
DEFINITION AND DETECTION OF SEMANTIC WARNINGS FOR
VOICEXML

Pattara Leelaprute and Tohru Kikuno
Graduate School of Information Science and Technology,

Osaka University
1-5 Yamadaoka Suita-shi, Osaka, JAPAN 565-0871

email: pattara@ist.osaka-u.ac.jp, kikuno@ist.osaka-u.ac.jp

Masahide Nakamura and Ken-ichi Matsumoto
Graduate School of Information Science,

Nara Institute of Science and Technology, Japan
8916-5 Takayama Ikoma, Nara, JAPAN 630-0192
email: masa-n@is.naist.jp, matumoto@is.naist.jp

ABSTRACT
VoiceXML is an XML-based language to describe interac-
tive voice response services, which brings the advantages
of Web-based development and delivery. Although the syn-
tax of VoiceXML is prescribed by the VoiceXML DTD and
the schema, the compliance with them is not a sufficient
condition for the correctness of a VoiceXML script.

To detect the semantic flaws, we propose semantic
warnings for VoiceXML. Focusing on the semantic as-
pects of voice interactive services, we define nine classes
of warnings. Then, a warning detection framework with
XPath and XSLT is presented. We also evaluate the advan-
tages and limitations of the proposed method by qualitative
discussions.

KEY WORDS
VoiceXML, semantic warnings, detection, XPath, XSLT

1 Introduction

In developing programmable services with the Internet,
there is a major trend of using XML for representing
platform-independent data, or even application programs
themselves (called XML scripts). Many XML-based lan-
guages are currently standardized to specify various ser-
vices, for instance; WSDL [20] for Web Services, ebXML
[3] for electric commerce, CPL [9] for VoIP. The use of an
XML-based language significantly improves the portability
and interoperability of the programmable parts (including
data and programs) of the service.

However, most XML-based languages are defined
by DTDs (Document Type Definitions) or XML schemas,
which cover only syntax of the target language. In gen-
eral, the DTD and the schema are not expressive enough to
specify semantics of the service. Therefore, there is a great
possibility that non-expert developers make semantic flaws
in the service logic, which cannot be validated by the DTD
or the schema.

This paper especially focuses on VoiceXML (Voice
Extensible Markup Language) [17] [18], which is designed
to create services that can interact with user by voice or
the DTMF (dialtone multi frequency, i.e., touch-tone) key-
pad. Many VoiceXML platforms are released for busi-
ness use purpose (e.g., [5][15]). Services can build upon

existing Internet standards and best practices to deliver a
complete voice solution to the customers by integrating
VoiceXML with their existing Web infrastructure. The syn-
tax of VoiceXML is defined by the VoiceXML DTD and the
schema. However, as far as we know, there is no definition
or guideline by which developers can validate the semantic
correctness of VoiceXML scripts.

The goal of this paper is to propose semantic warn-
ings of VoiceXML, which are a simple guideline to detect
the source of semantic flaws for any VoiceXML scripts. Fo-
cusing on the nature of voice interactive services, we define
nine warning classes. Exploiting a practical VoiceXML
platform, OptimTalk [11], we show that each warning can
lead the platform to a problematic behavior.

We also present a framework to detect the semantic
warnings. For this, we characterize each semantic warning
as a problematic XML structure, and distill it using XPath
[21]. Combining the XPath representation with XSLT [22],
we implement a light-weightand generic warning detection
framework well-feasible to unknown warnings that will be
discovered in the future.

The proposed method is evaluated from the view-
points of impact of warnings, property coverage, advantage
and limitation of XPath, and completeness of the warnings.
Integrated into development environments of VoiceXML
applications, the proposed semantic warnings help devel-
opers to construct more semantically reliable voice appli-
cations.

2 Overview of VoiceXML

A VoiceXML application consists of one or more
VoiceXML scripts that can call each other. A VoiceXML
script is an XML document whose syntax definition is pre-
scribed by the VoiceXML DTD and the schema. In the
following, we pick up some important constructors to build
a VoiceXML script. The full specification is found in [18].
Forms: A <form> is a basic dialog element to present in-
formation and gather user inputs, which is generally com-
posed of several form items. The form items are subdivided
into input items and control items. An input item specifies
a variable (explained later) to gather from the user. Input
items may have <prompt> elements to tell the user what
to say or key in, <filled> elements to define the action

when the input is filled in, and event handlers (explained
later) that process any resulting events. A typical input
item is <field>, which assigns an input from the user
to the associated variable via speech or DTMF recognition.
A <field> may have <option> elements to offer a list
of selective inputs. An <option> may specify attributes
dtmf for an associated DTMF value, and value for an
explicit value of the item. A <block> element is a typical
control item that specifies an executable block procedure
without user input.
Menus: A <menu> is a special form to prompt the user
to make a choice and transitions to different places based
on that choice. A <menu> has <choice> elements for
making a list of selective items. A <choice> may spec-
ify a text content of an item, a next attribute for the URI
of next dialog to be processed, and a dtmf attribute which
explicitly associates a DTMF value to the item. For con-
venience, a <menu> may have dtmf attribute that implic-
itly assigns sequential DTMF digits to each of the first nine
<choice>s. Inside a <menu>, an <enumerate> ele-
ment that is used within a <prompt> element, automati-
cally generates a prompt message telling all <choice>s
available to the user. It is also used within a <field> that
contains <option>s.
Variables: Variables in VoiceXML are declared by <var>
elements, or by form items such like <field> with
name attributes. A variable in <var> can be assigned by
<assign>, while a variable in <field> is filled in when
the user inputs the field. Variables may be referred in con-
dition attributes (cond) or expression attributes (expr).
ECMAScript[4] is used as the expression language in them.
A <value> element returns the value of an expression. A
<clear> element clears the current value. Each variable
has a scope. If a variable is defined in a dialog element (i.e.,
<form>), its scope is within the dialog. If defined outside
any dialog elements, the variable is treated as a global vari-
able.
Control Flow: VoiceXML has several elements to oper-
ate the control flow of the script. For example, the ele-
ments <if>, <elseif> and <else> specify conditional
branches. A <goto> element is used for the uncondi-
tional jump, while an <exit> terminates the script. A
<submit> element is used to submit the gathered data to
the server via HTTP GET or POST, by specifying variables
in the namelist attribute.
Event Handling: A VoiceXML script has event handling
that defines what to do when an event occurs. For example,
a <noinput> element is triggered when user does not re-
spond, and a <nomatch> element is triggered when some
unrecognized input is given. The event-handling can have
a count attribute which allows system to provide differ-
ent actions when the same event occurs, depending on the
number of occurrence.

Figure 1(a) shows an example VoiceXML script for a
virtual restaurant where the user can order a dish from beef
fish or chicken, and the cooking method.

This script has a <form> named “maincourse”, and

two <field>s named “maindish” and “cook”, which are
variables for the field.

By the field “maindish”, the system first prompts a
welcome message and enumerates (reads one by one) all
options of Beef, Fish or Chicken. Then, the user selects a
dish by saying one of the options, or by pressing a DTMF
key. The DTMF values are defined in the <option>s. If
the user does not respond until timeout, the <noinput>
event occurs and prompts the user to answer again. Af-
ter the user gives the matching input, the corresponding
value attribute is set to the variable “maindish”.

Subsequently, the field “cook” asks for the cooking
method of the maindish. The user can answer ‘grill’, ‘roast’
or ‘stew’ (as specified in the external grammar. See [18] for
the details). If the answer does not match, the <nomatch>
event occurs and prompts the user for retry. After the user
fills the matching input, the input is set to the variable
“cook”. Simultaneously, the <filled> element is exe-
cuted and the <if> conditional branch is evaluated. Since
the restaurant owner does not have fish stew in today’s
menu, the script does not accept the combination of ‘fish’
and ‘stew’ for the input. In this case, the value of ‘cook’ is
cleared and the script prompts the user to select other cook-
ing method for ‘fish’ again. Otherwise, the script submits
the values of “maindish” and “cook” to the server as spec-
ified in the <submit>. Figure 1(b) shows an example of
the dialog processed by the virtual restaurant specified in
Figure 1(a).

3 VoiceXML Semantic Warning

Focusing on the nature of the voice interactive applica-
tions, we identify nine classes of warnings for VoiceXML
scripts. For each warning, we give the definition, the effect
and an illustrative example. Furthermore, we observe what
actually happens, by executing the script with a practical
VoiceXML platform — OptimTalk [11]. To save space,
only the essential part of the script may be shown in each
example.

3.1 Infinite Loop (LOOP)

Definition: Multiple <goto> elements form a closed
loop from which the execution cannot escape.

Effect: An infinite loop imposes nonproductive endless
actions. Moreover, the infinite loop could damage the
system such like stack overflow, leading to the unex-
pected termination of the program.

Example: Figure 2 shows an example of LOOP. In this
script, the second form “select item” is called from
the first form “welcome”. Also, first form “welcome”
is called from the second form “select item”. Since
there is no path to escape this cycle, an infinite loop
occurs. When we execute this script on OptimTalk,

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/vxml
http://www.w3.org/TR/voicexml20/vxml.xsd">

<form id="maincourse">

<field name="maindish">
<prompt> Welcome to our restaurant.

Please select your maindish. <enumerate/>
</prompt>
<option dtmf="1" value="beef"> Beef </option>
<option dtmf="2" value="fish"> Fish </option>
<option dtmf="3" value="chicken"> Chicken </option>
<noinput> Please say one of <enumerate/></noinput>

</field>

<field name="cook">
<grammar src="cooking.grxml"/>
<prompt> You have selected <value expr="maindish"/>

for the main dish. Please select ’grill’,
’roast’ or ’stew’ for the cooking method.

</prompt>
<nomatch> Sorry, please select only from ’grill’,

’roast’ or ’stew’.
</nomatch>
<filled>

<if cond="(cook==’stew’) &&
(maindish==’fish’)">
<prompt> Sorry, we have only
’roast’ and ’grill’ for fish today.

</prompt>
<clear namelist="cook"/>

<else/>
<prompt> You have selected <value expr="cook"/>
<value expr="maindish"/> for the order.
Thank you for calling, goodbye.

</prompt>
<submit next="/cgi-bin/maincourse.cgi"
method="post" namelist="maindish cook"/>

</if>
</filled>

</field>
</form>
</vxml>

System: Welcome to our restaurant.

Please select your maindish.

Beef

Fish

Chicken
User: (Silence)
System: Please say one of

Beef

Fish

Chicken

User: fish
System: You have selected fish for your

main dish. Please select

’grill’, ’roast’ or ’stew’

for the cooking method.

User: steam
System: Sorry, please select only from

’grill’, ’roast’ or ’stew’.

User: stew
System Sorry, we have only ’roast’

and ’grill’ for fish today.
User grill
System You have selected grill fish

for the order.

Thank you for calling, goodbye.

(a) VoiceXML script (b) Dialog processed

Figure 1. Example of VoiceXML script for the virtual restaurant

<form id="welcome">
<block>
<prompt> Welcome to our virtual store. </prompt>
<goto next="#select_item" />

</block>
</form>

<form id="select_item">
<block>
<prompt> Sorry, our store is temporary closed

for maintenance.
</prompt>
<goto next="#welcome" />

</block>
</form>

Figure 2. Example of LOOP

the platform was terminated unexpectedly due to stack
overflow.

3.2 Choice or Option Without Content
(COWC)

Definition: A <choice> element (in a <menu>) or an
<option> element (in a <field>) lacks the text
content.

Effect: According to the schema, each <choice> (or
<option>) has a text content of PCDATA that will

become the selective subject for that choice. However,
in case that the content is absent, there is no way for
users to select that choice.

Example: We explain COWC with a correct VoiceXML
script shown in Figure 3. This script is supposed to
be a news system to provide choice of Todaynews,
Weather or Sports. Now suppose that “Todaynews”
in the first <choice> is absent. When executing
the script, the user can only hear Weather and Sports.
As a result, there is no way for the user to choose
“Todaynews”. With OptimTalk the script was un-
expectedly terminated with an error message (“er-
ror.badfetch”) when the user input any word other than
“Weather” and “Sports”.

3.3 Choice or Option Without Enumerate
(COWE)

Definition: An <enumerate> element is not specified
in any <prompt> elements in a <menu> (or a
<field> with <option> elements).

Effect: An <enumerate> element is used for the system
to read the items one by one, so that the user can listen

<menu>
<prompt> Welcome to news service.
Please say one of, <enumerate/>

</prompt>

<choice next="http://.../news/todaynews.vxml">
Todaynews

</choice>

<choice next="http://.../news/weather.vxml">
Weather

</choice>

<choice next="http://.../news/sports.vxml">
Sports

</choice>
</menu>

Figure 3. Example script used for COWC, COWE, IACB

to the list and make a choice. If it is absent, the user
cannot hear anything with regard to the choices, and
does not know which choice should be chosen.

Example: Let us use the script in Figure 3 to explain.
Suppose that the <enumerate> is absent from that
script. When the script is executed, the user will hear
nothing about the choices, thus is unable to make
choices. Strangely however, if the user did input an
appropriate choice, the selection was performed cor-
rectly with OptimTalk.

3.4 Identical Actions in the Conditional
Branch (IACB)

Definition: The same actions are specified for all condi-
tions of the conditional branch.

Effect: No matter which condition holds, the same action
is executed. In such case, this conditional branch is
meaningless and should be eliminated to reduce the
structural complexity.

Example: In Figure 3, we replace all of the three URIs
specified in next attributes with the same one. No
matter which choice was taken, the same action was
performed in the URI. This confused the user since
the user doubted that his input had been wrong. In this
case, the menu was completely redundant, so should
be removed to improve the usability.

3.5 Overlapped Conditions in the Choices or
Options (OCCO)

Definition: Multiple <choice> elements in a <menu>
(or multiple <option> elements in a <field>)
specify the same dtmf attribute or the same text con-
tent.

Effect: If multiple <choice> elements have the same
dtmf attribute, a touch-tone input corresponds to
multiple choices. Similarly, for the same text con-
tent (PCDATA), multiple choices could be taken by a

<menu>
<prompt> Welcome to news service.
Please say one of, <enumerate/>
or use DTMF to select the choice.

</prompt>

<choice dtmf="1" next="http://.../news/todaynews.vxml">
Todaynews

</choice>

<choice dtmf="2" next="http://.../news/weather.vxml">
Weather

</choice>

<choice dtmf="2" next="http://.../news/sports.vxml">
Sports

</choice>

</menu>

Figure 4. Example of OCCO

single word of users. Thus, there is non-determinism
which choice should be taken.

Example: Figure 4 shows an example. The second and
third <choice>s have the same dtmf attributes
(dtmf="2"). Therefore, if the user presses “2”, a
non-deterministic behavior occurs: which of Weather
or Sports should be selected. With OptimTalk, the
third <choice> jumping to “sports.vxml” was al-
ways selected when the user pressed “2”. This also
means that the user has no way to select the second
choice for Weather with DTMF.

3.6 Redeclared Form items in Same Scope
(RFSS)

Definition: A (single) name is used for declarations of dif-
ferent form items in the same scope, which result in a
name re-declaration.

Effect: The VoiceXML specification does not specify the
default behavior for the re-declaration for the rede-
clared form items. So, for a reference to the name,
there is a non-determinism which item should be
taken. This causes a platform-dependent issue.

Example: Figure 5 shows an example of RFSS. This script
asks user for the clothes to order, and waits for the
input. If the user answers ‘tshirt’, the <goto> at-
tempts to jump to the field “select size”, to provide
the selection of the size. However, since there exist
two <field>s declared as “select size”, it is unclear
which field should be taken. With OptimTalk, the field
“select size” that appeared first was selected. This is
due to the implementation issue of OptimTalk. From
the viewpoint of the user, it appears that no problem
has occurred in the script.

3.7 Overlapped Counter in Event Handlings
(OCEH)

Definition: Multiple event handlings in the same type
specify the same count attribute and they become
active simultaneously.

<form id="order">

<field name="select_item">
<grammar src="clothes.grxml"/>
<prompt>What kind of clothes do you want to order?
</prompt>

<filled>
<if cond="item==’tshirt’">

<goto nextitem="select_size"/>
<elseif cond="item==’pants’"/>
. . .

</if>
</filled>

</field>

<field name="select_size">
<prompt> Please select the size for your t-shirt.
</prompt>
. . .

</field>

<field name="select_size">
<prompt> We have only size ’S’ ’M’ or ’L’.
</prompt>
. . .

</field>

</form>

Figure 5. Example of RFSS

Effect: The count attribute in the same event handling
allows the script to handle the same event differ-
ently, based on the number of the number of oc-
currence (counts) of the event. The specification of
VoiceXML prescribes a selection algorithm to find the
best qualified event handling element, when an event
is thrown. Hence, even if there exist multiple elements
with the same count attribute, only one of them is
chosen to be executed by the algorithm. However,
such overlapped counter just increases the complex-
ity and unreachable event handlings, and thus should
be avoided.

Example: Figure 6 shows an example. This script au-
thenticates the user by the password within three
times of challenges. There are four <nomatch>
event handlings, each of which is activated when
the user input unmatched password. The first three
<nomatch>s are inherited to the child element
<field>. Now, two <nomatch>s have the same
counter (count="3"). So, handlings overlap when
the user fails three times. Indeed, according to the
selection algorithm, the latter <nomatch> (“You
missed too many times. Bye”) is always taken in this
example. In this case, the former one is redundant,
and should be removed to avoid the confusion.

3.8 Conflict of Implicit DTMF in Menu
(CIDM)

Definition: A <menu> element with attribute
dtmf="true" has a <choice> element with
explicit dtmf attribute.

Effect: When the attribute dtmf is set to true in a
<menu>, any <choice> that does not have ex-
plicit dtmf attributes are given the implicit sequen-

<form id="authenticate">

<nomatch count="1"> Please try again.</nomatch>
<nomatch count="2"> This is your last chance.</nomatch>
<nomatch count="3"> We will connect you to the operator.
<goto next="http://.../operator.vxml"/>

</nomatch>

<field name="password">
<grammar src="authenticate.grxml"/>
<prompt> Please say your password. </prompt>

<nomatch count="3"> You missed too many times. Bye.
<exit/>

</nomatch>

</field>

</form>

Figure 6. Example of OCEH

<menu dtmf="true">
<prompt> Please select one of the following services.
Please use DTMF 1-9 to select the choice. <enumerate/>

</prompt>

<choice next="#check_balance">
Check balance

</choice>

<choice dtmf="1" next="#tranfer">
Transfer money

</choice>

<choice next="#foreign_currency">
Buy foreign currency

</choice>

</menu>

Figure 7. Example of CIDM

tial DTMFs “1”, “2”,...,“9”. So, the <choice> that
has an explicit dtmf attribute may conflict with the
implicit one.

Example: Figure 7 shows an example. In this script,
DTMF values of 1, 2, and 3 are automatically as-
signed to each of the first three choices, because of
the <menu dtmf="true">. However, since the
second <choice> explicitly set dtmf="1", the im-
plicit assignment of the DTMF (=2) conflicts with
it. OptimTalk caught an exception of “error.badfetch”
when executing the script. It seems that OptimTalk
implements the routine for detecting the conflict.
Since OptimTalk could not execute this script because
of the exception, the user could not use any service.

3.9 Usage of Undefined Variable (UUVB)

Definition: A variable is used before the value is set.

Effect: When a declared variable is used before the value
is set, the value is assumed to be “undefined”. This
causes incorrect evaluation of conditions or expres-
sions. Also, submitting the “undefined” variable to
another URI may also cause unexpected input for the
URI.

Example: We use Figure 1(a) to show an example. As-
sume that the field “maindish” is misarranged to be the
last field in the form. Then, the conditional statement
in the <if> will not be evaluated correctly because

the value of “maindish” is still undefined. Moreover,
the undefined value of “maindish” will be submitted to
“/cgi-bin/maincourse.cgi”. In the script assumed, the
system asks a cooking method first. However, since
the value of “maindish” is still undefined, the mes-
sage “You have selected undefined for the main dish”
is prompted. Next, no matter which cooking method
is given, the following <if> statement is not evalu-
ated correctly. As a result, the script always takes the
<else> and submits the undefined “maindish” to the
server.

4 Detecting VoiceXML Semantic Warnings

This section proposes a framework to detect the semantic
warnings in given XML scripts. Our key idea is to charac-
terize each warning as a problematic structure of the XML
document, and to distill the structure by exploiting XPath
(XML Path Language) [21].

4.1 Principle of XPath Notation

XPath is a language to address arbitrary parts of an XML
document [21]. Any node (or set of nodes) in a given XML
document can be located. Also, XPath can apply various
functions to the the nodes located. Specifically, these are
performed by the following two steps:
Location: XPath addresses target nodes by a location
path consisting of multiple location steps delimited by
‘/’. A location step is in the form of axis::node
test[predicates].

For example, attribute::dtmf, which
means “select dtmf attribute of the current node”,
can be abbreviated to @dtmf. Also, //choice
refers to all <choice>s that are descendants
of the document root, which is equivalent to
/descendant-or-self::node()/child::choice.
Functions: The functions apply various operations
to the nodes located. We here introduce only sev-
eral functions used in this paper. (1) ����=����
or �����=���� computes the equivalence of ����,
(2) string-length(������) measures the length
of ������, (3) contains(�������,�������)
checks the inclusion of ������� in �������, (4)
concat(������,������,
�������) concatenates the �������, and (5)
count(����) counts the number of �����.

4.2 Describing Semantic Warnings with
XPath

Using XPath, we try to describe each semantic warning.
As an example, let us take COWC in Section 3.2. To detect
COWC, we need to find any <choice> or <option>
that do not contain any text contents.

First, we concentrate on a <choice>. Since a
<choice> appears as a child of a <menu>, a loca-
tion path //menu/choice selects all of <choice>
elements that have some <menu> as direct parents.
Next, an element e whose text contents is empty can be
specified by e[string-length(text())=0].
Combining them together, we obtain
//menu/choice[string-length(text())=0],
which can be read as “all <choice>s that do
not contain any text contents”. Finally, to check
if a given VoiceXML script contains any such
<choice>, we just have to know true or false of
count(//menu/choice[string-length(text())
=0]))>0.

Similarly, we obtain the expression for <option>.
Consequently, COWC can be described by the following
XPath: “count(//menu/choice[string-length
(text())=0]))>0” or “count(//menu/field
[string-length(text())=0]))>0”.

Table 1 presents XPath representation for all the pro-
posed warnings.

4.3 Detecting Semantic Warnings

Once the semantic warnings are described in XPath, we
just need to implement a warning detection system to gen-
erate the detection report. Taking full advantage of XPath,
we exploit XSLT (Extensible Stylesheet Language Trans-
formations) [22] for the report generation.

For each semantic warning, we describe a format
of the report in XSLT, using the following XSLT syn-
tax <xsl:if test="XPath expression"> warn-
ing message </xsl:if>. The XSLT displays a certain
message when the specified XPath expression becomes
true. For example, a format rule for COWC can be de-
scribed in XSLT as:

<xsl:if test=

"count(//menu/choice[string-length

(text())=0])>0"> COWC was detected.
(content in <choice> is absent)

</xsl:if>

<xsl:if test=

"count(//field/option[string-length

(text())=0])>0"> COWC was detected.
(content in <option> is absent)

</xsl:if>

We describe formats of all warnings in an XSLT
file (let it be warnings.xsl). Then, for each
given VoiceXML script, we embed a reference to
warnings.xsl as a style sheet. Finally, we browse
the VoiceXML script with a Web browser that implements
the XSLT processor. The Web browser translates the
given VoiceXML script into a warning report according to
warnings.xsl.

Table 1. XPath representation of the proposed semantic warnings

Warning Name Description in XPath

LOOP count(//form[concat("#",@id)=following-sibling::form//goto/@next

and //goto/@next=concat("#",following-sibling::form/@id)])>0

COWC 1. Content in <choice> is absent: count(//menu/choice[string-length(text())=0])>0

2. Content in <option> is absent: count(//field/option[string-length(text())=0])>0

COWE 1. <enumerate> in <menu> is absent:
count(//menu[choice and count(prompt/enumerate)=0])>0

2. <enumerate> in <field> is absent:
count(//field[option and count(prompt/enumerate)=0])>0

IACB 1. Identical action in <choice>s (within <menu>) exist:
count(//menu[choice and

count(choice[@next!=following-sibling::choice/@next])=0])>0
2. Identical action in <option>s (within <field>) exist:
count(//field[option and

count(option[@value!=following-sibling::option/@value])=0])>0

OCCO 1. Same dtmf attribute exists in <choice>s or <option>s:
count(//menu/choice[@dtmf=following-sibling::choice/@dtmf])>0 or

count(//field/option[@dtmf=following-sibling::option/@dtmf])>0

2. Content in <choice>s or <option>s are the same:
count(//menu/choice[text()=following-sibling::choice/text()])>0 or

count(//field/option[text()=following-sibling::option/text()])>0

RFSS Case of redeclared <field>s: count(//field[@name=following-sibling::field/@name])>0

OCEH 1. Case of <nomatch>: count(//nomatch[@count=following::nomatch/@count])>0

2. Case of <noinput>: count(//noinput[@count=following::noinput/@count])>0

CIDM count(//menu[@dtmf="true" and choice/@dtmf and

contains("1 2 3 4 5 6 7 8 9", choice/@dtmf)])>0

UUVB Case of <field>:
(count(//field[@name and contains(preceding::value/@expr, @name)]) +

count(//field[@name and contains(preceding::submit/@namelist, @name)]) +
count(//field[@name and contains(preceding::if/@cond, @name)]) +

count(//field[@name and contains(preceding::elseif/@cond, @name)])>0) and

(count(//field[@name and contains(preceding::field/@name, @name)])+

count(//field[@name and contains(following::field/@name, @name)])=0)

5 Evaluation

5.1 Impact of Warnings

To investigate how serious each semantic warning is, we
here try to classify the warnings into three warning levels;
“critical”, “moderate” and “tolerable”. The classification
is conducted with respect to viewpoints of both the devel-
oper and the users. In the following, we define the warning
levels from the developer’s view and user’s view.

Critical Level
- Developer’s View: Warnings causing a system down or
unexpected script termination.
- User’s View: Warnings making the service completely un-
available while the user is on the service.
Moderate Level
-Developer’s View: Warnings causing unexpected behav-
iors, such as non-determinism and unspecified values. The

behaviors vary heavily depending on the underlying system
implementation.
-User’s View: Warnings that can make users confused
against his/her intention, generally causing usability prob-
lems of the service.
Tolerable Level:
-Developer’s View: Warnings causing unreachable code or
redundant parts in the script. Although the script is nor-
mally processed, these warnings may expose trivial mis-
takes, or restriction of some features that the developer in-
tended to provide.
-User’s View: Warnings that are not recognized by the user,
but can restrict the original service behaviors that are sup-
posed to be provided for the user.

Based on the execution results with OptimTalk (see
Section 3), we classify the proposed warnings as shown in
Table 2. The warnings in the critical level must be resolved

Table 2. The classification of the impact of semantic warn-
ings

Level Developer’s viewpoint User’s viewpoint

Critical COWC CIDM COWC CIDM

Moderate OCCO RFSS UUVB IACB OCCO UUVB

Tolerable IACB OCEH RFSS OCEH

at the highest priority, since they may make the service to-
tally unavailable. Resolving the moderate level should con-
tribute to assuring the minimum quality of a script to deploy
it as a proper service. This improves the portability of the
script as well as the usability of the service. Finally, warn-
ings in the tolerable level are helpful to eliminate redundant
and ill-structured service logic, which improves readabil-
ity and maintainability of the script. Thus, the proposed
warnings can be used as a simple guideline to improve the
quality of the script (service) from the semantic aspect.

5.2 Property Coverage

The key idea of the proposed warning detection framework
is to characterize each warning by a static structure of the
given VoiceXML script. This allows us to describe the nine
warning classes smartly in XPath representation.

However, not all semantic properties can be described
exactly in a static way. For example, LOOP (see Section
3.1) is a dynamic property, strictly speaking. That is, with-
out executing the script, we would not be able to predict
exactly how many <goto>s form an infinite loop. In fact,
the XPath representation of LOOP in Table 1 covers only
infinite loops with the length of 2. To detect loops with
longer length, we can prepare an XPath expression for each
length, and join them by disjunction. However, it is unreal-
istic to prepare expressions for all possible loops with any
arbitrary length. Thus, the semantic properties covered by
the proposed method are limited to the ones that can be
reasonably described in static expressions.

5.3 Advantage and Limitation of XPath

In our warning detection framework, we extensively used
XPath to describe and detect the proposed semantic warn-
ings. The great advantage of introducing XPath is in its
generality. Since XPath is a widely-known standard, we
can reuse the existing modules and applications. There-
fore, the implementation of the warning detection sys-
tem becomes quite simple and easily-extendable, Also,
since XPath is not tightly coupled with specific languages,
the application of our framework is not limited within
VoiceXML only, but is well feasible to detecting problem-
atic warnings of other XML-based languages.

The limitation is in the expressive power of XPath. As
the drawback of its generality, XPath is not always able to

handle language-specific issues. For instance, VoiceXML
adopts ECMAScript to specify conditions (as cond at-
tribute) and expressions (as expr attribute) in the script.
However, XPath does not have any means to parse strings
written in ECMAScript.

Let us take UUVB (see Section 3.9) as an example.
To locate a variable with the undefined value, we need to
check every cond (and expr) attribute whether or not the
variable exists in the attribute. However, since XPath can-
not process the syntax of ECMAScript, we used the XPath
contains function as a substitute for the exact matching
of the variable, regarding the ECMAScript as an ordinary
string. This imposes a restriction on UUVB that; a given
VoiceXML scripts is not allowed to have any pair of names
that the one overlaps another (e.g., main and maindish).
To completely cover such language-specific issues, we may
need to introduce more powerful languages, such as Perl
and C, as a supplementary support.

5.4 Completeness

We have so far found nine classes of semantic warnings
for VoiceXML. Then, we presented a warning detection
framework with XPath, although LOOP and UUVB were
partially covered as mentioned above. We believe that the
proposed warnings provide simple but useful means for de-
velopers to build reliable VoiceXML scripts.

Of course, we cannot guarantee that the proposed nine
classes are complete to cover all the semantic problems
of VoiceXML. Further classes may be found in the future.
Even in such a case, the proposed method is well feasible,
as long as the new warnings can be described statically in
XPath. In our future work, we plan to clarify how much of
total semantic problems in VoiceXML can be covered by
semantic warnings described in XPath.

We have examined only the semantic aspect of
VoiceXML in this paper. However, investigating
VoiceXML from the security viewpoint is another impor-
tant problem to prevent the script from committing security
incidents, such as cross-site scripting [1][10]. Currently,
we consider that LOOP and UUVB could be abused for
malicious security attacks, since LOOP can cause a DOS
attack to a server, while UUVB can submit undefined val-
ues that cannot be processed correctly by the server. For-
mulating such security-related warnings for VoiceXML is
a quite challenging issue and is also our long-term goal.

5.5 Related Work

Most published research in VoiceXML are about the ap-
plication and integration, such as integration with the
enterprise Web applications [2], and implementation of
VoiceXML browser with SIP [12] of VoIP [13]. Few of
research focus on the quality or correctness of VoiceXML
script.

In [16], a high-level notation called CRESS is pro-
posed to define and analyze voice interactive services. A
service defined by CRESS can be compiled into formal de-
scriptions such as LOTOS [7] and SDL [8], where the de-
veloper can evaluate the integrity of the service. CRESS is
also able to compile the defined service into a VoiceXML
script. The main difference of this approach and ours are;
(a) CRESS cannot validate VoiceXML scripts directly, so
the service needs to be given firstly in the CRESS represen-
tation. (b) CRESS does not specify any concrete semantic
warnings, so the properties to be proven must be rigorously
given by the developer.

The method presented in [14] tries to capture the Web
contents accessibility guideline [19] with an XPath-based
language called SGSL. This approach is similar to ours, in
the sense that it distills a certain property as certain XML
structures. However, it differs from ours significantly, since
their target is data (i.e., HTML) while our target is pro-
grams (i.e., VoiceXML scripts). In our research, we chose
XPath to take advantage of its generality. However, using
SGSL might be a good option to capture more complex
warnings.

6 Conclusion

In this paper, we have proposed nine classes of semantic
warnings for VoiceXML and a warning detection method
with XPath and XSLT. Each warning was applied to a prac-
tical VoiceXML platform – OptimTalk. It was shown that
VoiceXML scripts with the semantic warnings can lead the
platform to certain problematic situations. We have also
evaluated the proposed method from several viewpoints.
Practically, integrated into development environments of
VoiceXML applications, the proposed semantic warnings
help developers to construct more semantically reliable ap-
plications.

Finally, we summarize our future work. We are cur-
rently developing practical VoiceXML applications for a
home network system [6]. Moreover, we investigate other
types of warnings. Generalization of the semantic warn-
ings for other XML-based language is also an interesting
problem.

References

[1] CERT/CC, “Malicious HTML Tags Embed-
ded in Client Web Requests”, Feb. 2000,
http://www.cert.org/advisories/CA-2000-02.html

[2] J. Chugh and V. Jagannathan, “Voice-Enabling Enterprise
Applications”, Proc. of Eleventh IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WETICE’02), pp. 188-189, June. 2002

[3] ebXML Initiative, “ebXML - Enabling A Global Electronic
Market”, http://www.ebxml.org/

[4] Ecma International, “ECMAScript Language Spec-
ification (Standard ECMA-262)”, http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[5] IBM, “Websphere Voice Server(TM),
WebSphere Voice Toolkit”, http://www-
4.ibm.com/software/speech/enterprise/ep 1.html

[6] H. Igaki, M. Nakamura and K. Matsumoto, “Design and
evaluation of the home network system using the service ori-
ented architecture”, Proc. of International Conference on E-
business and Telecommunication Networks (ICETE2004),
vol.1, pp.62-69, Aug. 2004.

[7] ISO/IEC, “Information ProcessingSystems – Open Systems
Interconnection – LOTOS – A Formal Description Tech-
nique based on the Temporal Ordering of Observational Be-
havior”, ISO/IEC 8807, International Organization for Stan-
dardization, Geneva, Switzerland, 1989.

[8] ITU, “Specification and Description Language”, ITU-T
Z.100, International Telecommunications Union, Geneva,
Switzerland, 2000.

[9] J. Lennox and H. Schulzrinne, “Call processing lan-
guage framework and requirements”, Request for Com-
ments 2824, Internet Engineering Task Force, May. 2000,
http://www.ietf.org/rfc/rfc2824.txt?number=2824

[10] Microsoft Corporation, “Information on Cross-
Site Scripting Security Vulnerability”, Feb. 2000,
http://www.microsoft.com/technet/Security/news/crssite.mspx

[11] OptimTalk, http://www.optimtalk.cz/

[12] J. Rosenberg, H. Schulzrinne, G. Camarillo, E. Schooler,
A. Johnston, J. Peterson, R. Sparks, M. Handley and
E. Schooler “SIP:session initiation protocol”, Request for
Comments 3261, Internet Engineering Task Force, Jun.
2002, http://www.ietf.org/rfc/rfc3261.txt?number=3261

[13] K. Singh, A. Nambi, H. Schulzrinne,“Integrating
VoiceXML with SIP services”, IEEE International Confer-
ence on Communications 2003 (ICC03), pp.784-788, May
2003.

[14] Y. Takata, T. Nakamura and H. Seki, “Automatic Acces-
sibility Guideline Validation of XML Documents Based
on a Specification Language,” Proc. of 10th International
Conference on Human-Computer Interaction (HCII 2003),
pp.1040-1044, June 2003.

[15] Tellme Networks, “Tellme Studio”, http://www.tellme.com/

[16] K. J. Turner, “Analysing interactive voice services”, Journal
of Computer Networks, Elsevier, Vol. 45, Issue 5, pp. 665-
685, 2004.

[17] VoiceXML Forum, http://www.voicexml.org/

[18] W3C, “Voice Extensible Markup Language (VoiceXML)
Version 2.0 (W3C Recommendation)”, Mar. 2004,
http://www.w3.org/TR/voicexml20/

[19] W3C, “Web Content Accessibility Guideline (WCAG)
Version 1.0 (W3C Recommendation)”, May 1999,
http://www.w3.org/TR/WAI-WEBCONTENT/

[20] W3C, “Web Services Description Language
(WSDL) Version 1.1 (W3C Note)”, Mar. 2001,
http://www.w3.org/TR/wsdl

[21] W3C, “XML Path Language (XPath) Ver-
sion 1.0 (W3C Recommendation)”, Nov. 1999,
http://www.w3.org/TR/xpath

[22] W3C, “XSL Transformations (XSLT) Version 1.0 (W3C
Recommendation)”, Nov. 1999, http://www.w3.org/TR/xslt

