp (argument of
setTemperature). ENV R shows environment properties
monitored by a sensor device (in the case of Thermome-
ter inside, measureTemp method monitors Temp in in en-
vironment property). On the contrary, ENV W shows en-
vironment properties affected by appliance method. The
method of setTemperature affects Temp in. RETURN

specifies the value to be returned, which can be specified
by a property or an expression (e.g., currentTemp (This
property is defined as an appliance property)).

Figure 4 illustrates a service model example of the
HVAC service. In this example, HVAC service has an ar-
gument user temp (the type is tAC Temp). In VAR section
and APPLIANCE section, variables and appliances used in
the service are declared. In CONTENT section, actual inte-
grated service statements are shown. Basically, the state-
ments are sequentially executed one-by-one from top to bot-
tom, as in the ordinary procedural programming language.

end() and exit() are pseudo functions. end() returns
true (1) when the user terminates the service (e.g., with a
termination signal from the user agent). exit() models
a system call by which the system terminates the service.
These allow the developer to specify explicitly when or by
whom the service is terminated.

These system and service model can be translating
into the well-known SMV language. Once translated,
the SMV tool automatically and exhaustively verifies
the integrated service against any properties specified in
CTL(Computational Tree Logic). Thus, we can effectively
detect design flaws in integrated services.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

2.2 Application Development of Inte-
grated HNS Services

As we stated in the beginning of this section, we pro-
posed an application architecture and models. Our applica-
tion architecture makes it possible to use together the appli-
ances implemented by various standards. Our models real-
ize integrated service verification at design level. However,
there is no relationship between models and implementa-
tion in integrated HNS services. So, it is not guaranteed
that a HNS application is exactly developed according to
the models.

In order to implement the artifacts with a validated
model, it is important to support application development
by a development framework such as code generation.
Moreover, it is expected that this kind of support is effective
in the field of the appliance component in which the feature
of the same specification is implemented by multiple appli-
ances in many cases. For example, the method of ON/OFF
is implemented by various kinds of appliance. Such com-
mon feature specifications are often used by same kinds of
appliance.

Implementation of integrated services needs to be up-
dated corresponding to variation of appliances and meth-
ods. So, the more complicated service scenarios become,
the more deteriorated their quality, such as maintainability
and reusability, is.

To improve these problems, we adopt MDD method for
integrated HNS service development.

3 Model-Driven Development of Integrated
HNS Services

Model-Driven Development (MDD) is a promising ap-
proach to address platform complexity and express domain
concepts effectively [19]. MDD combines the following
two technologies:

(1) DSML(Domain Specific Modeling Languages):
whose type systems formalize the application struc-
ture, behavior, and requirements within particular
domains.

(2) Transformation Engines and Generators: analyze cer-
tain aspects of models and then synthesize various
types of artifacts, such as service interface, simulation
inputs etc.

MDA [2], Software Factories [6], and MCSD [21] are rep-
resentative MDD technologies which generate implementa-
tion artifacts from models.

In this article, we propose MDD framework for inte-
grated HNS services.

SMV programSMV program
Generator

SMV

Integrated
Service
Verification
Process

System ModelService Model

Validated
Service Model

Integrated
Service

Generator

Service
Component
Generator

Service1 Service2
. . . Servicen

PARTY
Service

Theater
Service

HVAC
Service

Service Component Layer

Integrated
Service

Layer

Integrated
Service
Composition
Process

Figure 5. Model-Driven Development Process
for Integrated HNS Services

3.1 Key Idea

Figure 5 illustrates a process model of the proposed
MDD(Model-Driven Development) framework for inte-
grated HNS services. The system model defines home en-
vironment and exhibited features of appliance in HNS. Ser-
vice model shows the scenarios of integrated HNS services.
These models are input to the MDD framework. Our frame-
work consists of integrated service verification process and
integrated service composition process. In verification pro-
cess, SMV program generator transforms a service model
and a system model to SMV program and SMV checks its
program [11]. If behavioral anomalies of the models are
discovered by model checking, the developer corrects the
bugs and re-verifies them with SMV, and finally gets the
validated service model.

Next process is an integrated service composition pro-
cess. In the composition process, service component gener-
ator generates service components from the system model,
integrated service generator generates integrate service im-
plementations from the validated service model and the sys-
tem model.

We use Java Web services for implementation of ser-
vice components, and Perl script for composing services.
In the following section we define transformation rules for
integrated service composition process. As shown in Sec-
tion 2.1, system model and service model are platform-
independent and are defined as a set of arbitrary con-
structs. Implementation artifacts(called ARTIFACTS)
such as service components and integrated services, are

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

APPLIANCE appliance_name1 {
PROPERTY

type_name1 app_property1 [:=init_val];
type_name2 app_property2 [:=init_val];
:

METHOD
:

}

public class applianceName1Status {
private T(type_name1) appProperty1 [=init_val];
private T(type_name2) appProperty2 [=init_val];

:
/* Getters / Setters (i=1,2,…) */
public T(type_namei) getAppPropertyi () {

return appPropertyi;
}
public void setAppProperty (..){
}
:

}

Figure 6. Transformation Rules from PROPERTY Section into a Status Java Bean

APPLIANCE appliance_name1 {
PROPERTY

:
METHOD

return_type method1 ([type_name
formal_param]*) {

PRE formula1;
POST formula2;
ENVR
ENVW
RETURN return_val;

}
return_type method2 () {

:
}

:
}

public class applianceName1 {
private applianceName1Status

status = new applianceName1Status();

public T(return_type) method1 ([T(type_name)
formal_param]*) throws Exception {

assert F(formula1): ;
/* Device Method Invocation */
assert F(formula2);
return F(return_val);

}
:

}

Conversion rule F
F(&) = ‘&&’, F(|) = ‘||’ , F(=) = ‘==‘, F(op) = op (other than & |, or =)
F(property1) = status.getProperty1();
F(property2) = status.getProperty2();

Figure 7. Transformation Rules from METHOD Section into an Appliance Class with Methods

generated from this PIM (Platform Independent Model).
Moreover, if ARTIFACTS is a set of arbitrary con-
structs in the implementation artifacts, the transformation
to ARTIFACTS from PIM is defined as a map M :
PIM− > ARTIFACTS. Henceforth, each transforma-
tion rule which constitutes the map M is explained.

In Section 3.2, transformation rules to service com-
ponents (Java Web services) from the system model are
shown. In Section 3.3, transformation rules to integrated
service (Perl script) from the validated service model and
the system model are shown.

3.2 Transformation Rules from System
Model to Service Component

Service component generator generates service compo-
nent implementation with Java Web services, from system
model. Table 1 shows transformation rules T for type def-
inition of property used in HNS. Type transformation rules
T transform three type definitions: Boolean, int, enumera-
tion to three type definition in int. Boolean is transformed

Table 1. Property Type Transformation Rules

Int /* ordered integer number from
zero */

TYPEDEF
type_name3{enumerating

concrete elements}

intTYPEDEF
type_names{upper..lower}

Int /* true=1, false=0 */TYPEDEF

type_name1{true, false}
Type
Transformation

T

Implementation Artifacts

(Java Web Services)

HNS Description

(system and service model)

Int /* ordered integer number from
zero */

TYPEDEF
type_name3{enumerating

concrete elements}

intTYPEDEF
type_names{upper..lower}

Int /* true=1, false=0 */TYPEDEF

type_name1{true, false}
Type
Transformation

T

Implementation Artifacts

(Java Web Services)

HNS Description

(system and service model)

to {true=1, false=0}. In enumeration type, its enumerating
concrete elements are transformed to ordered integer value
from zero (for example, {COOLING, FAN} is {0,1}).

Figure 6 and Figure 7 are transformation rules for prop-
erty and method of appliances, respectively. In a system
model, an appliance consists of a set of properties and a set
of methods. A set of properties are transformed to appli-
ance status Java bean, and a set of methods are transformed
to the methods of the appliance class to invoke the corre-
sponding status Java bean. The status java bean have prop-

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

DEPLOYED_SYSTEM HNS_name;
SERVICE service_name1([type_name formal_param]*){

Local variable declaration
VAR type_name local_var1 [:=initial_value];

type_name local_var2 [:=initial_value];
:
Appliance declaration
APPLIANCE appliance1, appliance2,..;

CONTENT # service content
statement1;
statement2;
:

}

#!usr/bin/perl
use SOAP::Lite;
use strict;

#Service instantiation
my $appliance1Service = SOAP::Lite ->
service("http://anyserver/appliance1Service/services/
appliance1Service?wsdl");
my $appliance2Service = SOAP::Lite ->
service("http://anyserver/appliance2Service/services/
appliance2Service?wsdl");
:

my $formal_param = shift @ARGV; #service argument
$SIG{'INT'} = 'set_end_flag';#for pseudo function end()
my $end = 0;
:
sub set_end_flag {#for pseudo function end()

$end = 1;
}

Figure 8. Transformation Rules for Instantiation of Integrated HNS Service Scenario

erty declaration and initialization denoted by the section of
APPLIANCE and PROPERTY in the system model. And Get-
ter/Setter methods for accessing the properties are declared.

In the appliance class, instantiation of the corresponding
status Java bean and the method declaration defined by the
METHOD in the APPLIANCE section are denoted. Argument
and return type and value of the method are written, and
PRE/POST attributes are inserted in the method as a set of
pre-condition and post-condition of assertion. As you see
in the Figure 7, the appliance class is transformed to the
skeleton of appliance component from the models. Devel-
oper can implement the appliance component only coding
device-dependent part in the method.

3.3 Transformation Rules from Service
Model to Integrated Service

Integrated Service Generator generates integrated ser-
vice implementation in Perl script from the validated ser-
vice model and the system model. In Figure 8, instantiation
part of the integrated service implementation is shown. In
the Perl script for Web services integration requires to in-
clude SOAP::Lite module and instantiation of WSDL for
each service component. Then, arguments of the integrated
service (formal param), and procedure for pseudo func-
tion end() are declared. These declarations express the
section of VAR in the SERVICE and APPLIANCE section.
CONTENCT section is transformed by statement transforma-
tion rules S (in Table 2).

4 Case Study

As a case study, we developed HVAC service. The de-
tailed HVAC service is as follows.

Table 2. Statement Transformation Rules

&&&

|||

===

=:=

$endend()

sameOther statement

exitexit()

appliance1Service->method1([arg_list]*)Appliance1.method1([arg_list]*)

Statement
Transformation

S

Implementation Artifacts(Perl Script)HNS Integration Service
Description

&&&

|||

===

=:=

$endend()

sameOther statement

exitexit()

appliance1Service->method1([arg_list]*)Appliance1.method1([arg_list]*)

Statement
Transformation

S

Implementation Artifacts(Perl Script)HNS Integration Service
Description

HVAC Service : HVAC serves energy-saving air-
conditioning service to keep a room at the set tempera-
ture. For the simplicity the discussion here, we focus on
its cooling function. If the room is warmer than the set tem-
perature, the HVAC service turns the air-conditioner to the
cooling mode. To efficiently cool down the room, if the
room temperature is warmer than the outside, the ventila-
tor is also turned on to provide fresh outside air. In this
case the ventilator will keep working until the room tem-
perature reaches the outside temperature. If the room tem-
perature is below the set temperature, on the other hand,
HVAC turns the air-conditioner to the fan mode. This ser-
vice requires four appliances: AirConditioner, Thermome-
ter inside, Thermometer outside, and Ventilation.

A part of system model is shown in Figure 3. In Figure
4, service model of HVAC service is defined. Device itself
is realized virtually as software functions.

Development environments are as follows.

• Apache Tomcat 5.5.17

• JDK 5.0 Update 7

• Apache Axis 1.4

• Active perl 5.8.8 (with SOAP::Lite and strict module)

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

import java.io.*;
public class AirConditioner{
private AirConditionerStatus status = new AirConditionerStatus();

public void ON() throws Exception{
/*DEVICE_METHOD_INVOCATION*/
assert status.getPower()==0 : status.getPower();

}
public void OFF() throws Exception{

/*DEVICE_METHOD_INVOCATION*/
assert status.getPower()==1 : status.getPower();

}
public void setTemperature(int temp) throws Exception{

assert status.getPower()==0 : status.getPower();
/*DEVICE_METHOD_INVOCATION*/
assert status.getTempSetting()==temp :

status.getTempSetting();
}
public void setMode(int mode) throws Exception{

assert status.getPower()==0 : status.getPower();
/*DEVICE_METHOD_INVOCATION*/
assert status.getModeSetting()==mode :

status.getModeSetting();
}

}

Figure 9. AirConditionerClass

Figure 9 and Figure 10 are AirConditioner class and Air-
ConditionerStatus Java bean generated by the service com-
ponent generator, respectively. Interface of the AirCondi-
tioner class is exhibited as Web services. In this develop-
ment, we coded only virtual appliance procedure in the gen-
erated program skeleton. Table 3 shows LOC of developed
each artifact. LOC of generated code means size of the code
generated automatically. LOC of added code means size
of the code added by us to implement device-independent
parts. Moreover, the whole of integrated service implemen-
tation (HVAC.pl) for HVAC service was generated automat-
ically. We confirmed that these implementation artifacts
perform HVAC service.

5 Discussion

As shown in Section 4, the proposed MDD framework
realizes the following processes.

1. Platform-independent service and system models are
verified to create a validated service model by SMV.

Table 3. LOC of Developed Appliance Com-
ponents and Integrated Service

Integrated service
script

Appliance classes
and status java
beans

018ThermometerOutsideStatus.java

36

15

18

15

11

11

25

19

LOC of

generated code

6ThermometerOutside.java

0ThermometerInsideStatus.java

6ThermometerInside.java

0VentilationStatus.java

4Ventilation.java

0HVAC.pl

0AirConditionerStatus.java

8AirConditioner.java

LOC of

added code

Name of generated artifacts

Integrated service
script

Appliance classes
and status java
beans

018ThermometerOutsideStatus.java

36

15

18

15

11

11

25

19

LOC of

generated code

6ThermometerOutside.java

0ThermometerInsideStatus.java

6ThermometerInside.java

0VentilationStatus.java

4Ventilation.java

0HVAC.pl

0AirConditionerStatus.java

8AirConditioner.java

LOC of

added code

Name of generated artifacts

import java.io.*;
public class AirConditionerStatus{

private int power=1;/*tPower{ON=0,OFF=1}*/
private int tempSetting=24;
private int modeSetting=0;/*tAC_Mode{COOLING=0,FAN=1}*/

/*Getter/Setter methods*/
public int getPower(){

return power;
}
public void setPower(int power){

this.power = power;
}
public int getTempSetting(){

return tempSetting;
}
public void setTempSetting(int tempSetting){

this.tempSetting = tempSetting;
}
public int getModeSetting(){

return modeSetting;
}
public void setModeSetting(int modeSetting){

this.modeSetting = modeSetting;
}

}

Figure 10. AirConditionerStatus Java Bean

2. Appliance component skeletons of Java Web service
are generated from the system model.

3. The whole of integrated service implementation (Perl
script) is generated from the validated service model
and the system model.

Verification process and composition process enables de-
velopers to make more reliable and safe integrated HNS
services. Program skeleton of the appliance component
realizes separation of exhibited interface to network and
device/middleware-dependent procedure. So, developers
code only device/middleware-dependent parts. Moreover,
in the program skeleton, assertion is inserted for evalua-
tion of PRE/POST attribute in the exhibited method. These
assertion statements enable the developers to test the appli-
ance component program [5]. As a result, these develop-
ment support capabilities in our MDD framework are ex-
pected enhance productivity and quality of integrated HNS
services in various development environment such as multi-
platform.

In conventional research, several MDDs for Web ser-
vices are proposed [1], [16]. These researches real-
izes transformation from standardized modeling language
such UML or proprietary models to Web services imple-
mentation. However, these researches lack separation of
concerns between exhibited interfaces of appliance and
device/middleware-dependent procedure, and verification
the services.

In the domain of verification in HNS application, DLNA
[3] uses CTT(Conformance Test Tool for networked appli-
ance) to verify fixed integrated services thoroughly. How-
ever, new flexible services can not be verified and develop-
ers are not supported.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

6 Conclusion

This paper presents a MDD framework for integrated
HNS services. In the domain of HNS application, safety,
reliability, portability and maintainability are important fac-
tor, because HNS applications are closely involving our
daily life. So our framework enables developers to verify
the services and generate implementation artifacts. Gen-
erated artifacts use our proposed application architecture
which can use multiple HNS platform together, based on
Web service. As a result, developers can create reliable and
safe integrated services at low-cost.

We are planning to create more various generation rules
corresponding to more practical HNS applications creation.

Acknowledgments

This research was partially supported by: the Japan Min-
istry of Education, Science, Sports, and Culture, Grant-in-
Aid for Young Scientists (B) (No.18700062) and Grant-in-
Aid for Young Scientists(start up) (No.18800060), Grant-
in-Aid for 21st century COE Research (NAIST-IS, Ubiq-
uitous Networked Media Computing), and Pache Research
Subsidy I-A-2,2006 of Nanzan University.

References

[1] K. Bäina, B. Benatallah, F. Casati, and F. Toumani,
“Model-Driven Web Service Development,” in Proc.
of CAiSE 2004, June, 2004, pp.290-306.

[2] A. W. Brown, J. Conallen, and D. Tropeano, Introduc-
tion: Models, Modeling, and Model-Driven Architec-
ture(MDA), in Model Driven Software Development,
Volume 2, Research and Practice in Software Engi-
neering, S. Beydeda, M. Book, and V. Gruhn, Eds.
New York, Springer-Verlag, 2005, pp.1-16.

[3] Digital Living Network Alliance,
http://www.dlna.org/

[4] ECHONET Consortium,
http://www.echonet.gr.jp/

[5] ECMA, Eiffel Analysis, Design, and Programming
Language, ECMA Standard 367, June 2005.

[6] J. Greenfield, K. Short, S. Cook, S. Kent, Software
Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools: John Wiley & Sons,
2004

[7] HAVi, http://www.havi.org/

[8] H. Igaki, M. Nakamura, and K. Matsumoto, “A
Service-Oriented Framework for Networked Appli-
ances to Achieve Appliance Interoperability and Evo-
lution in Home Network System,” in Proc. of Interna-
tional Workshop on Principles of Software Evolution
(IWPSE 2005), September 2005, pp.61-64.

[9] ITU-T Recommendation J.190, “Architecture of Me-
dia HomeNet that supports cable-based services,”
2002.

[10] Jini http://www.jini.org/

[11] P. Leelaprute, M. Nakamura, T. Tsuchiya, K. Mat-
sumoto, and T. Kikuno, “Describing and Verifying
Integrated Services of Home Network Systems,” In
Proc. of 12th Asia-Pacific Software Engineering Con-
ference (APSEC 2005), December 2005, pp.549-558.

[12] LG Electronics, “Home Network,”- http://www.
lge.com/products/homenetwork/homenet
work.jsp

[13] K. L. McMillan, Symbolic Model Checking, Kluwer
Academic Publishers, 1993.

[14] M. Nakamura, H. Igaki, H. Tamada and K. Mat-
sumoto, “Implementing integrated services of net-
worked home appliances using service oriented archi-
tecture,” inProc. of 2nd International Conference on
Service Oriented Computing(ICSOC2004), Novem-
ber, 2004, pp.269-278.

[15] NTT, “Home Service Harmony,” http://www.
ntt.co.jp/cclab/e/pamph/sl/sl05.html

[16] B. Orriëns, J. Yang, M.P. Papazoglou, “Model Driven
Service Composition,” in Service-Oriented Comput-
ing(ICSOC 2003), Vol.2910 of LNCS. M.E. Or-
lowska, S. Weerawarana, M. P. Papazoglou, J. Yang,
Eds. Springer, 2003, pp.75-90.

[17] OSGi Appliance, “The OSGi Service Platform,”
http://osgi.org.

[18] Samsung, “Home Network,”- http://www.
samsung.com/HomeNetwork/index.htm

[19] D C. Shmidt, “Model-Driven Engineering,” IEEE
Computer, vol. 39, No. 2, pp. 25-28, February 2006.

[20] “The SMV System”,http://www.cs.cmu.
edu/˜modelcheck/smv.html

[21] D. Waddington and P. Lardieri, “Model-Centric Soft-
ware Development,” IEEE Computer, vol. 39, No. 2,
pp. 28-30, February 2006.

[22] X-10, http://www.x10pro.com/

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

