
A Study of Project Description Inference Using
Method Name Elements for Software Upcycling

Kohei Terakawa 1, Sinan Chen 2, Sachio Saiki 3, Masahide Nakamura 2

1Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
2Center of Mathematical and Data Sciences, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan

3School of Data and Innovation, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, Japan
Email: odajin@ws.cs.kobe-u.ac.jp, chensinan@gold.kobe-u.ac.jp, masa-n@cmds.kobe-u.ac.jp, saiki.sachio@kochi-tech.ac.jp

Abstract—In software development, there is often a situation
where products developed in the past could be managed as
more valuable assets. Conversely, such products may contain
the reusable value. We are currently exploring utilizing existing
project assets for new development, a concept we define as
“software upcycling”. To facilitate upcycling, the challenge lies
in comprehending the software overview without documentation
and making it easily referenceable. In a previous study, we
proposed a methodology for inferring the system overview using
a project corpus. We collected constituent words from class
names and conducted a validation study to assess their utility
in inferring the system’s overview. In this research, we shift our
focus to method names in order to further enhance accuracy.
We attempt to understand the software’s architecture efficiently
by assigning weighted importance to words in the project corpus
and visualizing them through Tag cloud images. We apply our
proposed methodology to 136 Java projects managed within our
laboratory and evaluate its effectiveness from two perspectives:
the functions provided by the software and the technologies that
enable the software to operate.

Index Terms—software development, technical debt, upcycling,
corpus, tag cloud, mining software repositories

I. INTRODUCTION

In recent years, software products have been utilized in var-
ious places due to the development of digital technology. The
environment surrounding software is changing rapidly, and
software is gradually accumulating technical debt [1] due to
technological progress and changes in business requirements.
As a solution to this situation, we have been studying software
upcycling [2]. Software upcycling is a concept that aims to
improve development efficiency and utilize existing knowledge
for new software development by applying asset values hidden
in existing projects.

In contrast, repositories in the software development field
are not maintained and managed as assets. Often, documenta-
tion related to the product, such as README, needs to be
included or more. In such cases, developers need help utilizing
the valuable design and implementation ideas in the product
[3]. Hence, the challenge of software upcycling is to develop
documentation for non-documented software and make it easy
to refer to.

In our previous study, we proposed a system overview infer-
ence method using a project corpus (corpusPj) [4]. Assuming
that class names are related to the purpose and function of
the system, we created a corpus in the context of software

by collecting class name component words. Using this, we
conducted a subject experiment to confirm that corpusPj

reflects the system overview.
However, some issues still need to be solved in the previous

studies. We found that the method needs to provide more
information when class names do not contain behavior-related
information or the method in suitable classes. Therefore, it
is necessary to include more detailed internal information in
corpusPj .

The goal of this study is to propose a new overview grasping
method to improve the accuracy of the previous one. As a key
idea, we focus on the method name component words and
hypothesize that these words reflect the system’s function. If
we can effectively extract the meaning from method names
alone, we can reduce the time spent understanding the soft-
ware product overview and accelerate software upcycling. The
proposed method consists of the following four approaches:

(A1) Mining software repositories
(A2) Get method name component words
(A3) Weight by tf-idf
(A4) Visualization of importance by tag cloud image
We conducted an experimental evaluation of 136 Java

projects managed in our laboratory using the proposed method.
The following two aspects are considered components of the
project overview:
What: The function or value that the software provides
How: Technology to make the software work
As a result, we extracted 14604 methods and 1659 method

name component words. We examined the method from the
viewpoints of What and How and found that the elements ap-
pearing as nouns in the “noun + verb” structure of the method
correspond to the things and events handled in the system and
that this information is useful for inferring the outline from
the viewpoint of What. However, we found getting higher-
level information, such as design patterns, complicated from
method names.

II. PREVIOUS STUDY: EXPERIMENTAL EVALUATION OF
INFERRING SOFTWARE DESCRIPTION USING PROJECT

CORPUS [4]

A. Challenges in Software Development

Not all products are managed in an asset-like manner in soft-
ware development sites such as organizations and companies.

2023 6th International Conference on Signal Processing and Information Security (ICSPIS)

979-8-3503-2959-9/23/$31.00 ©2023 IEEE 46

There are many cases where product-related documentation
such as README needs to be included or increased. In
contrast, such software may contain an asset value. Specifi-
cally, they are ideas for design and implementation. The value
of existing software is expected to be utilized for new software
development, which we call software upcycling [2]. In order
to facilitate software upcycling, the challenge is understanding
the project outline, with or without a description.

B. Proposed Method in Previous Study

In the previous study, we proposed a method to get an
overview of an existing project without relying on README
or other explanatory documents. We create corpusPj from the
class name component words and use it to infer the system’s
functionality, technology, and overview. The experiments con-
ducted in the previous study consisted of five Steps.

In Step 1, we select the project and subjects for the
experiment. In the previous study, we used Java projects in
Gitlab, managed in the author’s laboratory.

In Step 2, we prepare the corpusPj . Using repository
mining [5], we retrieve the class names contained in the project
and split the strings word by word. In this way, we defined
corpusPj as the group of words extracted by this process (see
Section II-C).

Step 3 is to design the questions. The following three
questions are designed to determine the level of understanding
of the project.

(Q1): Please describe in bullet points as many as you can
think of this system’s functions.

(Q2): Please describe in bullet points as many as you can
think of what kind of technology and mechanism this system
works with.

(Q3): Please describe in one or two lines an overview of
the system as inferred from corpusPj .

In Step 4, the subject answers the questions. In addition to
displaying the extracted words in lexical order, a Tag cloud
image is presented, weighted by frequency of occurrence.

In Step 5, the responses are graded. A Gitlab administrator
who knows the details of each project grades the responses.

C. Previous Key Idea: Defining Software Corpus

In the proposed method in the previous study, we defined
corpusPj as a group of words extracted by the class name seg-
mentation process. Corpus [6] is generally used in linguistics.
It refers to an extensive database of texts and utterances.

In this study, corpusPj means a corpus in the context of
software. Specifically, it is created by collecting class names
contained in the project and splitting them into words. If
the corpus reflects the feature of the project from the source
project, it is easy to infer the project outline from it, even for
projects without a README.

D. Results of Experiments in the Previous Study

Twelve subjects responded to the experiment. The results
confirmed that two factors influenced project inferences.

The first is how well corpusPj reflects the system’s infor-
mation. It depends on the developer how many functions and

roles can be included in a class. By extracting the names of
the methods inside a class, it is expected that the functions
and roles of the class can be understood more accurately.

The second is the informational content of words. We
confirmed instances of words that occur in large numbers but
are not necessarily crucial to the software. Hence, weighting
words for software characteristics would lead to a more
practical overview of the software.

III. PROPOSED METHOD

A. Goal and Key Idea

The purpose of this study is to improve the accuracy of
understanding by taking a different approach from the previous
study. There are the following two key ideas:

First, the creation of corpusPj using method names. Since
method names are closely related to software functionality, it
is expected to provide a more detailed understanding of system
behavior than the approaches in the previous study.

The second is to weight corpusPj according to word
importance. In the previous study, we used the frequency of
occurrence of words as a weighting index. However, we con-
firmed that a frequently appearing word does not necessarily
represent an overview of the system. In this study, we use TF-
IDF as an alternative measure to the frequency of occurrence
to determine the importance of a word.

B. Approach

The proposed method uses a four-step approach. The outline
of the approach is shown in Figure 1. The details of the
approach are as follows, consisting of (A1) ∼ (A4).

(A1) Mining Software Repository: Get program files that
exist in the target project (Pj) by mining software
repository.

(A2) Get method name component words: Extract
method names contained in the file using a parsing
tool. Then, the extracted method names are decom-
posed into words.

(A3) Weight by TF-IDF: Weight the words using TF-
IDF.

(A4) Visualization of importance using Tag cloud im-
ages: Visualize the weight of words for each project
using Tag cloud. Words with high importance are
displayed in a large size and highlighted.

C. (A1) Mining Software Repositories

Get class files from the target project group. Mining is per-
formed only for class files that describe the process, excluding
files such as configuration files and README.

The following example is based on the service named
MP3PlayService, which plays MP3 format audio files in our
laboratory. Table I shows the results of repository mining.
MP3PlayService is used as an example in the following steps
as well.

2023 6th International Conference on Signal Processing and Information Security (ICSPIS)

47

get set data form id …

PjA 0.60 0.20 0 0.20 0 …

PjB 0.25 0 0.25 0 0

Pj… … …

Fig. 1. Flow of proposal approach.

TABLE I
JAVA FILES INCLUDED IN MP3PLAYSERVICE.

class name
MP3List.java
MP3ListPlayer.java
MP3Music.java
MP3PlayService.java
MP3Player.java
Main.java

D. (A2) Obtaining Method Name Component Words

The parser tool is used to extract the method names in the
file. The method name is cut out as a string and extracted using
an analyzer corresponding to the programming language. The
string is divided into words using regular expressions, etc.,
according to the naming conventions used in the programming
language.

Table II shows the results of retrieving the method names
contained in MP3ListPlayer.java using ANTLR [7].
ANTLR is a parser generator for generating parsers, and
various programming languages are supported.

Table III shows the result of splitting the methods extracted
in Table II. Since the naming convention for method names
in Java is camelCase, the method is split using the position
where the capital letter appears as the delimiter. In this case,
MP3ListPlayer.java generates a corpus of nine methods: get,
Instance, set, URL, List, URL, Music, play, and stop.

TABLE II
METHOD NAMES INCLUDED IN MP3LISTPLAYER.JAVA .

method name
getInstance
setURL
getListURL
getMusicURL
playList
stop
next

TABLE III
RESULT OF METHOD NAME SPLITTING.

method name corpusPJ

getInstance get Instance
setURL set URL
getListURL get List URL
getMusicURL get Music URL
playList play List
stop stop
next next

E. (A3) Weighting by TF-IDF

The weight of each word extracted in A2 is determined
using TF-IDF [8]. Considering a software project as a docu-
ment, the word frequency for each project is calculated as TF
(term frequency), and the word frequency for all projects in the
repository is calculated as IDF (inverse document frequency).
The definition is shown below.

2023 6th International Conference on Signal Processing and Information Security (ICSPIS)

48

tf(w, d) = Number of word w present in project p

idf(w) = log
Total number of projects

Number of projects where the word w exists

F. (A4) Visualization of Importance by Tag cloud image

The importance calculated for each word is visualized by
using Tag cloud [9] images. Tag cloud displays words with
higher importance in a larger size, visualizing the words
important to the system.

IV. EXPERIMENTAL EVALUATION

A. Purpose of Experiment

In this experiment, the proposed method is applied to
136 Java projects managed in the Gitlab of our laboratory.
In addition, these projects are contributed by a total of 42
developers. We confirm the effectiveness of the proposed
method by creating corpusPj using the method and discussing
it.

B. Experimental Procedure

The proposed method creates corpusPj from the class
name component words. For repository mining in A1, we
used GitlabAPI in python. For method name component word
acquisition in A2, ANTLR was used as the analysis tool.
Segmentation was performed using regular expressions based
on the position of uppercase letters in the camelCase notation
used in Java. In the TF-IDF weighting of A3, the python
library scikit-learn [10] was used to calculate the TF-IDF
values. For the generation of the Tag cloud image in A4, we
used the python library wordcloud [11].

C. Results

As a result of the experiment, 14604 method names and
1659 method name component words were extracted. Words
varied in number of occurrences, revealing the existence of
words that are commonly used in method names and words
that are not.

Figure 2 shows the top 20 most frequently occurring method
name component words. The most frequently appearing word
is get. This was followed by verbs such as set, create, and
update. Adjunctions and adverbs were also common. Conjunc-
tions and adverbs were also common. In particular, words such
as and, is, not, than, and so on were frequently used in naming.

However, the most frequently occurring nouns were found
to be rare. System-specific object names appear as nouns
in method names, and most corpusPj is composed of low-
frequency proper nouns.

Fig. 2. Top 20 in frequency of occurrence.

V. DISCUSSION

A. Perspectives for Consideration

Several perspectives are used to describe the project
overview. In this study, a project overview is described from
the following two perspectives.
What: The behavior or value provided by the software. It

is distinguished from the use cases of the system since the
way the software is used varies from user to user. There can
be multiple use cases in a project.
How: Technology that makes the system work. Tools for

system construction, such as libraries and design patterns.
We will evaluate the proposed method’s effectiveness using

two perspectives. For illustration purposes, we will consider
MP3PlayService. The “what” in this service includes playing
MP3 sound sources, list playback, etc. The “how” includes
JavaLayer for playing MP3 files, URLEncoder for encoding
HTML files, etc. Table reffig:projects shows an overview of
the projects used in the discussion, corpusPj , and Tag cloud
images.

B. Perspective of What

Weighting using TF-IDF allowed us to discriminate words
representing objects involved in the system’s behavior. As
an example, we show LifeActivityMailer. In the Tag
cloud image, words such as score and sensor are weighted to
highlight objects involved in the system’s behavior.

Compared to the method in the previous study, which used
class names, the proposed method provides more detailed
information about the system. In contrast, the Tag cloud image
of the proposed method shows specific information such as
location, message, date, etc., which are handled by the sensor.
Therefore, the proposed method is effective for systems with
many methods in a class.

However, there are examples where unimportant words are
weighted. Focusing on ENISHI as an example, we can see the
high importance of words such as “get” and “set.” ENISHI is
a web application built using SpringBoot, and the reason for
this is that the system has many descriptions for routing data
acquisition in the Controller layer classes in the MVC model.

2023 6th International Conference on Signal Processing and Information Security (ICSPIS)

49

TABLE IV
PART OF THE EXPERIMENTAL DATA.

NewLINEAgentService

A service that sends LINE messages using LINE Bot

LifeActivityMailer

Email notification service when there is a change in

environmental sensors

ENISHI

Enishi's back-end services

Functionality is very limited for mocks

MP3PlayService

MP3 playback service based on a given URL

Playback by playlist is also available.

BLEAdapter

Adapter that formats BLE (Bluetooth Low Energy) data and

conforms to the passing-by framework

thin-cas

Lightweight command line application to perform Context Aware

Service (CAS) with ECA rules

As shown above, we can see verbs frequently occurring in the
implementation pattern of web applications, such as the getter
and setter methods provided in each class as entities.

Based on the above, the noun elements in the method
correspond to the things handled in the system. We consider
this valuable information for inferring the outline of the
system.

C. Perspective of How

We consider whether the technologies and frameworks used
in the system can be inferred. As an example, we focus on
NewLINEAgentService.

LINE Bot [12] is used in this project, and since it ex-
changes data and AccessToken with the LINE Bot in the
LINEBOTController.java class, these words can be
seen in the Tag cloud image. However, these words are
relatively small in terms of importance value and are relatively
small in the Tag cloud image. Thus, it isn’t easy to efficiently

get multiple functional overviews using a single importance
index in Tag cloud visualization.

Also, information about the system’s design, such as design
patterns, is difficult to infer. Thin-case implements the DAO
pattern and the Facade pattern. These are mainly manifested
in naming directories and classes, but such information cannot
be read from the method names. Thus, getting higher-level
information, such as design philosophy, from method names
takes much work.

VI. CONCLUSION

In this study, we proposed a method focusing on method
name component words to improve the accuracy of under-
standing project outlines in the previous study. Then, we
weighted corpusPj using TF-IDF and calculated the impor-
tance of the words. As a result, we got more information on
things related to the internal operation of the project than in
the previous study. Moreover, we found the possibility of using

2023 6th International Conference on Signal Processing and Information Security (ICSPIS)

50

this method to get a general understanding of the functions
provided by the project. However, it has some disadvantages
compared to the previous studies. Getting information related
to high-layer design, such as design patterns, is difficult. As
a challenge, we found that it was inferior to the previous
studies regarding the technology used. In future work, we plan
to create corpusPj from multiple approaches and consider
methods of summary inference according to the purpose.

ACKNOWLEDGMENT

This research was partially supported by JSPS KAKENHI
Grant Numbers JP19H01138, JP20H05706, JP20H04014,
JP20K11059, JP22H03699, JP19K02973, and Young Scien-
tists (No.23K17006).

REFERENCES

[1] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[2] T. Nakata, S. Chen, S. Saiki, and M. Nakamura, “Succeed: Sharing
upcycling cases with context and evaluation for efficient software
development,” Information, vol. 14, no. 9: 518, September 2023.

[3] C. Berenguer, A. Borges, S. Freire, N. Rios, R. Ramač, N. Taušan,
B. Pérez, C. Castellanos, D. Correal, A. Pacheco, G. López,
M. Mendonça, D. Falessi, C. Seaman, V. Mandić, C. Izurieta, and
R. Spı́nola, “Investigating the relationship between technical debt man-
agement and software development issues,” Journal of Software Engi-
neering Research and Development, 02 2023.

[4] K. Terakawa, S. Chen, and M. Nakamura, “Design and evaluating a
method using project corpus for inferring software description,” in 2023
20th International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2023, pp. 285–290.

[5] J. Oliveira, M. Viggiato, D. Pinheiro, and E. Figueiredo, “Mining experts
from source code analysis: An empirical evaluation,” Journal of Software
Engineering Research and Development, vol. 9, 02 2021.

[6] T. McEnery, Corpus linguistics. Edinburgh University Press, 2019.
[7] “Antlr,” https://www.antlr.org/, (Accessed on 20 February 2023).
[8] L.-P. Jing, H.-K. Huang, and H.-B. Shi, “Improved feature selection

approach tfidf in text mining,” in Proceedings. International Conference
on Machine Learning and Cybernetics, vol. 2, 2002, pp. 944–946 vol.2.

[9] S. Bateman, C. Gutwin, and M. Nacenta, “Seeing things in the clouds:
the effect of visual features on tag cloud selections,” in Proceedings of
the nineteenth ACM conference on Hypertext and hypermedia, 2008, pp.
193–202.

[10] “scikit-learn machine learning in python,” https://scikit-learn.org/stable/,
(Accessed on 20 February 2023).

[11] “Wordcloud for python documentation,” http://amueller.github.io/word
cloud/, (Accessed on 20 February 2023).

[12] “Line developers messaging api,” https://developers.line.biz/en/docs/
messaging-api/, (Accessed on 20 February 2023).

2023 6th International Conference on Signal Processing and Information Security (ICSPIS)

51

