
2148
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

PAPER

Java Birthmarks ——Detecting the Software Theft——

Haruaki TAMADA†a), Student Member, Masahide NAKAMURA†, Akito MONDEN†,
and Ken-ichi MATSUMOTO†, Members

SUMMARY To detect the theft of Java class files efficiently, we pro-
pose a concept of Java birthmarks, which are unique and native charac-
teristics of every class file. For a pair of class files p and q, if q has the
same birthmark as p’s, q is suspected as a copy of p. Ideally, the birth-
marks should satisfy the following properties: (a) preservation – the birth-
marks should be preserved even if the original class file is tampered with,
and (b) distinction – independent class files must be distinguished by com-
pletely different birthmarks. Taking (a) and (b) into account, we propose
four types of birthmarks for Java class files. To show the effectiveness
of the proposed birthmarks, we conduct three experiments. In the first
experiment, we demonstrate that the proposed birthmarks are sufficiently
robust against automatic program transformation (93.3876% of the birth-
marks were preserved). The second experiment shows that the proposed
birthmarks successfully distinguish non-copied files in a practical Java ap-
plication (97.8005% of given class files were distinguished). In the third ex-
periment, we exploit different Java compilers to confirm that the proposed
Java birthmarks are core characteristics independent of compiler-specific
issues.
key words: copyright protection, software protection, watermark, birth-
mark

1. Introduction

Today, an enormous number of software products are devel-
oped and distributed all over the world. The recent advance-
ment of the Internet dramatically has improved easy and fast
distribution of software. Unfortunately, however, there are
many cases of software theft reported [1]. Software theft
copies the original software, then uses the copy for other
purposes without keeping the copyright notice. Typical sce-
narios include:

• Defeat of a license check, duplicating a whole product,
and selling or distributing the copies (called software
piracy).
• Stealing a part of a product (e.g. modules and code

fragments) and reusing it in other products without per-
mission.

In software theft, many incidents have been re-
ported, for example, distribution of WAREZ (pirated
software) whose license checks were defeated [2], SCO
Group’s lawsuit against IBM for ownership violation [3],

Manuscript received November 5, 2004.
Manuscript revised March 22, 2005.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0101 Japan.

a) E-mail: harua-t@is.naist.jp
DOI: 10.1093/ietisy/e88–d.9.2148

GPL infringement [4], and copyright infringement of free-
ware/shareware [5]. Software theft can cause severe damage
to the software industries; hence, companies must protect
their own intellectual properties from theft.

However, protecting software from such theft is not
easy. Since enormous amounts of software products are dis-
tributed today, even detecting “suspected copies” is quite
difficult, unless the product is well-known to the public.
Moreover, each product generally consists of many mod-
ules and data files. Suppose that an adversary steals only
some modules, builds them into his or her own code, and
distributes this “new” code without the source code. De-
tection of the theft becomes much more difficult because,
proving the new code is a copy using manual binary analy-
sis generally requires a significant amount of skill and high
costs.

This situation has become worse in the recent trend of
Java applications [6], [7]. A Java application is composed of
a collection of class files. A class file is an atomic execution
module containing platform-independent binary data (called
bytecode). Due to its portability, a number of class files are
distributed for various platforms. Also, rigorous specifica-
tion of the Java VM [8] leads to the development of powerful
decompilers (e.g. jad [9]). Therefore, software crackers can
relatively easily reverse-engineer and steal class files, and
then reuse these class files as if they were the original devel-
opers themselves. Thus, the theft of Java class files is easy
to perform, but difficult to detect.

To cope with this problem, this paper presents an easy-
to-use method to provide reasonable evidence for the theft
of Java programs. Specifically, we propose Java birthmarks
to support the efficient detection of class files that are quite
similar to (or exactly the same as) each other. Intuitively, a
birthmark of a Java class file is the set of unique character-
istics that the class file originally possessed. If class files p
and q have the same birthmark, q is very likely to be a stolen
copy of p (and vice versa).

Ideally, the birthmark should tolerate a certain extent of
program transformation [10] since the clever crackers may
alter or modify the original class file to hide the fact of theft.
Hence, the birthmark must have characteristics that cannot
be modified easily. In other words, changing the birthmark
should make the class file malfunction, or make it com-
pletely different from the original. On the other hand, for
class files that are independently implemented, the birth-
mark must be able to distinguish among them even when

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——
2149

there is no theft.
Taking these issues into account, we propose four kinds

of birthmarks: (1) constant values in field variables (CVFV
birthmark), (2) a sequence of method calls (SMC birth-
mark), (3) an inheritance structure (IS birthmark), and (4)
used classes (UC birthmark). These birthmarks are essen-
tial characteristics of each class file, which can be extracted
without a source code. Based on the proposed method,
we have implemented a birthmark extraction tool, called
jbirth [11].

This paper conducts three experiments to show the ef-
fectiveness of the proposed birthmarks. In the first experi-
ment, we evaluate the tolerance against the program trans-
formation by exploiting practical Java optimizers and ob-
fuscators (CodeShield [12], jarg [13], SmokeScreen [14]
and ZKM [15]). Introducing a notion of similarity of birth-
marks, we demonstrate that the proposed birthmarks can-
not be altered easily. The result shows that the similarity of
birthmarks of every class file before and after the transfor-
mation is as high as 93.3876% on the average.

The second experiment evaluates the distinction prop-
erty of the birthmarks with practical Java applications
(Ant [16], BCEL [17], JUnit [18]). These well-known ap-
plications are assumed to be built by open-source commu-
nities whose members do not engage in theft. The proposed
birthmark distinguished 97.8005% of all class files. The re-
maining class files were either tiny classes or classes written
by “copy and paste”.

The third experiment investigates class files obtained
by different Java compilers (javac, jikes [19], kjc [20])
to see the effect of reverse-engineering on the birthmarks.
The result shows that the similarity of birthmarks of every
class file generated by a different compiler is 90.1959% on
average.

As a result, the proposed birthmarks are shown to be
simple but powerful native signatures of Java class files,
which can be extensively utilized for the detection of theft
of Java applications. This paper was originally published as
a conference paper presented in [21]. Changes were made
to this version, most significantly, the addition of the new
experiment and the qualitative discussion on the applicabil-
ity and limitation of the proposed birthmark. We believe
that these new results clarify the practical applications of
the proposed birthmarks.

2. Related Work

Software watermarking (often called software fingerprint-
ing) is a well-known technique used to provide a way to
prove ownership of stolen software. Therefore, it may be
used for our objective. Watermarking is basically used to
embed stealthy information in a piece of software, such as
a software developer’s copyright notation or a unique iden-
tifier of software, in a static manner [22]–[24], or in a dy-
namic manner [25]–[27]. Unfortunately, watermarking is
not always feasible because it requires software developers
to embed a watermark before releasing the software. Thus,

proofs cannot be given for already-released software with-
out watermarks. In addition, strictly speaking, to protect all
the modules in a software package, we need to embed water-
marks into all of these modules. This is generally difficult to
meet when the number of modules is large. Our birthmark
approach provides a way to detect stolen software without
embedding any additional information beforehand.

The most commonly used technique to detect a sus-
pected copy is software similarity computation [28]–[31],
which is generally used for plagiarism detection in program-
ming classes. A plagiarized program is defined as a pro-
gram that has been reproduced from another program with
only a small number of editions, and with no detailed un-
derstanding of the program required [32]. In order to de-
tect plagiarized programs, various methods for similarity
computation have been proposed based on attribute count-
ing [33], structure metrics [28], [30], [31], and Kolmogorov
complexity [29]. Unfortunately, since these methods re-
quire the source code of software to compute the similarity,
they are not applicable in our problem setting where soft-
ware products are usually distributed without a source code.
Moreover, these techniques did not consider attacks by prac-
tical code transformation tools, such as software optimiz-
ers [13] and obfuscators [12], [14], [15]. Our birthmarks are
intended to be used for Java class files without their source
code, and to be resilient against code transformation attacks.
We also define the similarity of birthmarks to utilize our
birthmarks.

Another way to detect software theft is to find code
clone pairs between two software products [34], [35]. Code
clones are exact or nearly exact duplicate lines of code
within the source code. In [35], by using a code clone
detection tool called CCFinder, Kamiya et al. found that
sys/net/zlib.c of FreeBSD and drivers/net/zlib.c
of Linux are almost identical. Such code clone techniques
are useful for detecting suspected copies; however, they are
also susceptible to code transformation attacks.

Finally, we consider authorship analysis methods [36],
[37]. In [36], programming style metrics and programming
layout metrics are used to identify the author of a source
code. In [37], Spafford and Weeber suggest that it might
be feasible to analyze code remnants in executable code,
such as data structures and algorithms and choice of sys-
tem and library calls made by the programmer, which are
typically the remains of a virus or Trojan horse, and iden-
tify its author. Such identifying information are called a
“software birthmark” by Grover [38] although we propose
its formal definition in Sect. 3.1. These previously-proposed
birthmarks are rather out of date and are not feasible in to-
day’s Java class files; nonetheless, we took them into ac-
count to propose our birthmarks, e.g. the choice of library
calls in [37] are a part of our SMC (Sequence of Method
Calls) birthmark.



2150
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

3. Java Birthmarks

3.1 Definition

To make our discussion clearer, this subsection formulates a
notion of a birthmark. We start with formulation of the copy
relation of programs.

Definition 1 (Copy Relation): Let Prog be a set of given
programs. Let ≡cp denote an equivalent relation over Prog
such that: for p, q ∈ Prog, p ≡cp q holds iff q is a copy of p
(vice versa). The relation ≡cp is called a copy relation.

The criteria for whether or not q is a copy of p can vary
depending on the context. For example, each of the follow-
ing criterion is relatively reasonable for general computer
programs:

(a) q is an exact duplication of p,
(b) q is obtained from p by renaming all identifiers in the

source code of p, or
(c) q is obtained from p by eliminating all the comment

lines in the source code of p.

To avoid confusion, we suppose that ≡cp is originally
given by the user. Since ≡cp is an equivalent relation, the
following proposition holds.

Proposition 1: For p, q ∈ Prog, the following properties
hold. (Reflexive) p ≡cp p, (Symmetric) p ≡cp q⇒ q ≡cp p,
(Transitive) p ≡cp q ∧ q ≡cp r⇒ p ≡cp r.

All the above properties meet well the intuition of a
copy. Next, if q is a copy of p, the external behavior of q
should be identical to p’s.

Proposition 2: Let S pec(p) be a (external) specification
conformed by p. Then, the following property holds: p ≡cp

q⇒ S pec(p) = S pec(q).

Note that the reverse of this proposition does not nec-
essarily hold since we can see, in general, different program
implementations conforming to the same specification. Now
we are ready to define a birthmark of a program.

Definition 2 (Birthmark): Let p, q be programs and ≡cp be
a given copy relation. Let f (p) be a set of characteristics ex-
tracted from p by a certain method f . Then f (p) is called a
birthmark of p under ≡cp iff both of the following conditions
are satisfied.

Condition 1: f (p) is obtained from p itself without any ex-
tra information.

Condition 2: p ≡cp q⇒ f (p) = f (q)

Condition 1 means that the birthmark is not extra in-
formation and is required for p to run. Hence, extracting
a birthmark does not require extra code as watermarking
does. Condition 2 states that the same birthmark has to be
obtained from copied programs. By contraposition, if birth-
marks f (p) and f (q) are different, then p �cp q holds. That

is, we can guarantee that q is not a copy of p.
Hopefully, a birthmark will satisfy the following prop-

erties.

Property 1 (Preservation): For p′ obtained from p by any
program transformation, f (p) = f (p′) holds.

Property 2 (Distinction): For p and q such that S pec(p) =
S pec(q), if p and q are written independently, then f (p) �
f (q).

These properties strengthen Condition 2 of Defini-
tion 2. Property 1 specifies the preservation property of the
birthmark against program transformation [10]. We believe
that clever crackers may try to modify birthmarks by trans-
forming the original program into an equivalent one to hide
the fact of theft. There are several automated tools used to
perform the transformation, involving program obfuscators
and optimizers (e.g., [13], [15]). These tools can be used as
a means of attack against the birthmarks. Property 1 spec-
ifies that the same birthmark must be obtained from p and
converted to p′. However, there exist many ways to trans-
form a program into an equivalent one. Hence, in reality, it
is difficult to extract strong enough birthmarks to perfectly
satisfy Property 1.

Property 2 specifies the distinction property of the
birthmark, stating that: even though the specification of p
and q is the same, if implemented separately, different birth-
marks should be extracted. In general, the detail of two in-
dependent programs is almost never completely the same.
However, in the case that p and q are both tiny programs,
extracted birthmarks could become the same, even if p and q
are written independently. Those properties should be tuned
within an allowable range at the user’s discretion.

The question is how to develop an effective method f
for a set Prog of Java class files and the copy relation ≡cp.

3.2 Proposed Birthmarks

We outline how the proposed method works. First, from a
given pair of class files p and q, we extract birthmarks f (p)
and f (q) with a method f . Next, we compare f (p) and f (q).
If f (p) � f (q), then p �cp q, so we conclude that q is not a
copy of p.

As for the above f , this subsection presents four meth-
ods which extract the following four types of birthmarks:
constant values in field variables (CVFV), sequence of
method calls (SMC), inheritance structure (IS), and used
classes (UC).

Simply for added comprehension, we use a Java source
code in Fig. 1 to show an example for each birthmark. Note
that in our problem setting, the source code of given class
files is not necessarily available.

3.2.1 Constant Values in Field Variables (CVFV)

A class in Java often has field variables to store static and/or
dynamic attributes. If the field variables are initialized to



TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——
2151

Fig. 1 Example of Java source code (simple echo task for Apache Ant).

be certain constant values upon their declaration, then these
initial values are essential information for determining the
way of object instantiation. Modifying these values is dan-
gerous since the modification may change the output of the
program. Therefore, the initial values can be used as a good
signature that characterizes the class.

Definition 3 (CVFV Birthmark): Let p be a class file and
v1, v2, . . . , vn be field variables declared in p. Also, let ti
(1 ≤ i ≤ n) be the type of vi and ai (1 ≤ i ≤ n) be the
initial value assigned to vi in the declaration. (If ai is not
present, we regard ai as “null” ). Therefore, the sequence
((t1, a1), (t2, a2), . . . , (tn, an)) is called a CVFV birthmark of
p, denoted by CVFV(p).

The CVFV birthmark of the program in Fig. 1 is:
(java.lang.String, “”)

(int, 4)

3.2.2 Sequence of Method Calls (SMC)

In Java, general-purpose functions are already implemented
as methods of well-known classes, such as J2SDK [7] and
the Jakarta project [39]. A class often calls one or more
methods of these well-known classes. We assume that the
sequence of the method calls characterizes the class well due
to the following two reasons:

First, modifing the sequence automatically is difficult
for crackers because the modification crashes the dependen-
cies between the methods. Second, replacing a method in
the sequence with another takes significant effort because
creating the new method requires as much effort as making
the well-known class from scratch.

Definition 4 (SMC Birthmark): Let p be a class file and C
be a given set of well-known classes. Let m1,m2, . . . ,mn be
a sequence of method mi’s appearing in p in this order (this
is not necessarily the execution order), where mi belongs to
a class in C. Hence, the sequence (m1,m2, . . . ,mn) is called
a S MC birthmark of p, denoted by S MC(p).

Let C be a set of all classes in J2SDK or the Jakarta
Project. In this case, the SMC birthmark of the program in
Fig. 1 is:
org.apache.tools.ant.Task(),

String String#toLowerCase(),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

void org.apache.tools.ant.Task#log(String, int)

3.2.3 Inheritance Structure (IS)

Java is an object oriented programming language. Every
class in Java has a hierarchy of inheritance structures except
java.lang.Object, which is the root class of all classes.
Hence, by traversing the superclasses from a given class p to
java.lang.Object, we can obtain a sequence of classes.
This sequence can be used as a unique characteristic of p.
However, the sequence of classes may contain both well-
known classes and user-made classes. Since the user-made
classes are relatively easy to alter, we discard them from the
sequence and use the resultant sequence as a birthmark.

Definition 5 (IS Birthmark): Let p be a class file and C be
a given set of well-known classes. Let c1, c2, . . . , cn be a se-
quence of classes such that c1 = p, ci(2 ≤ i ≤ n) is a super-
class of ci−1, and cn is the root of a class (java.lang.Object).
If ci does not belong to a class in C, we replace ci with
“null.” Therefore, the resultant sequence (c2, c3, . . . , cn) is
called an IS birthmark of p, denoted by IS (p).

Let C be a set of all classes in J2SDK or the Jakarta Project.
Then the IS birthmark of the program in Fig. 1 is:



2152
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

org.apache.tools.ant.Task,

org.apache.tools.ant.ProjectComponent,

java.lang.Object.

3.2.4 Used Classes (UC)

A class (say p) generally uses other classes to implement
new functions by combining existing features of the other
classes. These external classes in p appear as a superclass,
a return type, argument types of methods, or method calls.
Modifying those classes used in p is not easy because of de-
pendencies between the classes. Moreover, if the classes are
well-known classes, it is difficult for crackers to alter them.
Hence, the set of used (well-known) classes is considered to
be a unique signature characterizing p.

Definition 6 (UC Birthmark): Let p be a class file and C be
a given set of well-known classes. Let U be a set of classes,
or u’s, such that u is used in p and u ∈ C. Let u1, u2, . . . , un

(ui ∈ U) be a sequence obtained by arranging all elements in
U in alphabetical order. Then, the sequence (u1, u2, . . . , un)
is called a UC birthmark of p, denoted by UC(p).

Let C be a set of all classes in J2SDK or the Jakarta
Project. Then, the UC birthmark of the program in Fig. 1 is:
java.lang.String,

org.apache.tools.ant.Task,

org.apache.tools.ant.Project,

org.apache.tools.ant.BuildException.

3.3 Similarity of Birthmark

Each of the proposed birthmarks is in the form of a se-
quence. Suppose that we have a pair of birthmarks f (p) =
(p1, . . . , pn) and f (q) = (q1, . . . , qn) for class files p and
q. Basically, we say that f (p) is the same as f (q) (i.e.,
f (p) = f (q)), iff pi = qi for all i (1 ≤ i ≤ n). In other
words, even when only a single pair of pi and qi is different
and other pairs are the same, we have to say f (p) � f (q).
Thus, the birthmark concludes that q is not a copy of p, al-
though f (p) and f (q) are very similar to each other.

Thus, the comparison of birthmarks with equivalence
only is somewhat overly strict, which may make the birth-
marks too sensitive against the attack of program transfor-
mation. To cope with this problem, here we introduce the
similarity of birthmark. The similarity is a percentage of el-
ements matched among f (p) and f (q) in the total elements
in the birthmark (sequence).

Definition 7 (Similarity): Let f (p) = (p1, . . . , pn) and
f (q) = (q1, . . . , qn) be birthmarks with length n, extracted
from class files p and q. Let s be the number of pairs
(pi, qi)’s such that pi = qi (1 ≤ i ≤ n). Then, similarity
between f (p) and f (q) is defined by: s/n × 100.

4. Evaluation

In this section, we evaluate the proposed birthmarks from

the following viewpoints: (a) distinction property, (b)
preservation property, and (c) dependency on compilers. As
a tool support, we have implemented a software application
called jbirth [11]. In following experiments, we set the set
C of well-known classes (see Definition 4) to be all classes
in J2SDK SE 1.4.

4.1 jbirth: A Tool for Java Birthmarks

jbirth is a tool for extracting and comparing the pro-
posed Java birthmarks [11]. It is written in Java (J2SDK
SE 1.4 [7]) with Byte Code Engineering Library (BCEL
5.1 [17]), comprising about 13,000 lines of code. Figure 2
shows a screenshot of jbirth. The main features are:

• extraction of the four types of birthmarks directly from
Java class files (without source code),
• pairwise birthmark comparison of Java class files,
• Jar file support, and
• plug-in architecture for future birthmarks.

As a performance indicator, we have measured the ex-
ecution time taken for extracting the proposed four kinds
of birthmarks from practical Java packages: bcel-5.1.jar,
ant.jar, and jbirth.jar. The measurement was performed on a
Windows PC with Pentium 4-3.00 GHz and 496 MB RAM.
Table 1 shows the result. It can be seen that the time taken
for extracting the birthmarks is sufficiently short from the
practical viewpoint (0.0180s per a class file in this experi-
ment). Thus, using jbirth, one can extract the birthmarks
from any Java class files quite easily and efficiently. jbirth
is freely available at [11].

4.2 Experiment 1: Preservation Performance

Using jbirth, we first evaluate the preservation property
(See Property 1 in Sect. 3.1) of the proposed birthmarks. Ac-
cording to their definitions, the proposed birthmarks are ro-
bust enough to tolerate such simple cases (a)-(c) mentioned
below Definition 1. However, clever crackers may use cer-
tain automatic tools and convert p to an equivalent q in a
more sophisticated way. Our concern here is how much of
the original birthmarks is altered by the program transfor-
mation tools.

In this experiment, we exploited the following
tools: ZKM [15], Smokescreen [14], CodeShield [12], and
jarg [13]. Each of the tools performs a unique program
transformation for given Java class files. The first three are
known as the program obfuscator, which converts the orig-
inal class file into an equivalent one that is more difficult to
analyze. jarg is a program optimizer, which optimizes the
redundant part of the class file.

More specifically, all of the tools implement the name
obfuscation and elimination of debug information for Java
class files. The name obfuscation changes meaningful sym-
bol names (i.e., class, field and method names) to mean-
ingless ones, which makes the decompiled source code
harder to understand. ZKM, Smokescreen and CodeShield



TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——
2153

Fig. 2 A screenshot of jbirth.

Table 1 Execution performance.

Package # of classes Size Execution time

bcel-5.1.jar 339 classes 515,920 bytes 4.675 s
ant.jar 487 classes 958,858 bytes 8.240 s
jbirth.jar 134 classes 213,594 bytes 2.239 s

Table 2 The result of Experiment 1.

ZKM Smokescreen jarg CodeShield

Similarity
Percentage

Average 94.4096% 90.9628% 98.9016% 89.2766%
Minimum 50% 27% 82% 57%
Maximum 100% 100% 100% 99%

adopt flow obfuscation, which scrambles the control flow
without changing the original runtime behavior. jarg and
Smokescreen support optimization of unreachable code
and unused fields and methods. ZKM has unique features,
such as string encryption, which encrypt string literals in
class files, and then add code fragments to decrypt the string
at runtime.

We applied each tool to a package Apache Ant (version
1.5.4, ant.jar) [16] with the strongest obfuscation (or opti-
mization) level, and obtained its transformed package. Next,
we executed jbirth to measure the similarity of birthmarks
for all pairs of a class file in ant.jar and the transformed
version.

Table 2 summarizes the result. We compared 376 pairs
of the original and the transformed class files by means of
the proposed four types of birthmarks. Figure 3 depicts the

Fig. 3 Birthmark similarity between original and transformed class files.



2154
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

frequency distribution, where the horizontal axis represents
the similarity, and the vertical axis plots the number of pairs
of class files with the corresponding similarity, normalized
by the total number of comparisons. In the results for all
the tools, the majority of the original birthmarks were still
preserved even after the sophisticated program transforma-
tions. Thus, the proposed birthmark achieved a practically
strong robustness against program transformation in this ex-
periment. Also, the similarity varies slightly, depending on
the obfuscation tool applied. It appears that the method of
program transformation has different effects on the birth-
marks.

Although the combined use of the four birthmarks re-
flects a stronger characteristic of a class file, it is also in-
teresting to evaluate each birthmark individually. Figure 4
shows the preservation performance in Experiment 1, with
respect to the individual birthmarks. In the figure, X-axis
represents the birthmarks, Y-axis depicts the frequency of
each birthmark, and Z-axis plots the similarity. From the
figure, it can be seen that most birthmarks achieve 100%
similarity.

However, we can see that the UC birthmark is a
bit fragile against the transformation with CodeShield.
Through the investigation, we found that CodeShield
translates the conditional branches specified by if (or for)
into try and catch, by adding dummy exception classes.
For example, the statement if(EXP1){ s1; } else{ s2;
} is transformed into try{ throw e; } catch(exp 1
e1){ s1; } catch(exp 2 e2){ s2;}. These exception
classes add extra used-classes to the original bytecode,
which decreases the performance of UC birthmark. In gen-
eral, an exception class can be easily altered with another

Fig. 4 Similarity w.r.t. individual birthmark.

Table 3 The result of Experiment 2.

Ant 1.5.4 BCEL 5.1 JUnit 3.8.1 jbirth

Number of Class Files 376 339 90 63
Number of Comparisons 70,500 57,291 4,005 1891

Distinction Ratio 99.7872% 93.29389% 98.3770% 99.7440%

Similarity Percentage
Average 8.4035% 12.1585% 14.4709% 9.3815%
Minimum 0% 0% 0% 0%
Maximum 100% 100% 100% 100%

exception class. Therefore, we should have excluded any
exception class from the set of well-known classes C. If we
exclude any exception class from C, the performance of UC
birthmark can be improved significantly, as shown in Fig. 5.

4.3 Experiment 2: Distinction Performance

Next, we evaluate the distinction property (See Property 2 in
Sect. 3.1) of the proposed birthmarks. Usually, all class files
in each practical Java application are supposed to be differ-
ent from each other. If one package contains some class files
that are exactly the same, this represents a redundant and in-
efficient class design. Hence, we evaluate how many class
files in a Java package can be distinguished from each other
by the proposed birthmarks.

As target applications, we chose the following prod-
ucts: Apache Ant (1.5.4) [16], Jakarta BCEL (5.1) [17], JU-
nit (3.8.1) [18], and jbirth [11]. For each Jar file, we exe-
cuted jbirth to perform pairwise birthmark comparison of
class files contained in the Jar file. Note that the objective
of Experiment 2 is to compare class files within each single
package, but not to to see the similarity between packages.

The result is shown in Table 3 with using proposed four
birthmarks together. In the table, the distinction ratio repre-
sents a percentage of pairs of class files that are successfully
distinguished, in the total pairs compared. The table also in-
cludes average, minimum, and maximum values of the sim-
ilarity. As seen in the distinction ratio, the proposed birth-
marks were able to distinguish most of class files. Figure 6
shows the frequency distribution of the similarity, where the
horizontal axis represents the similarity, and the vertical axis

Fig. 5 Similarity w.r.t. individual birthmark (after exception classes are
excluded).



TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——
2155

plots the number of pairs of class files normalized by the
number of comparisons. For most pairs of class files, the
similarity is below 20%. This implies that different class
files have significantly different birthmarks.

In this experiment, the proposed birthmarks could not
achieve 100% of the distinction ratio. We investigated the
source code of the class files that could not be distinguished.
As a result, we found that these classes are:

(a) very small inner-classes that contain only one or two
method calls (e.g., containing System.exit(0)only),
or

(b) small classes with almost identical routines (which
seem to be written by copy and paste).

The above (a) indicates that such tiny and trivial classes
do not have enough information to characterize themselves.
Such class files cannot be protected from theft by the birth-
marks. However, we believe that it is not a serious problem
even if they are stolen since such small class files seldom
contain intellectual properties. As for case (b), the proposed
birthmarks worked very well since the birthmarks confirm
that one is very likely to be a copy of another.

Figure 7 shows the birthmark-wise evaluation on the
similarity. In the figure, X-axis represents the birthmarks,
Y-axis depicts the frequency of each birthmark, and Z-axis
plots the similarity. It can be seen that the IS birthmark
sometimes failed to distinguish completely different class
files. As we examined the situation, we found that most
of those classes are immediate children (i.e., direct sub-
classes) of the root class Object. Also, there was no sur-
prising to see the CVFV birthmarks failed to distinguish
classes that have no field variables. Such classes do not have
enough information to characterize themselves solely by the
IS or CVFV birthmarks.

Thus, using the CVFV (or IS) birthmark only may yield
a very short birthmark sequence. This is obviously the lim-

Fig. 6 Birthmark similarity among different class files.

Table 4 The result of Experiment 3.

Pair of Compilers javac, jikes javac, kjc jikes, kjc

Similarity Percentage
Average 89.5182% 93.2469% 87.8225%
Minimum 45.9451% 33.3333% 33.3333%
Maximum 100% 100% 100%

itation of the IS and CVFV birthmarks, but is a trade-off
against the simplicity of birthmark computation. An idea
to improve the distinction performance of the CVFV and
IS birthmarks is to discard such short birthmarks from the
similarity evaluation, or to use the CVFV and IS with other
birthmarks together.

4.4 Experiment 3: Different Compilers

This experiment examines class files produced by different
compilers. Other Java compilers in addition to javac exist.
Java compilers such as jikes [19] and kjc [20] have been
developed and distributed. Indeed, different compilers cause
differences in the generated bytecode. Our objective here
is to validate whether or not the proposed birthmarks are
core characteristics of class files that are independent of the
compiler-specific bytecodes.

In this experiment, we chose BCEL (5.1) as the target
application. We compiled the source files of BCEL with
javac, jikes, and kjc, and obtained three sets of class
files. Next, using jbirth we measured the similarity of
birthmarks between any pair of the three sets.

Table 4 shows the result. The BCEL package consists
of 339 class files. Hence, for each pair of compilers, we
measured the similarity through 339 comparisons, using all
four types of the birthmarks. Figure 8 shows the frequency
distribution of similarity. The horizontal axis represents the
similarity, and the vertical axis plots the number of pairs of
class files normalized by the total number of comparisons.

For all the compilers, most class files with the same
source have similar birthmarks regardless of the compilers
used. For the class files with low similarity, we conducted
a manual investigation. As a result, we found differences in
the sequence of methods in some class files. Specifically,
class files generated by kjc and javac contain the methods

Fig. 7 Similarity w.r.t. individual birthmark.



2156
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

Fig. 8 Birthmark similarity among class files obtained by different com-
pilers.

Fig. 9 Similarity w.r.t. individual birthmark.

in the same order as described in their source files. However,
jikes seems to generate the methods in a different order on
rare occasion.

To some extent, the result also indicates the robust-
ness of the proposed birthmarks against an attack of reverse-
engineering and re-compilation, although there is no exist-
ing decompiler that can perfectly reproduce the valid source
code from any class file [40].

Figure 9 shows the result with respect to the individual
birthmarks. It can be seen that the SMC birthmark is often
scrambled by jikes. This seems to be due to the code op-
timization of jikes, which re-arranges the (static) order of
methods defined in the source code into a different order in
the bytecode. For example, suppose that we apply jikes
to compiling the source code in Fig. 1. jikesmay generate
the bytecode where setLevel() comes after execute(),
which ruins the SMC birthmark (see the example in Defini-
tion 4).

Currently, the SMC birthmark does not support this
kind of code optimization. However, the problem could
be solved as follows. For a class p containing multi-
ple methods, we first derive an SMC birthmark locally
in each method, and then gather all of the method-wise
SMC birthmarks in a set S MCS ET (p). When comparing
the class p with another q, we compare S MCS ET (p) and
S MCS ET (q) as a set, ignoring the order of the elements in
each set. The extension of jbirth to support such grouped

comparison of the SMC birthmarks is left to our future work.

5. Discussion

5.1 Practical Use

Suppose that we obtain the identical birthmark from a pair
of class files p and q (i.e., f (p) = f (q)). Then, a question
arises: “can we prove that q is a stolen copy of p?” Theoreti-
cally, the answer is NO, since our definition of the birthmark
(see Definition 2) does not require f (p) = f (q) ⇒ p ≡cp q.
Even if p and q are independent (i.e., p �cp q), there is a
possibility that f (p) = f (q) holds. Hence, one might think
that the birthmarks are too weak to prove the theft.

However, from a practical point of view, the birthmarks
provide a powerful clue to proving that q is a copy of p. As
seen in Experiment 2, class files whose birthmarks happen
to match are usually simple and small classes. In reality, the
adversary would steal relatively complex (thus large) classes
rather than such simple ones. If the sizes of p and q are both
reasonably large, f (p) = f (q) leads to a greater potential
that p ≡cp q holds. Therefore, our birthmarks can be used to
efficiently detect suspected copies from enormous combina-
tions of class files.

In the case that the birthmarks can be tampered with
(as in Experiment 1), introducing the birthmark similar-
ity makes theft detection more reliable than using only the
birthmark equivalence. The difference between Figs. 3 and
6 is rather interesting. In the figures, independent class files
have quite different birthmarks. Class files obtained from
their originals have birthmarks very similar to the originals’.
Therefore by setting an appropriate threshold of the similar-
ity, the proposed birthmarks can provide considerably reli-
able evidence for the copied class files.

5.2 Manual Modification

Indeed, the adversary would try to modify the birthmarks
by manual hacking. For example, to erase the CVFV birth-
mark, the attacker may tamper with the initial value of a field
variable, and add extra statements to adjust the value, such
as converting “int i=5;” into “int i=1; i+=4;” [41].
This sort of transformation can modify the original birth-
marks significantly. However, we are optimistic about the
vulnerability against such manual modification due to the
following reasons.

• The adversary must be highly skilled in Java bytecode
to modify a class file manually. Even so, such modi-
fication is a delicate and time-consuming task to make
to a class file while preserving the original code seman-
tics.
• Erasing the birthmark without decreasing the execution

performance is difficult. For example, the transforma-
tion mentioned above surely introduce an extra over-
head.
• Even if the adversary succeeds in changing a single



TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——
2157

birthmark, the similarity may not decrease much as
long as the rest of birthmarks are still alive. Hence,
manual modification must be done in the entire code,
which is quite time-consuming.

Thus, we consider that the proposed birthmarks are
simple but reasonably robust native signatures of Java class
files.

5.3 Other Birthmarks

Apart from the proposed four birthmarks (CVFV, SMC, IS,
and UC), we also examined whether or not other program
characteristics could be used as birthmarks. The following
are characteristics we decided not to use as birthmarks.

Constant Pool Java class files contain a data storage called
constant pool in which constant values and strings are
stored. These constants are necessary for program exe-
cution; however, we found that many of them are easily
changed via obfuscation tools.

Control flow Control flow is a fundamental aspect of com-
puter programs, which can be described as a directed
graph. However, since some obfuscators change a con-
trol flow graph, they should not be used as birthmarks.

Data flow Data flow is also characterized in several ways,
e.g. live variables in each line, variable span [42], and a
sequence of substitutions of local variables. However,
data flow is also easily changed by optimizers and ob-
fuscators.

Thus far we have also considered using commonly-
used software metrics, e.g. the number of methods in a class,
the depth of conditional nesting, and Fan-In/Out. How-
ever, such single-value metrics do not satisfy the distinc-
tion property well because different programs can have the
same value. Regardless a number of ways exist to charac-
terize different aspects of software; therefore, we will seek
for other potential birthmarks in our future work.

6. Conclusion

In this paper, we have proposed Java birthmarks to provide
reasonable evidence of theft of class files. First, we for-
mulated the birthmark of programs, and then presented four
types of birthmarks: CVFV birthmark, SMC birthmark, IS
birthmark, and UC birthmark.

The proposed birthmarks were thoroughly evaluated
by three practical experiments. The evaluation was con-
ducted from the viewpoints of preservation, distinction, and
compiler-specific properties. The result showed that the pro-
posed birthmarks have

• a good preservation property against automatic pro-
gram transformation,
• a distinction property for most practical class files ex-

cept tiny classes,
• sufficient native information of class files, which is not

tightly coupled with compiler-specific issues.

We have also presented a qualitative discussion on fea-
sibility in a pratical situation and in vulnerability for manual
hacking.

We plan to conduct a deeper security analysis of the
proposed birthmarks through more experiments. For this,
we will need a reasonable attack model that an adversary
would take although quantifying the behaviors of the attack-
ers is also challenging. We are also looking for more real
case studies, in which we detect the fact of the theft from
the same(or similar)-purpose software packages. An inves-
tigation of other types of birthmarks is also an interesting
problem for future research.

References

[1] BSA, “Global software piracy study,” June 2004.
http://www.bsa.org/globalstudy/

[2] A. Patrizio, “Pirates experience Office XP (wired news),” March
2001. http://www.wired.com/news/business/0,1367,42402,00.html

[3] E. Raymond and R. Landley, “OSI position paper on the SCO vs.
IBM complaint,” May 2004. http://www.opensource.org/
sco-vs-ibm.html

[4] “Epson pulls linux software following GPL violations (slash-
dot.org),” Sept. 2002.
http://slashdot.org/article.pl?sid=02/09/11/2225212

[5] T. Ueno, “The protest page to pocketmascot,” Sept. 2001.
http://members.jcom.home.ne.jp/tomohiro-ueno/
About PocketMascot/About PocketMascot e.html

[6] B. Joy, G. Steele, J. Gosling, and G. Bracha, The Java Language
Specification Second Edition, Addison-Wesley, June 2000.

[7] “Java 2 SDK standard edition,” http://java.sun.com/se/
[8] T. Lindholm and F. Yellin, The JavaT M Virtual Machine Specifica-

tion Second Edition, Addison-Wesley, April 1999.
[9] P. Kouznetsov, “jad - the fast java decompiler,” Feb. 2004.

http://kpdus.tripod.com/jad.html
[10] “Program transformation,” http://www.program-transformation.org/
[11] H. Tamada, “jbirth: A tool for extracting birthmarks from java class

files,” 2003. http://se.aist-nara.ac.jp/jbirth/
[12] “Codeshield java byte code obfuscator,” 1999.

http://www.codingart.com/codeshield.html
[13] H. Ohuchi, “jarg - java archiver grinder,” Jan. 2003.

http://jarg.sourceforge.net/index.en
[14] “Smokescreen java obfuscator,” 2000. http://www.leesw.com/
[15] “Zelix klass master,” 1997.

http://www.zelix.com/klassmaster/index.html
[16] “Apache Ant,” http://ant.apache.org/
[17] M. Dahm, J. van Zyl, and E. Haase, “Jakarta BCEL,”

http://jakarta.apache.org/bcel/
[18] E. Gamma, E. Meade, and K. Beck, “JUnit,” Feb. 2004.

http://www.junit.org/
[19] “jikes,” http://www-124.ibm.com/developerworks/oss/jikes/
[20] “Kjc kopi java compiler,” http://www.dms.at/kopi/
[21] H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto, “Design

and evaluation of birthmarks for detecting theft of java programs,”
Proc. IASTED International Conference on Software Engineering
(IASTED SE 2004), pp.569–575, Innsbruck, Austria, Feb. 2004.

[22] R.L. Davidson and N. Myhrvold, “Method and system for gener-
ating and auditing a signature for a computer program,” US Patent
5,559,884, Sept. 1996. Filed: June 30, 1994.

[23] A. Monden, “jmark: A lightweight tool for watermarking java class
files,” 2002. http://se.aist-nara.ac.jp/jmark/

[24] A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K. Torii, “A
practical method for watermarking java programs,” Proc. COMP-
SAC 2000, 24th Computer Software and Applications Conference,
pp.191–197, 2000



2158
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

[25] C. Collberg, “Sandmark: A tool for the study of software protection
algorithms,” 2000. http://www.cs.arizona.edu/sandmark/

[26] C. Collberg and C. Thomborson, “Software watermarking: Models
and dynamic embeddings,” Proc. Principles of Programming Lan-
guages 1999, POPL’99, pp.311–324, San Antonio, TX, Jan. 1999.

[27] C. Thomborson, J. Nagra, R. Somaraju, and C. He, “Tamper-
proofing software watermarks,” Proc. second workshop on Aus-
tralasian information security, Data Mining and Web Intelligence,
and Software Internationalisation, pp.27–36, Australian Computer
Society, Dunedin, New Zealand, 2004.

[28] A. Aiken, “MOSS: A system for detecting software plagiarism,”
June 2004. http://www.cs.berkeley.edu/˜aiken/moss.html

[29] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker, “SID pla-
giarism detection,” Dec. 2003.
http://genome.math.uwaterloo.ca/SID/

[30] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms
among a set of programs with JPlag,” J. Universal Computer Sci-
ence, vol.8, no.11, pp.1016–1038, Nov. 2002.

[31] M.J. Wise, “YAP3: Improved detection of similarities in computer
program and other texts,” Proc. 27 SIGCSE technical symposium on
Computer science education, pp.130–134, Philadelphia, Pennsylva-
nia, United States, 1996.

[32] A. Parker and H.O. James, “Computer algorithms for plagiarism de-
tection,” IEEE Trans. Educ., vol.32, no.2, pp.94–99, May 1989.

[33] K.J. Ottenstein, “An algorithmic approach to the detection and pre-
vention of plagiarism,” SIGCSE Bulletin, vol.8, no.4, pp.30–41,
1976.

[34] I.D. Baxter, A. Yahin, L.M.D. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” ICSM: The Interna-
tional Conference on Software Maintenance, pp.368–377, 1998.

[35] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multi-
linguistic token-based code clone detection system for large scale
source code,” IEEE Trans. Softw. Eng., vol.28, no.7, pp.654–670,
2002.

[36] I. Krsul and E.H. Spafford, “Authorship analysis: Identifying the
author of a program,” Comput. Secur., vol.16, no.3, pp.233–257,
1997.

[37] E.H. Spafford and S.A. Weeber, “Software forensics: Can we track
code to its authors?,” Comput. Secur., vol.12, no.6, pp.585–595,
1993.

[38] D. Grover, ed., The protection of computer software – its technol-
ogy and applications Second edition, The British Computer Society
Monographs in Informatics Cambridge University Press, May 1992.

[39] “Jakarta project,” http://jakarta.apache.org/
[40] “Java decompiler tests,”

http://www.program-transformation.org/Transform/
JavaDecompilerTests

[41] K. Fukushima, T. Tabata, and K. Sakurai, “Program birthmark
scheme with tolerance to equivalent conversion of java classfiles,”
IPSJ SIG Notes 2003-126, pp.81–86, Dec. 2003.

[42] S. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering
Metrics and Models (Benjamin/Cummings series in software engi-
neering), Addison-Wesley, March 1986.

Haruaki Tamada received the BE and ME
in Information and Communication Engineering
from Kyoto Sangyo University, Japan in 1999,
2001. He is currently a Ph.D candidate in Grad-
uate School of Information Science, Nara Insti-
tute of Science and Technology, Japan. He is in-
terested in software security including; software
obfuscation, watermarking, fingerprinting, and
plagiarism detection. He is a student member of
the IEEE.

Masahide Nakamura received the B.E.,
M.E., and Ph.D. degrees in Information and
Computer Sciences from Osaka University,
Japan, in 1994, 1996, 1999, respectively. From
1999 to 2000, he has been a post-doctoral fellow
in SITE at University of Ottawa, Canada. He
joined Cybermedia Center at Osaka University
from 2000 to 2002. He is currently an assistant
professor in the Graduate School of Information
Science at Nara Institute of Science and Tech-
nology, Japan. His research interests include the

feature interaction problem in network services, software validation and
verification, and software metrics and security. He is a member of the IEEE.

Akito Monden received the BE degree
(1994) in electrical engineering from Nagoya
University, Japan, and the ME degree (1996)
and DE degree (1998) in information science
from Nara Institute of Science and Technol-
ogy, Japan. He was honorary research fellow
at the University of Auckland, New Zealand,
from June 2003 to March 2004. He is currently
Associate Professor at Nara Institute of Science
and Technology. His research interests include
software security, software measurement, and

human-computer interaction. He is a member of the IEEE, ACM, IPSJ,
JSSST, and JSiSE.

Ken-ichi Matsumoto received the BE,
ME, and PhD degrees in Information and Com-
puter sciences from Osaka University, Japan, in
1985, 1987, 1990, respectively. Dr. Matsumoto
is currently a professor in the Graduate School
of Information Science at Nara Institute of Sci-
ence and Technology, Japan. His research in-
terests include software measurement and soft-
ware user process. He is a senior member of the
IEEE, and a member of the ACM and IPSJ.


