
Proposing Tap-Track Platform for Facilitating
Implementation of Button-Driven Smart Services

Ryota Murate
Faculty of Engineering,

Kobe University,

1-1 Rokkodai-cho, Nada,

Kobe, Japan

rmurate@es4.eedept.kobe-u.ac.jp

Tomorou Nakahashi
Graduate School of Engineering,

Kobe University,

1-1 Rokkodai-cho, Nada,

Kobe, Japan

tomorrow@ws.cs.kobe-u.ac.jp

Sinan Chen
Graduate School of Engineering,

Kobe University,

1-1 Rokkodai-cho, Nada,

Kobe, Japan

chensinan@gold.kobe-u.ac.jp

Sachio Saiki
School of Data and Innovation,

Kochi University of Technology,

185 Miyanokuchi,
Kochi, Japan

saiki.sachio@kochi-tech.ac.jp

Masahide Nakamura 1,2

1Kobe University,
2RIKEN Center for Advanced Intelligence Project,

Tokyo, 103-0027, Japan

masa-n@cs.kobe-u.ac.jp

Kiyoshi Yasuda
Graduate School of Engineering,

Kobe University,

1-1 Rokkodai-cho, Nada,

Kobe, Japan

Yuta Tuyuzaki
Oyumino Central Hospital,
6-49-9 Oyumino Minami,

Chiba, Japan

Abstract—In recent years, the movement toward a super smart
society as a future society is being promoted as Society 5.0. In
this movement, smart services [1] have become very diverse, and
the burden on users has increased. Therefore, in this paper, we
focus on button-driven smart services, and propose a platform
“ Tap Track” that makes it easy to implement button-driven
smart services. In Tap Track, users can create services that run
when a button [2] is pressed with no code, and users can assign
their desired services to the button. The processing that can be
executed when the button is pressed is playing media files, sending
commands to external services, and so on. The usage history of
the button can be looked back later as a life log. In the case
study, we created a weather forecast confirmation service and a
life log service using Tap Track and verified its operation.

Index Terms—button-driven smart service, life log, no-code
development

I. INTRODUCTION

A super-smart society is defined as a society that “provides

the necessary goods and services to the necessary people, at

the necessary time, and in the necessary amount, responds in

detail to society’s various needs, allows everyone to receive

high-quality services, and enables people to live vibrantly

and comfortably, overcoming various differences such as age,

gender, region, and language.” A series of initiatives toward

achieving this goal are being promoted under the name “So-

ciety 5.0.” [3] Such a modern society, a wide variety of

services have been born, and it is common to use services on

smartphone and PC apps. However, this has led to the problem

of interface diversification, increasing the burden on users.

The goal of this study is to propose a button-driven smart

service, which refers to services that the user can call by

simply pressing a button. As related technologies, there are

Amazon Dash Button and AWS IoT Button, but the imple-

mentation has constraints and the difficulty is high, which

is a problem. Therefore, in this study, we propose a button-

driven smart service development and execution platform “Tap

Track” with the aim of facilitating the implementation of

button-driven smart services. Therefore, the requirements to be

met are defined as follows. R1: Being able to perform daily,

repetitive actions with the push of a button, R2: Being able to

easily and easily create your own favorite services,

To meet the requirements, the overall architecture of Tap

Track is composed of the following four elements. A1: Button

function generation, A2: Button function assignment, A3:

Drive by button, A4: Look Back,

Users can create button functions, assign them to buttons,

execute services by pressing buttons, and look back execution

history. In the case study, we create a “weather forecast

confirmation service” and a “life log service” as specific

examples of the implementation and execution of button-

driven smart services using Tap Track. This is expected to be

effective in supporting the implementation of various button-

driven smart services.

II. PRELIMINARIES

A. Realization of a “Super Smart Society” and “Society 5.0”

According to the 5th Science and Technology Basic Plan

of the Smart Cabinet Office [4], a super-smart-society will



“provide the necessary goods and services to the necessary

people, at the necessary time, and in the necessary amount,”

and “respond in detail to society’s various needs.” It is defined

as a society in which all people can receive high-quality

services, overcome various differences such as age, region,

and language and live vibrantly and comfortably. In this

society, it is expected that people and robots/AI will coexist

to improve the quality of life, provide customized services

that respond to the diverse needs of users in detail, provide

services that anticipate potential needs and support human

activities, eliminate service disparities due to region and age,

and create an environment where anyone can become a service

provider. By integrating cyberspace and physical space, the

movement toward a super-smart society is shared as the future

society, and a series of efforts to realize it are further evolved

and promoted as “Society 5.0”.In the current era, which can

be called the so-called Fourth Industrial Revolution, many

services have been born to support people’s lives. [5]The

challenge is how easily you can access the various services.

B. Current Status of Service Usage

Current services are commonly used on smartphone and

PC apps. There are two issues to be solved here. The first

is that the interface is diversified. For example, when using

a service to operate home appliances and a service to play

music, you need to install, start, and operate each app, and

you need to go back and forth between the two apps. This has

increased the burden on users to access services. The second

is that there are cases where interactive operations are not

necessary for using the service. When considering operating

home appliances, operations such as turning on, turning off,

starting, and stopping do not require interactive operations that

require the user to enter data.

C. Expectations for Button-Driven Services

Here, “button-driven smart services” refers to services that

can be called up with the simple operation of pressing a

button. Button-driven smart services allow you to quickly use

services with simple actions and are convenient for simplifying

complex operations. This makes it easier for new users to

use the service and allows them to use the service without

any hassle. Furthermore, button-driven smart services are an

effective control method, especially when combined with IoT

devices. [6]From these characteristics, it can be said that the

demand for button-driven smart services is increasing.

D. Related Technologies

The Amazon Dash Button [7] is a button-driven smart

service provided by Amazon. By pressing this button, you can

easily order specific products. It is mainly used for ordering

consumables, making it a convenient tool for quickly replen-

ishing everyday items, but it is not intended for executing

services that you want to use constantly.

The AWS IoT Button [8] is a button-driven service provided

by Amazon that allows you to execute AWS Lambda functions

with the press of a button. This feature enables a variety

of actions to be triggered, but since it requires specialized

knowledge for configuration and use, it is primarily a tool for

professionals.

IFTTT (If This Then That) [9]is a tool that allows you to

customize and combine existing apps and services to meet

your needs. Users can combine existing services offered by

IFTTT, but cannot create new applications themselves. It is

primarily intended for automating processes by combining

existing services and apps.

STREAM DECK [10] is a device that allows you to assign

frequently used functions and actions on your PC to buttons.

Users can use this device to quickly execute many operations,

but it is also for utilizing existing functions rather than creating

new applications.

A common issue with these tools is that their available func-

tions are limited to existing provided features. Additionally,

the distribution of these platforms presents another challenge.

E. Research Focus in This Study

In this study, we focus on the problem that the implementa-

tion of button-driven smart services is difficult. Button-driven

smart services are a simple mechanism in which a service

is executed when a button is pressed, but for developers,

the implementation cost is about the same as for normal

services. When a developer creates a new service, they need

to implement functions such as detecting that a button has

been pressed and processing that is executed when a button

is pressed by securing computing resources, building servers,

developing front-end UIs, developing server-side code, design-

ing databases, and deploying services. Furthermore, coding

knowledge is essential for this.

III. PROPOSED METHOD

A. Purpose and Requirements

As a study on platforms that facilitate the implementation

of button-driven smart services, we propose a platform that

allows you to register, implement, and use button-driven ser-

vices without specialized knowledge. The requirements to be

met are as follows. R1: Being able to perform daily, repetitive

actions with the push of a button, R2: Being able to easily

and easily create your own favorite services,

B. Approach

To meet this requirement, we propose a button-driven smart

service implementation platform “Tap Track”. Tap Track is

a key idea to provide a GUI service that allows you to

create your favorite button-driven service with no code, and

to create a button press detection function and processing that

is executed when a button is pressed with no code.

C. Overall architecture

Figure 1 shows the overall architecture with Tap Track

introduced. Tap Track consists of the following elements. A1:

Button function generation, A2: Button function assignment,

A3: Drive by button, A4: Look Back,



Fig. 1. System architecture.

Service developers refer to people who implement services

on Tap Track. By A1: Button function generation, service

developers create the button function they want to assign to

the button and register it in the button function information

database. Users refer to people who use services on Tap

Track. Users select the required button function from the

button function information database and save it in the user

information database by A2: Button function assignment.

Then, by A3: Drive by button, the button function saved in the

user information database is called from the button function

information database and executed when the button is pressed.

When the button function is executed, “who”, “when”, and

“which button function” are saved, and by A4: Look Back,

users and developers can check the execution history of the

service.

1) A1: Button function generation: Here, users create but-

ton functions that support daily life and want to assign to

buttons. The following settings can be done with no code.

S1: Definition of button function behavior, S2: Reaction to

pressing the button, S3: Sending an HTTP request, S4: Button

function publication range,

S1: Regarding the definition of the behavior of the button

function, simply saying that it is operable with just one

button does not mean that there is only one behavior required.

Specifically, in the case of a button function that displays the

weather forecast when the button is pressed, you only need

to perform the same behavior each time you press the “Get

weather image” button, but in the case of a button function

that turns on the electricity, you need two behaviors: “Turn

on the power” and “Turn off the power”. Such behavior is

set in the following three types. S2: Regarding the reaction to

pressing the button, if there is no feedback to the user even if

the button is pressed, the user does not know whether it was

pressed or not, and there is a possibility that it will be pressed

multiple times. Such a design should be avoided. Therefore,

the reaction can be set to play media files. In the proposed

method Tap Track, you can select the setting method from

the following four. S2-1: Upload media files, S2-2: Reference

URL, S2-3: Read Text, S2-4: None,

S3: Regarding sending an HTTP request, this setting is for

Fig. 2. Setting button behavior form.

setting up cooperation with external services. S4: Regarding

the publication range of the button function, this setting is to

set the range in which the button function is published. The

button function created by the user can be shared. With this

setting, anyone can become a developer. The setting can be

selected from the following three. S4-1: Private, S4-2: Public,

S4-3: Limited. Each button function is assigned an ID, and

in the case of limited release, only those who know the ID

can use it.And, when the publication setting is set to ”public,”

the button functionality is made available to the entire world,

allowing it to meet the needs of an unspecified number of

users.

2) A2: Button function assignment: Assign the button func-

tion created in A1 to each button of the button-driven service.

Users can call up their favorite services from the button. You

can assign your own button function and button function that

others have set the publication range to “public” to the button.

Limited release button functions can be assigned to buttons by

searching using the ID.

3) A3: Drive by button: When you press the button, the

button function assigned by A2 is executed. The button has a

“state”, and when the behavior set in A1 is “button”, the state

does not change even if the button is pressed. When the user

presses the button, the button function assigned to the service

is executed. The screen becomes the user’s personal button.

4) A4: Look Back: Users can check which button they

pressed when and how many times. It is displayed in the

following three types of graph formats. The bar graph shows

when and how many times the button was pressed. The pie

chart shows the time and proportion of the button state that

continued within the specified period. The timeline shows

when and which state button was pressed on the timeline.

IV. IMPLEMENTATION

A. Used Technologies

In this paper, we implemented the proposed button-driven

smart service “Tap Track”. The backend was implemented

using the Java [11] language and Spring Boot [12]. MySQL



Fig. 3. Setting media file form.

was used as the database server, Apache Tomcat was used

as the web server, and the front end was implemented using

HTML, SCC, JavaScript, and google charts.

B. Usage and Sample Description

Figure 2, Figure 3, and Figure 4are the button function

creation screens. In Figure 2, you can select how to set the

behavior of the button function and the media file to be played

as a reaction. In Figure 3, you enter the button function name,

the media file to be played as a reaction, and the description

of the button function. In Figure 4, you set the HTTP request

sent by the button function.

Figure 5 is the button function selection screen. This screen

displays the button functions you created and the button

functions that others have set the publication range to “public”.

By entering the ID assigned to each button function in the

“Search by button function ID” field, you can assign button

functions that other users have added as “limited release” to

the button.

Figure 6 is the button screen that actually drives the ser-

vice.Buttons 0 ∼ 10 are displayed, and you can drive the

service by pressing the button.

V. PERFORMANCE EVALUATION

To evaluate how much easier Tap Track makes the creation

of button-driven smart services, we compared the time required

to create a service with and without using Tap Track.

The service in question is an attendance management system

where pressing a button once records clocking in, and pressing

it again records clocking out.

First, when creating the service without Tap Track using

the conventional method, seven steps are required: deciding on

database design, setting up the environment including writing

a Dockerfile, creating a backend for API handling, creating

a user addition form, displaying an attendance record graph,

Fig. 4. Setting HTTP request form.

deploying for external access, and configuring the STREAM

DECK to be used as the button. When the author actually

carried out these steps, it took 32 minutes for decision-making

and environment setup, 2 hours and 36 minutes for creating

the backend, 15 minutes for creating the user addition form,

1 hour and 20 minutes for displaying the graph, 16 minutes

for deployment, and 6 minutes for configuring the STREAM

DECK, totaling 5 hours and 5 minutes.

On the other hand, when using Tap Track, it was completed

in just 1 minute by simply following the steps and entering

the necessary information using the GUI.

VI. CASE STUDY

A. Application Overview

In the case study, we use Tap Track implemented in 4.

to create a button-driven smart service with the purpose of

creating a button-driven smart service.

B. Weather Forecast Confirmation Service

1) A1: Create button function: First, move to the button

function creation screen. Since the button function is the same



Fig. 5. Button function selection form.

Fig. 6. Button screen.

operation of “Get weather image” every time, the behavior is

set to “Trigger”. When you want to set the media file to be

played as a reaction as the weather forecast image, the setting

method of the media file to be played as a reaction is to use an

external service, so select “Reference URL”. Next, enter the

button function name, the media file to be played as a reaction,

and the description of the button function. The button function

name is “Hyogo Prefecture Weather Forecast”. This time, the

weather forecast image uses the image of the rain cloud radar

3 hours later provided by tenki.jp [13].

Fig. 7. Weather forecast image.

2) A2: Assign button function: Next, assign the button

function to the button. This time, we will assign the button

function to button 2. Select button 2 from the button function

setting screen and select “Hyogo Prefecture Weather Forecast”

created earlier from the list of button functions displayed.

3) A3: Drive by button: When you press button 2, the

weather forecast image is displayed as shown in Figure 7.

C. Life Log Service

Create a button function that allows you to keep a life record

by pressing a button. In particular, when you finish studying,

turn off the power of the desk lamp.

1) A1: Create button function: First, move to the button

function creation screen. Set the recording items to “sleep”,

“study”, “housework”, “play”, and “other” for a total of 6

items, so set the behavior to “Loop 6”. Set the setting method

of the media file to be played as a reaction to “Upload”. Next,

enter the button function name, the media file to be played as a

reaction, and the description of the button function. The button

function name is “Life Record”. Upload a simple sound effect

mp3 file as the media file. In the description field, describe

how to record which state in a way that is understandable.

(1. Sleep, 2. Study, 3. Housework, 4. Movement, 5. Play, 6.

Other) Finally, use Switch Bot [14] [15] to turn off the power

of the desk lamp when you finish studying. In the screen

of Figure 4 HTTP request sending settings, set “Sending an

HTTP request”. Get the device ID and token from the Switch

Bot app and set it as follows (TABLE I).

2) A2: Assign Button Function: Next, assign the button

function to the button. This time, we will assign the button

function to button 3.

3) A3: Drive by Button: When you press button 3, the

number of states changes. The state changes each time you

press the button, and when it is 6, it returns to 1 when you

press it next. By pressing the button to match the number of

states with the behavior you want to record, you can keep a



TABLE I

HTTP REQUEST SETTINGS.

URL https://api.switch-bot.com/v1.0/devices/{deviceID}/commands/

Method POST

Header Authorization: {token}
Body {“ commandType”:“ command”,

“ command”:“ turnOff”,

“ parameter”:”default”}

Fig. 8. Shown timeline.

life record. For example, when you want to record sleep, press

the button until the state of button 3 becomes 1.

4) A4: Look Back: The life record you made can be

checked later as shown in Figure 8.The state corresponds to

the following. (1. Sleep, 2. Study, 3. Housework, 4. Movement,

5. Play, 6. Other)

D. Discussion

By creating a button-driven smart service using the proposed

method Tap Track, the operation of the weather forecast

confirmation service and the life record service was confirmed.

By using Tap Track, it is expected that the difficulty of imple-

menting button-driven smart services can be solved because

button functions can be created without code. And, by using

Tap Track, it is possible to implement and use various services

on one platform, and it is expected that the diversification of

interfaces can be solved. However, it was found that Tap Track

is limited to button input being limited to operations on a web

browser. It is necessary to click on the screen to operate the

button, which is not sufficient. For example, it is considered

that it will be possible to respond to various smart services

by enabling various methods such as remote operation from

a smartphone and operation by a motion sensor, but this is a

future issue.

VII. LIMITATION

This study is preliminary, focusing on the implementation

and proposal of a platform to facilitate the development of

button-driven smart services, as well as a preliminary evalua-

tion of development performance. A limitation is that we could

not thoroughly assess whether Tap Track meets users’ needs

adequately. Future research should involve longer-term data

collection and detailed evaluation. Specifically, it is necessary

to assess user needs more accurately through usability tests and

user satisfaction surveys. This is expected to provide deeper

insights into the effectiveness of Tap Track.

VIII. CONCLUSION

In this paper, we proposed Tap Track as a platform that

makes it easy to implement button-driven smart services, with

the aim of proposing a platform that allows you to register,

implement, and use button-driven services without specialized

knowledge. Users can implement services on this platform

without code. Tap Track is a platform that provides a GUI as

a foundation for executing button-driven smart services and

makes it easy to implement button-driven smart services. In

addition, users can select the necessary services according

to their needs, assign them to buttons themselves, execute

services by pressing buttons, and check the execution history

of services. In this study, we created a weather forecast

confirmation service and a life record service as a case study

and confirmed the operation to demonstrate the usefulness

of the proposed method Tap Track. Future issues include

diversification of input at the time-of-service driving and

evaluation based on actual use.

ACKNOWLEDGMENT

This research was partially supported by JSPS KAKENHI

Grant Numbers JP20H05706, JP22H03699, JP22K19653,

JP23H03401, JP23H03694, JP23K17006.

REFERENCES

[1] M. M. Daniel Beverungen, Oliver Müller, “Conceptualizing smart ser-
vice systems,” in Electronic Markets, vol. 29, no. 16, 2019, pp. 7–18.

[2] R. Plotnick, “At the interface the case of the electric push button,
1880–1923 ,” in PROJECT MUSE, vol. 53, no. 4, 2012, pp. 815–845.

[3] M. M. Nair, A. K. Tyagi, and N. Sreenath, “The future with industry 4.0
at the core of society 5.0: Open issues, future opportunities and chal-
lenges,” in 2021 International Conference on Computer Communication
and Informatics (ICCCI), 2021, pp. 1–7.

[4] C. Office, “The 5th science and technology basic plan,” https://www8.
cao.go.jp/cstp/kihonkeikaku/5honbun.pdf, 2016.

[5] S.-Y. CHOU, A. DEWABHARATA, and T. H.-K. YU, “From industry
4.0 to the fourth industrial revolution,” Journal of information and
management, vol. 38, no. 1, pp. 14–25, 2018.

[6] T. Nakahashi, S. Chen, and M. Nakamura, “Study of service to assist
platform deployment of heterogeneous iot,” in 2022 23rd ACIS Interna-
tional Summer Virtual Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD-
Summer), 2022, pp. 48–55.

[7] Amazon, “Amazon dash terms of use,” https://www.amazon.co.jp/gp/
help/customer/display.html?nodeId=201730770, 2023, (Accessed on 6
February 2024).

[8] AWS, “Aws iot 1-click (one-click creation of aws lambda triggers)
— aws,” https://aws.amazon.com/jp/iot-1-click/, 2023, (Accessed on 6
February 2024).

[9] IFTTT, “Ifttt,” https://ifttt.com/, 2023, (Accessed on 23 July 2024).
[10] Elgato, “Stream deck,” https://www.elgato.com/en/stream-deck, 2023,

(Accessed on 23 July 2024).
[11] O. Corporation, https://www.java.com/, java.
[12] VMware, “Spring boot,” https://spring.io/projects/spring-boot, 2024.
[13] J. M. Agency, “tenki.jp,” https://tenki.jp/, 2024, (Accessed on 6 February

2024).
[14] SwitchBot, “Switchbot (official site),” https://www.switchbot.jp/, 2024,

(Accessed on 6 February 2024).
[15] ——, “Switchbot api,” https://github.com/OpenWonderLabs/

SwitchBotAPI, 2024, (Accessed on 23 July 2024).


