
Describing and Verifying Integrated Services of Home Network Systems

Pattara Leelaprute1, Masahide Nakamura2, Tatsuhiro Tsuchiya1,
Ken-ichi Matsumoto2, Tohru Kikuno1

1Graduate School of Information Science and Technology, Osaka University, Japan
{pattara, t-tutiya, kikuno}@ist.osaka-u.ac.jp

2Graduate School of Information Science, Nara Institute of Science and Technology, Japan
{masa-n, matumoto}@is.naist.ac.jp

Abstract

This paper presents a framework to specify and verify in-
tegrated services of a home network system (HNS). We first
develop a modeling language to describe the HNS and the
integrated services. Complementing our previous work, the
language captures each appliance as an object consisting of
properties and methods, encapsulating the underlying pro-
tocols and platforms. We then present a method that verifies
the integrated services with symbolic model checking, by
translating the proposed language into the SMV (Symbolic
Model Verifier) language. Thus, it is possible to validate
if the integrated service is specified as intended, automati-
cally and exhaustively. Using the proposed framework, ser-
vice developers can effectively detect design flaws in a sin-
gle integrated service, as well as feature interactions among
multiple services, in early stages of service development.

1. Introduction

With the emerging technologies in ubiquitous comput-
ing, general household appliances are being equipped with
smart processors and network interfaces. Home appliances,
such as TVs, DVDs, air-conditioners, refrigerators, venti-
lators, even lights and windows, are connected to LAN at
home, comprising a home network system (HNS, for short).

A major challenge of the HNS lies in integrating features
of different appliances via network [13]. The integration
would implement various value-added services (called HNS
integrated services), which provide a more comfortable and
convenient living environment for home users. For instance,
integrating an air-conditioner, a window (controller), a ven-
tilator and thermometers would implement an HVAC (heat-
ing, ventilation and air-conditioning) service [4]. This in-
tegrated service achieves energy-saving air-conditioning by
automatically controlling the ventilator and the window, ac-
cording to the current temperature inside/outside the room.

Recently, several HNS protocols have been standard-
ized (e.g., UPnP [15] for AV appliances, ECHONET [4] for
white goods). However, these protocols only prescribe how
each appliance communicates with others via network. How
to integrate features of different appliances is beyond their
scope. Thus, there are still many open issues in developing
the HNS integrated services efficiently. Especially, methods
in early stages of development, including modeling, design
and validation, have not been widely studied. Lack of these
methods may cause unreliable and low-quality service de-
sign, which forces service developers to directly implement
services in an ad-hoc and time-consuming manner.

To cope with the problem, this paper presents a for-
mal method for specifying and validating the HNS inte-
grated services, which helps developers in early stages of
service development. The proposed framework consists of
two parts. The first part is a description method of the HNS
and integrated services. Based on our previous work [10],
we establish an object-oriented model of the HNS. In the
model, each appliance (or environment) is represented by
an object, consisting of properties and methods. For each
appliance object, its properties characterize the current in-
ternal state of the object, while the methods represents fea-
tures (i.e., APIs) that the object supports. Each method is
modeled as a pair of pre and post conditions. HNS inte-
grated services are constructed by combining the methods
provided by different appliance objects. To specify inte-
grated services, we propose a modeling language. This lan-
guage allows sequential execution, branches and loop.

In the second part, we present a method that validates
the integrated services with symbolic model checking [8].
Specifically, we develop a method for translating an in-
tegrated service specified in the proposed language into
the well-known SMV (Symbolic Model Verifier) language.
Once translated, the SMV tool automatically and exhaus-
tively verifies the integrated service against any properties
specified in CTL (Computational Tree Logic). Thus, we can
effectively detect design flaws in integrated services.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

2. Home Network Systems

A home network system (HNS) consists of one or more
networked appliances connected to a local area network at
home. In general, each HNS appliance has a set of device
control interfaces (i.e, APIs), by which the users or external
software agents can control the appliance via the network.
To handle API calls, an appliance is usually equipped with
at least a processor, a storage and a network interface. The
communication among the appliances is performed with an
underlying HNS protocol. Several protocols are currently
being standardized, such as UPnP [15], ECHONET [4], Jini
[9] and HAVi [6]. The protocols prescribe a set of network-
level agreements including; address setup, advertisement,
message formats. In this paper, we discuss a generic frame-
work independent of specific protocols. Hence, we assume
that each appliance has a certain mechanism (e.g., middle-
ware) to handle a protocol.

The main advantage of the HNS lies in the ability to
flexibly integrate features of different appliances to provide
value-added services. We refer to such services as HNS inte-
grated services. For the sake of discussion, consider an ex-
ample of an HNS which consists of the following networked
appliances: an air-conditioner, a ventilator, a window, two
thermometers and a smoke sensor. Also we assume that the
air-conditioner operates either of the two modes: the cool-
ing mode and the fan mode.

HVAC Service: HVAC achieves energy-saving air-
conditioning of a room based on the set temperature. To
simplify the discussion here, we focus on its cooling func-
tion. If the room is hotter than the set temperature, the
HVAC service operates the air-conditioner in the cool-
ing mode. To efficiently cool down the room, if the
room temperature is hotter than the outside, the ventila-
tor is also turned on to provide fresh outside air. In this case
the ventilator will keep working until the room tempera-
ture reaches the outside temperature. If the room tempera-
ture is below the set temperature, on the other hand, HVAC
has the air-conditioner operate in the fan mode.

Air-Cleaning Service: The Air-Cleaning Service, which
involves the smoke sensor, is used to clean the air in the
room. When the smoke sensor detects the smoke (caused by
tobacco, cooking, or fire), the service automatically opens
the window and turns on the ventilator. When the air is
cleaned, the window and the ventilator are shut down.

The HNS integrated services are usually implemented
as software applications that activate different HNS appli-
ances in a pre-defined manner. These applications could be
installed in a centralized home server [13], or could be dis-
tributed in appliances themselves [11]. Figure 1 shows an
example HNS, where integrated services are deployed in
the home server. Although several architectures for the ap-

API

API

API
API API

thermometer
(inside)

window

thermometer
(outside)

air-conditionersmoke
sensor

home
server

ventilator

Air Clean
HVAC

API

Figure 1. An Example Home Network System

pliance integration are currently being standardized (e.g.,
OSGi [13], DLNA [3] and DHF [7]), design and implemen-
tation of concrete integrated services (i.e., software applica-
tions) are completely up to individual service vendors.

3. The Object-Oriented Model for HNS
To assist a service developer efficiently in the early

stages of development, it is essential to establish a model
of HNS independent of the underlying protocols, platforms,
or appliance implementations. In our model, both applica-
tions and the environment that the applications interact with
are modeled as objects. The object of each appliance con-
sists of properties and methods, while the object of the en-
vironment constitutes only of properties. The properties of
an object are attributes that characterize the internal state
of that object. Each property has a type determining allow-
able values of the property.

Definition 1 (Environment) An environment Pe is defined
as a set of environment properties.

Definition 2 (Appliance) A networked home appliance d
is defined as a 4-tuple d = (Pd, Md, P red, Postd), where

• Pd = {p1, · · · , pn} is a set of all properties of d.

• Md = {m1, · · · , mk} is a set of all methods of d.

• Pred is a pre-condition function which maps each
method mi ∈ Md to a logic formula over Pd. mi can
be executed only when Pred(mi) is true.

• Postd is a post-condition function which maps each
method mi ∈ Md to a logic formula [pi1 = ai1∧pi2 =
ai2 ∧ · · ·], where pij ∈ Pd ∪ Pe, aij is either a con-
stant value or a formula over of Pd ∪ Pe. The type of
aij must coincide with pij . If mi is executed, the value
of pij becomes equal to aij and the other properties
that do not appear in the formula keep their values un-
changed.

A property p ∈ Pd (or a method m ∈ Md) of an appliance
d is denoted by d.p (or d.m, respectively).

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

HNS = (Pe, D, We), where D = {AirConditioner, Thermometer_inside,
Thermometer_outside, SmokeSensor, Window, Ventilation}

(a) Appliance/Environment Properties (b) Appliance Methods

Appliance Property Name Property Type Name Property Type Initial Value
 Power tPower {ON,OFF} OFF
 TempSetting tAC_Temp {18..28} (�) 24
 ModeSetting tAC_mode {COOLING,FAN} COOLING
 Power tPower {ON,OFF} OFF
 CurrentTemp tTemp {15..40} (�) *
 Power tPower {ON,OFF} OFF
 CurrentTemp tTemp {15..40} (�) *
 Power tPower {ON,OFF} OFF
 CurrentSmoke tSmoke {0,1} 0
 Power tPower {ON,OFF} OFF
 WindowStatus tWindowStatus {OPEN,CLOSE} CLOSE

Ventilator Power tPower {ON,OFF} OFF
 Temp_in tTemp {15..40} (�) *
 Temp_out tTemp {15..40} (�) *
 Smoke tSmoke {0,1} 0

Environment

Window

SmokeSensor

AirConditioner

Thermometer_inside

Thermometer_outside

Appliance Method Pre-Condition Post-Condition Env-Read Env-Write
 ON() Power='ON'
 OFF() Power='OFF'
 setTemperature(tAC_Temp temp) Power='ON' TempSetting=temp Temp_in
 setMode(tAC_Mode mode) Power='ON' ModeSetting=mode Temp_in
 ON() Power='ON'
 OFF() Power='OFF'
 measureTemp() Power='ON' CurrentTemp=Temp_in Temp_in
 ON() Power='ON'
 OFF() Power='OFF'
 measureTemp() Power='ON' CurrentTemp=Temp_out Temp_out
 ON() Power='ON'
 OFF() Power='OFF'
 detectSmoke() Power='ON' CurrentSmoke=Smoke Smoke
 ON() Power='ON'
 OFF() Power='OFF'
 OPEN() Power='ON' WindowStatus='OPEN' Temp_in
 CLOSE() Power='ON' WindowStatus='CLOSE' Temp_in
 ON() Power='ON' Temp_in
 OFF() Power='OFF' Temp_in

Ventilator

Window

AirConditioner

Thermometer_inside

Thermometer_outside

SmokeSensor

Figure 2. The Model of the Example HNS

The methods of an appliance represent the APIs (i.e., de-
vice control interfaces) that refer or update the properties
of the appliance. Since the internal implementation of the
APIs is usually encapsulated in the appliance, we character-
ize each method simply by a pair of a pre-condition and a
post-condition.

For each appliance object, the current values of the prop-
erties represent the state of the object. A method execution
causes a state transition of the object, which changes the
current state to the next state according to the pre/post con-
ditions.

Definition 3 (Appliance Semantics) A state s of an ap-
pliance d = (Pd, Md, P red, Postd) is defined as s =
[c1, c2, · · · , cn], where ci is the current value of the prop-
erty pi(∈ Pd). For a method m ∈ Md, we say that m is
enabled under s iff Pred(m) is true for the current values
represented in s. When m is enabled under s, m can be ex-
ecuted. If m is executed, the state s is changed to the next
state s′ = [a1, a2, · · · , an], as specified in Postd(m) =
[pi1 = ai1 ∧ pi2 = ai2 ∧ · · ·]. We assume that during the
execution of m, no other methods of d can be executed.

Intuitively, a pre-condition Pred(m) models a guard of the
method m. A post-condition can be regarded as an asser-
tion that must be satisfied after the method is executed.

Appliances can interact with the environment through
the execution of their methods. In our model, sensing the en-
vironment is represented by the post-condition of a method.
That is, the environment properties can be read in the post-
condition.

Executing appliance methods may also have some ef-
fects on the environment. To specify which methods can
change which environment properties, we introduce the fol-
lowing definition.

Definition 4 (Environment Write Function) Let
D = {d1, d2, · · · , dr} be a set of all appliances. Also,
let M = ∪di∈DMdi be a set of methods of all appli-
ances. The effects on the environments caused by method

executions are specified by the environment write func-
tion. The environment write function We : M → 2Pe

maps each method m ∈ M to a set of environment proper-
ties that are written by m.

Consequently, an HNS is defined by a set of appliance
objects and an environment object.

Definition 5 (Home Network System) A home net-
work system is defined as HNS = (Pe, D, We), where

• Pe is the environment.

• D = {d1, d2, ..., dr} is a set of appliances.

• We is the environment write function.

Figure 2 shows a model of the example HNS pre-
sented in Section 2. Figure 2(a) lists properties and their
types for each appliance or environment object. For in-
stance, AirConditioner has three properties: Power,
TempSetting and ModeSetting. The type of Power is
{ON,OFF}, saying that the value of Power is either ’ON’
or ’OFF’. For convenience, each type has a name pre-
fixed by t. Figure 2(b) lists appliance methods. For each
method, its pre/post conditions and the environment prop-
erties to read/write are shown. For example, take the
method AirConditioner.setMode(tAC Mode mode).
Its pre-condition states that the method can be executed
only when Power=’ON’ holds for the air-conditioner. The
method has a formal parameter mode, to which some value
of type tAC Mode is assigned when this method is invoked
(e.g., AirConditioner.setMode(’COOLING’);).
When the method executed, property ModeSetting is up-
dated to the value of mode, according to its post-condition
(ModeSetting=mode). Invocation of the method writes
an environment property Temp in, meaning that set-
ting the air-con mode can change the temperature inside the
room. In Figure 2, * denotes a “don’t care”. Although for-
mal parameters are not defined in our model, they are used
simply for notational convenience; a method with for-
mal parameters represents a family of methods.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

4. The Proposed HNS Description Language
In this section, we propose a language for representing

integrated services based on the model described in the pre-
vious section. Our language consists of two parts: (a) sys-
tem description for the HNS and (b) service description for
the integrated services.

This description language is designed with the assump-
tion that the platform that executes the integrated service
can read the values of the properties of any appliances.

4.1. System Description

The system description part is used to describe the HNS
model defined in Section 3. An HNS is described in the fol-
lowing format. A sentence begins with # is a comment, and
capital words (e.g., SYSTEM, TYPEDEF) denote keywords.

SYSTEM HNS_name {
TYPEDEF # Type definition

type_name1 type1;
type_name2 type2;
:

Environment definition
ENVIRONMENT env_name {

!! PROPERTY # Environment properties declaration
type_name1 env_property1 [:= init_val];
type_name2 env_property2 [:= init_val];
:

}
Appliance definition
APPLIANCE appliance_name1 {

!! PROPERTY # Appliance properties declaration
type_name1 app_property1 [:= init_val];
type_name2 app_property2 [:= init_val];
:

METHOD # Method definition
:

}
APPLIANCE appliance_name2 {

:
}
:

}

The system is named at the top nesting level follow-
ing SYSTEM keyword. The body of the system consists of
three sections: TYPEDEF section, ENVIRONMENT section,
and APPLIANCE section.

Type Definition The TYPEDEF section declares types com-
monly used in the system. The proposed language supports
three types: Boolean (i.e., {true,false}), integer, or enu-
meration. An integer type is specified by upper and lower
bounds, e.g., {1..5}. An enumeration type is defined by
enumerating concrete elements, e.g., {ON,OFF}. Every type
can be named by an identifier, e.g., tPower {ON,OFF}.
The scope of the type name covers the entire system de-
scription.

Environment Definition The ENVIRONMENT section de-
fine an environment object. In our HNS model, the envi-
ronment consists of only environment properties. For each
property, an identifier and its type declared in the TYPEDEF
section are specified. Optionally, one can specify the initial
value of the property with the assignment operator (:=).

Appliance Definition All appliances deployed in the HNS
are declared in multiple APPLIANCE sections (blocks), each
of which defines an appliance object. An APPLIANCE block
comprises of definitions of properties and methods of the
appliance. The appliance properties are specified in the
same way as in the ENVIRONMENT section. Each method
is described in a METHOD subsection in the following for-
mat:

METHOD # method definition
return_type1 method_name1([type_name formal_param]*){
PRE pre_condition;
POST post_condition;
ENV_R env_name.property_name;
ENV_W env_name.property_name;
RETURN return_value;

}
return_type2 method_name2(...) {
:

}
:

A method is associated with a name and its return type;
for notational convenience, we allow methods to return a
value. A read of the return value of a method represents a
subsequent execution of that method and a read of an appli-
ance property of interest. The return type must be a type that
is declared in the TYPEDEF or void. A method can have one
or more formal parameters (separated by ’,’), each of which
is declared by type and name. The body of the method con-
tains pre/post conditions, environment read/write, and the
return value. To specify a logical formula for the pre(or
post) condition, the properties, the formal parameters, and
ordinary unary and binary operators (+, -, =, <, >, <=,
>=, !=, !, &, |) can be used. ENV R (or ENV W) enumer-
ates environment properties read (or written, respectively)
by the method. RETURN specifies the value to be returned,
which can be specified by a property or an expression (e.g.,
AC Temp + 1).

Appendix A shows the system description for the exam-
ple HNS presented in Figure 2.

4.2. Service Description

To provide sufficient expressive power required to de-
scribe complex integrated services, the service description
part supports: (a) WHILE and IF statements, (b) local vari-
ables for storing temporal data, and (c) pseudo functions to
abstract events. The service description adopts the follow-
ing format.

DEPLOYED_SYSTEM HNS_name;

SERVICE service_name1([type_name formal_param]*){
Local variable declaration
VAR type_name local_var1 [:=initial_value];

type_name local_var2 [:=initial_value];
:
Appliance declaration
APPLIANCE appliance1, appliance2,..;

CONTENT # service content
statement1;
statement2;
:

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

}
SERVICE service_name2(type_name formal_para_name){

:
}

The keyword DEPLOYED SYSTEM is used to specify the
HNS where the services are deployed. It imports a system
description designated by HNS name. The integrated ser-
vices are defined by one or more SERVICE blocks. Simi-
larly to the appliance method, a service can have formal pa-
rameters. An actual value is passed to each parameter when
a user agent invokes the service.

Variable and Appliance Declarations A service can use
local variables declared in the VAR subsection. The decla-
ration is done in the same way as properties in the system
description. Allowable types are either Boolean, integer, or
enumeration. The scope of the variables is only within the
service. The APPLIANCE subsection designates appliance
objects used in the service. These appliances must be the
ones defined in the imported system description.

Service Content The CONTENT subsection describes the
body of the service, which consists of one or more state-
ments. Basically, the statements are sequentially executed
one-by-one from top to bottom, as in the ordinary procedu-
ral programming language. The syntax of the statements is
given in BNF as follows.
statement::

invocation_statement
| assignment_statement
| if_statement
| while_statement
| { compound_statement }

invocation_statement:: invocation ;
invocation::

appliance_name.method_name(arg_list)
| pseudo_function

arg_list:: expression | expression, arg_list
pseudo_function:: end() | exit()
assignment_statement:: local_var := expression
if_statement::

if (Boolean_expression) statement
| if (Boolean_expression) statement else statement

while_statement::
while (Boolean_expression) statement
compound_statement:: statement

| compound_statement statement

• An invocation statement refers to a statement that
invokes an appliance method (or a pseudo function, dis-
cussed later). The method invocation is executable when
its pre-condition is satisfied. Invocation of an appliance
method is a primitive construct of an integrated service. In-
vocation of an appliance method can take actual parameters
as a list of expressions. Due to limited space, we omit the
syntax of expression. In the proposed language, an ex-
pression is constructed by operators given in Section 4.1.
As for operands, local variables, appliance properties, con-
stants, and invocation can be used.

• A pseudo function is a meta function to model an ab-
stract event in the service. Two types of functions are sup-
ported: end() and exit(). end() returns true (1) when

the user terminates the service (e.g., with a termination sig-
nal from the user agent). exit() models a system call by
which the system terminates the service. These allow the de-
veloper to specify explicitly when or by whom the service
is terminated. The pseudo functions are always executable.

• An assignment statement sets a local variable to the
evaluated value of an expression of the same type. Note
that no appliance property can come at the left-hand side,
since the properties cannot be updated directly, and should
be written via appliance methods.

• An if statement specifies a conditional branch.
If Boolean expression is evaluated to be true, then
the first statement is executed next. If not, the sec-
ond statement (in ELSE-clause) is chosen to execute.
The Boolean expression is an expression whose re-
sult takes true (1) or false (0).

• A while statement specifies a loop. The state-
ment is repeatedly executed while the associated
Boolean expression is true.

• A compound statement represents a block of multiple
statements.

Appendix B represents an example design of the HVAC
and the Air-Cleaning services introduced in Section 2. The
service description assumes that the services are deployed
in the HNS described in Appendix A.

5. Translating Service Description for Sym-
bolic Model Checking

The service description written in the proposed language
is rigorous enough to be amenable to formal verification. In
this section we show the method for model checking the in-
tegrated services with the SMV model checker .

5.1. Symbolic Model Checking and SMV

Model checking is the process of exploring a finite state
space to determine whether or not a given property holds
[2]. The major problem of model checking is that the state
spaces arising from practical problems are often extremely
large. A promising approach to this problem is the use of
symbolic representation of the state space; that is, Boolean
functions are used to represent the state space, instead of
explicit adjacency-lists. SMV is a software tool that imple-
ments symbolic model checking [8]. To use SMV to verify
a system, the system needs to be described as an SMV pro-
gram in the SMV language. An SMV program is divided
into one or more modules, each of which specifies a finite
state machine. The interaction between concurrently exe-
cuting modules is specified in the main module. In particu-
lar, if concurrently executing modules are defined using the
process keyword, these modules use an interleaving se-
mantics, in which only one process transitions at each step.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Each module contains variable declarations to determine
its state space and descriptions of the initial state and transi-
tion relation of the machine. Variable declarations are pre-
ceded by the keyword VAR. The type associated with a vari-
able can be Boolean or an enumerated type. The transition
relation is described by a collection of parallel assignments
to the next version of the variables. Assignments of ini-
tial values and next values to the variables are preceded by
the keyword ASSIGN. Initial states are assigned by speci-
fying the initial values of the variables using the expression
init(x), where x is a variable. The expression next(x)
is used to refer to the variable x in the next state

The correctness property to be verified is specified in an
SMV program as a formula in CTL (Computational Tree
Logic), under the keyword SPEC. CTL is a well-known
temporal logic. SMV verifies whether all possible initial
states satisfy the property or not.

5.2. Compiling Service Description

This subsection presents a method for compiling an in-
tegrated service described in the proposed language into an
SMV program. Our language basically describes each ser-
vice as a sequential program, where statements are executed
sequentially one-by-one according to given control flows.
On the other hand, the SMV describes the system based on
the transition relation only. Hence, the key is how to rep-
resent the original control flow in the SMV program. To
achieve the compilation, we take a similar idea discussed in
Chapter 2 of [2].

To represent the behavior of integrated services by an
SMV program, it is necessary to determine the semantics of
concurrent execution of multiple services. We make the fol-
lowing assumptions.

• Multiple services can be executed concurrently and in
an interleaving manner.

• A statement with one or no method invocation is exe-
cuted in an atomic step.

• A statement involving n method invocations is exe-
cuted as consecutive n atomic actions, each of which
corresponds to the execution of one of the n methods.
The order of method invocation is from left to right.

Also we assume that a service description Ser and the
corresponding system description Sys are given as inputs.
The output is an SMV program smv that simulates Ser.

Step 0: Preliminary We define a main module in smv. For
every appliance (or environment) property A.p in Sys, we
define A.p as a variable A p in VAR section of smv, with
the appropriate type. Also, we assign the initial value to A p

in ASSIGN section of smv. For every environment property
ep, we define its next value as an arbitrary value of its type,
since the environment changes arbitrarily so that the system

begin_dummy;
statement1;
statement2;
:
end_dummy:

:
if (cond) {

statements;
if_dummy;

} else {
statements;

}
ifend_dummy:
:

:
while_dummy;
while (cond) {

statements;
whileend_dummy;

}
:

(a) Dummies for
a whole service

(b) Dummies for a
if-statement

(c) Dummies for a
while-statement

Figure 3. Inserting Dummy Statements

cannot predict it. (This solution is also adopted in [1].) For
instance, for the system given in Figure 2, the main mod-
ule would be:

MODULE main
VAR

AC_pwr:{ON,OFF}; --AC. Power (Appliance property)
:
ENV_T_out:{15,..,40}; --Temp outside (Env. property)

ASSIGN
init(AC_pwr):=OFF;
:
next(ENV_T_out):={15,..,40}; --Changes arbitrarily
:

For each SERVICE svc declared in Ser, we perform from
Step 1 to Step 5.

Step 1: Making a Module for the Service We define svc
as a module svc in smv. The formal parameters of svc are
defined as variable in VAR section with appropriate type.
Also, we assign the initial value by using an arbitrary value
of their type, since we cannot predict which value the user
will choose when executing the service. Then, the formal
parameters of svc and all properties referred in svc are spec-
ified as the formal parameters of svc. After that, svc is in-
cluded as process in the main module. Also, we declare
local variables of svc in VAR section as they are. For in-
stance, HVAC service could be:

MODULE main
VAR

:
user_temp:{18,..,28}; --Formal parameter of HVAC
HVAC1: process HVAC(user_temp,AC_pwr,...,ENV_T_out);

ASSIGN
:

init(user_temp) := {18,..,28}; --Selected arbitrarily

MODULE HVAC(usr_temp,AC_pwr,...,ENV_T_out)
VAR

Ti_temp: {15,..,40}; --Local variable
:

ASSIGN
init(Ti_temp) := 25;
:

Step 2: Labeling Statements For every statement in
CONTENT of svc, we attach a unique label to achieve a con-
sistent control flow in smv. First, we insert dummy
statements in svc, as shown in Figure 3. These dum-
mies have no effect, but for specifying special points of
control. Next, we extract each method invocation from ex-

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Labeled Statement DEFINE

preL := formula;
postL := (pi1 = ai1 & pi2 = ai2 & …);
nextL_pi1 := ai1;
nextL_pi2 := ai2;

:

L: mi() ; # method

L: var:=exp; # assign nextL_var:=exp;

L: if (bool_exp) { # if ifL_true := bool_exp;
ifL_false:= !(bool_exp);
whileL_true := bool_exp;
whileL_false:= !(bool_exp);

L: while (bool_exp) { # while

where
PRE: formula;
POST: pi1 = ai1 & pi2 = ai2 & …;

Table 1. Condition Conversion Rules

(pc = L) & preL : L+1 ;
(pc = L) & ifL_true : L+1;
(pc = L) & ifL_false : label(if_dummy)+1;
(pc = L) : label(ifend_dummy);
(pc = L) & whileL_true : L+1;
(pc = L) & whileL_false: label(whileend_dummy)+1;
(pc = L) : label(while_dummy);
(pc = L) : label(end_dummy);
(pc = L) : label(begin_dummy);
(pc = L) : L+1;

L: m();
L: if (cond) {

L: if_dummy;
L: while (cond) {

L: whileend_dummy ;
L: exit();
L: end_dummy ;
L: any_other_statement ;

Labeled Statement ASSIGN next(pc) : =

Table 2. Program Counter Update Rules

pressions. For each method invocation m() in an ex-
pression e, we replace m() by the return value of m().
Then, we add m(); immediately before e. For instance,
var:=A.m1()+B.m2()+c; is translated into three state-
ments below:

A.m1();
B.m2();
var: = RET(A.m1()) + RET(B.m2()) + c;

For the resultant statements, we put sequence numbers
from begin dummy; to end dummy;, as the unique la-
bels. By convention, we assume that begin dummy; and
end dummy are labeled by 0: and max:, respectively. In
the following, let label(stm) denote the label (number) of
a statement stm.

Step 3: Extracting Conditions as Macros For each stm
of the labeled statements, we extract conditions from stm,
and convert them into DEFINE macros of smv. The rules
for the conversion are shown in Table 1, supposing that
L = label(stm). The first rule applies when stm is a
method invocation mi(). In DEFINE, pre/post conditions are
described as they are. Moreover, a value of each property p
is defined as nextL p, which will be used to specify the
next value of p in Step 5. The second rule applies to as-
signment statements, which specifies the next value of local
variable var. The last two rules apply to if and while. The
rules generate two macros that represent two cases where
the condition is true and false.

Step 4: Deploying a Program Counter To simulate the
control flow of svc, we introduce a variable pc in smv as

a program counter. First, we define a local variable pc in
the svc module of smv, as VAR pc:{0..max};, and ini-
tialize as ASSIGN init(pc):=0;. Suppose that pc = L

when smv is currently simulating the L-th statement stm
(i.e., label(stm) = L). Then, we want to update pc to an
appropriate next value after stm is executed. For this, we
present rules to compute the next value of pc in Table 2.

The first rule applies when stm is a method invocation
m(). In order for m() to be executed, the pre-condition of
m() preL (see Table 1) must hold. In this case, the next
value of pc will be L+1. When stm is an if-statement (or
while-statement), the next value depends on the condition as
shown in the second (or fourth) rule. If the condition is false,
then stm is set to the label of a dummy statement, so that
the execution jumps to an appropriate control point (see Fig-
ure 3). Similarly, a jump also occurs when stm is a certain
dummy statement. When stm is exit(), pc is set to the
last statement, which simulates the end of service. We ap-
ply the rules to all the statements, and resultant SMV code
would be: ASSIGN next(pc):= case esac;.

Step 5: Specifying the Transition Relation When a
method invocation m() occurs, properties specified in
the post condition of m() are updated to the next val-
ues, which defines a transition relation of the system.
Hence, for each property p, we need to identify when p
is updated by which statement. Fortunately, we can eas-
ily specify the transition relation by consulting DEFINE sec-
tion generated in Step 3. For a property p, if DEFINE con-
tains nextL p:=a;, it means that p is updated by the L-th
statement, which is a method invocation m(). Thus, p can
be updated when pc=L and the pre-condition of m() be-
comes true. Note that p could be updated in other state-
ments as well. As a result, the next value of p can be defined
as:

ASSIGN next(p):= case
(pc=L) & preL :nextL_p; --updated by L-th statement

: --updated by other statements
1: p; --stay unchanged.

esac;

Similarly, we can define the next value of a local variable
var, which could be updated by an assignment statement.
ASSIGN next(var):= case

(pc=L) :nextL_var; --updated by L-th statement
: --updated by other statements

1: var; --stay unchanged.
esac;

We apply the same procedures to all the properties and
local variables defined in svc. Finally, we model the behav-
ior of end() pseudo function. By definition, end() returns
true when the user wants to terminate the service. However,
the system cannot predict when the termination occurs. So,
we abstract the behavior by using non-determinism.

VAR end:{0,1}; --Boolean for end() function
ASSIGN next(end):= case

(pc=L) :{0,1}; --non-determinism in L-th statement

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

1: end; --stay unchanged.
esac;

6. Verifying Integrated Services

Using the proposed language, the HVAC and Air-
Cleaning services in Section 2 can be described (see
Appendix A and B for the system and service descrip-
tions). The description is compiled into an SMV program,
comprising about 580 lines of code. Due to the page lim-
itation, we show the compiled HVAC service only in Ap-
pendix C.

Then, based on the informal descriptions (high-level re-
quirements) presented in Section 2, we derived the follow-
ing CTL formulas as desirable properties for the services.

Properties for HVAC Service:
• If the service is started, then the air-conditioner will be
eventually turned on.

P1: SPEC AG(pc=1 -> AF(AC_pwr=on))

• If the room temperature exceeds the set temperature, then
the mode of the air-conditioner will be set to the cooling
mode. On the other hand, if the temperature is below the
set temperature, then the mode of the air-conditioner will
be set to the fan mode. (Ti temp represents the tempera-
ture inside the room, and user temp is a formal parameter
that contains the temperature set by a user.)

P2: SPEC AG((Ti_temp > user_temp)
-> AF(AC_setMode=cooling))

P3: SPEC AG(!(Ti_temp > user_temp)
-> AF(AC_setMode=fan))

• Once the ventilator is turned on, it will keep operating un-
til the inside temperature reaches the outside temperature.
(To temp represents the temperature outside the room.)

P4: SPEC AG(Ventilation_pwr=on ->A[Ventilation_pwr
=on U !(Ti_temp > To_temp)])

Properties for Air-Cleaning Service:
• Whenever the sensor device senses smoke, the ventilator
will be turned on and the window will be opened.

P5: SPEC AG(SmokeSensor_currentSmoke=1
-> AF(Ventilation_pwr=on))

P6: SPEC AG(SmokeSensor_currentSmoke=1
-> AF(Window_status=open))

• If the window is opened, then the window will keep open
until the sensor no longer senses smoke. Similarly, once the
ventilator is turned on, it will keep working until no smoke
is detected.

P7: SPEC AG(Window_status=open -> A[Window_status
=open U SmokeSensor_currentSmoke=0])

P8: SPEC AG(Ventilation_pwr=on -> A[Ventilation_pwr
=on U SmokeSensor_currentSmoke=0])

We have verified these properties against individual ser-
vices using a model checker SMV [14]. As a result, it was
automatically proven that the HVAC service successfully
conformed to P1 through P4 in all possible reachable states.
Also, all properties from P5 through P8 became true for
the Air-Cleaning service. The time taken for the verifica-
tion was 1.2 sec. per each property on the average, with the
PC with PentiumM 1.0Ghz (Memory 760MB, WinXP Pro).
As a result, it was confirmed quite efficiently that our de-
sign of the individual services had no critical design flaw.

Interestingly however, the properties P4 and P8 became
false when we ran the two services in parallel. The counter-
example of P8 told that the ventilation is turned off although
there is still smoke. This is because the HVAC turns off the
ventilation, when the room temperature becomes lower than
the outside temperature. The finding was observed due to a
functional conflict among the services, which is well known
as the feature interaction problem [5]. Developing a more
systematic approach to detecting feature interaction using
the model checking will be left to our future research.

7. Conclusion

This paper presented a formal framework to verify and
validate integrated services of home network systems. Al-
though not presented in the paper, we actually have de-
scribed various services using the proposed language, such
as the seven services presented in [10] and more includ-
ing a security service and a power-saving service. Thus,
we believe that the proposed language is expressive enough
to describe practical services. Also, the proposed language
enables a compact modeling independent of the underly-
ing HNS protocols or specific platform. Hence, it could be
helpful for developers to conduct a platform-independent
modeling (PIM) of the MDA [12]. It is also interesting to
develop a method to convert the proposed language into
platform-specific workflow languages such as BPEL4WS.

Acknowledgments

This research was partially supported by Grant-in-Aid
for Young Scientists (B)15700058, 2005 and the 21st Cen-
tury Center of Excellence Program “New Information Tech-
nologies for Building a Networked Symbiotic Environ-
ment” of JSPS.

References
[1] W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno,

D. Notkin and J. Reese, “Model checking large software
specifications”, IEEE Transactions on Software Engineering,
24(7): pp. 498-520, July 1998.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing, MIT Press, 1999.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

[3] Digital Living Network Alliance-
http://www.dlna.org/

[4] ECHONET Consortium- http://www.echonet.gr.jp/
[5] “Feature Interaction in Telecommunications and Software

Systems”, Vol. I-VIII, IOS Press, 1992-2005.
[6] HAVi - http://www.havi.org/
[7] ITU-T Recommendation J.190, “Architecture of Media

HomeNet that supports cable-based services”, 2002.
[8] K. L. McMillan, “Symbolic Model Checking”, Kluwer Aca-

demic Publishers, 1993.
[9] Jini - http://www.jini.org/

[10] M. Nakamura, H. Igaki, K. Matsumoto, “Feature Interac-
tions in Integrated Services of Networked Home Appliance”,
Proc. of Int’l. Conf. on Feature Interactions in Telecommuni-
cation Networks and Distributed Systems (ICFI’05), pp. 236-
251, Jun. 2005.

[11] M. Nakamura, H. Igaki, H. Tamada and K. Matsumoto, “Im-
plementing integrated services of networked home appli-
ances using service oriented architecture”, Proc. of 2nd In-
ternational Conference on Service Oriented Computing (IC-
SOC2004), pp.269-278, Nov. 2004.

[12] Object Management Group, “OMG Model Driven Architec-
ture”, http://www.omg.org/mda/

[13] OSGi Appliance, “The OSGi Service Platform”,
http://osgi.org.

[14] “The SMV System”, http://www.cs.cmu.edu/˜
modelcheck/smv.html

[15] UPnP Forum - http://www.upnp.org/

Appendix

A. System Description for the Example HNS

SYSTEM my_home {

TYPEDEF
tPower {ON,OFF} # power for all appliances
tAC_Temp {18..28}; # for AirConditioner
tAC_Mode {COOLING,FAN} # for AirConditioner
tWindowStatus {OPEN,CLOSE};
tTemp {15..40}; # Temperature
tSmoke {0,1} # Smoke

ENVIRONEMT inside { # Environment inside the room
!! PROPERTY tTemp Temp_in;

tTemp Temp_out;
tSmoke Smoke;

}

APPLIANCE AirConditioner {
PROPERTY

tPower power:=OFF;
tAC_Temp TempSetting := 24;

#Temperature Setting for air conditioner
tAC_Mode ModeSetting := COOLING;

#Mode Setting for air conditioner
METHOD

void ON() {
PRE true;
POST power=ON;}

void OFF() {
PRE true;
POST power=OFF; }

void setTemperature(tAC_Temp temp) {
PRE power=ON;
POST TempSetting=temp;
ENV_W env.Temp_in;}

void setMode(tAC_Mode mode) {
PRE power =ON;
POST ModeSetting = mode;
ENV_W env.Temp_in;}

}

APPLIANCE Thermometer_inside {
PROPERTY

tPower power:=OFF;
tTemp CurrentTemp;

METHOD
void ON() {

PRE true;
POST power=ON;}

void OFF() {
PRE true;
POST power=OFF;}

tTemperature measureTemp() {
PRE power=ON
POST CurrentTemp=env.Temp_in;
ENV_R env.Temp_in;

RETURN CurrentTemp;}
}

APPLIANCE Thermometer_outside {
:

}

APPLIANCE SmokeSensor {
PROPERTY

tPower power:=OFF;
tSmoke CurrentSmoke:= 0;

METHOD
void ON() {

PRE true;
POST power=ON;}

void OFF() {
PRE true;
POST power=OFF;}

tSmoke deteckSmoke() {
PRE power=ON;
POST CurrentSmoke=env.Smoke;
ENV_R env.Smoke;
RETURN CurrentSmoke;}

}

APPLIANCE Ventilation {
PROPERTY

tPower power:=OFF;
METHOD

void ON() {
PRE true;
POST power=ON;
ENV_W env.Temp_in;}

void OFF() {
PRE true;
POST power=OFF;
ENV_W env.Temp_in;}

}

APPLIANCE Window {
PROPERTY

tPower power := OFF;
tWindowStatus WindowStatus := close;

METHOD
void ON() {

PRE true;
POST power=ON;}

void OFF() {
PRE true;
POST power=OFF;}

void OPEN() {
PRE power=ON;
POST WindowStatus=OPEN;
ENV_W env.Temp_in;}

void CLOSE() {
PRE power=ON;
POST WindowStatus=CLOSE
ENV_W env.Temp_in;}

}
}

B. Service Description of HVAC and Air-Cleaning
DEPLOYED_SYSTEM my_home;

SERVICE HVAC(tAC_Temp user_temp) {

VAR
tTemperature Ti_temp,To_temp; # Local variable

APPLIANCE
AirConditioner, Themometer_inside, Thermometer_outside,
Ventilation;

CONTENT
WHILE (END()=0) { # For repeatedly running

Thermometer_inside.ON();
Thermometer_outside.ON();
Ti_temp := Thermometer_inside.measureTemp();
To_temp := Thermometer_outside.measureTemp();
AirConditioner.ON();
AirConditioner.setTemperature(user_temp)

WHILE (Ti_temp > user_temp) {
AirConditioner.setMode(’COOLING’);
IF (Ti_temp > To_temp) {

WHILE (Ti_temp > To_temp) {
Ventilation.ON() ;
Ti_temp := Thermometer_inside.measureTemp();
To_temp := Thermometer_outside.measureTemp();

}
Ventilation.OFF() ;

}
}
AirConditioner.setMode(’FAN’);

}
Thermometer_inside.OFF();
Thermometer_outside.OFF();
AirConditioner.OFF();

}

SERVICE Air_Cleaning() {
VAR
tSmoke Smoke_status; # Local variable

APPLIANCE
SmokeSensor, Ventilation, Window;

CONTENT
WHILE (END()=0) { # For repeatedly running

SmokeSensor.ON();
Smoke_status := SmokeSensor.detectSmoke();
WHILE (Smoke_status=0) {

IF (END()=0) {
Smoke_status := SmokeSensor.detectSmoke();
}
ELSE {
SmokeSensor.OFF();
EXIT() # Quit the service

}
}
WHILE (Smoke_status=1) {

Window.ON();
Window.OPEN();
Ventilation.ON();
Smoke_status := SmokeSensor.detectSmoke();

}
Window.CLOSE();
Window.OFF();
Ventilation.OFF();

}
SmokeSensor.OFF();

}

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

C. SMV Program for HVAC Service

MODULE main
VAR
-- #### Appliance Property ####
-- Thermometer inside

TM_inside_pwr:{on,off}; --Power
TM_inside_currentTemp:{15,25,40}; --Current Temp.

-- Thermometer outside
TM_outside_pwr:{on,off}; --Power
TM_outside_currentTemp:{15,25,40};--Current Temp.

-- AirConditioner
AC_pwr: {on,off}; --Power
AC_set: {18,24,28}; --Temp. Setting
AC_mode: {cooling,fan}; --Mode Setting

-- Ventilation
Ventilation_pwr: {on,off}; --Power

--#### Environment Property ####
ENV_T_in: {15,25,40}; --Temp. inside
ENV_T_out: {15,25,40}; --Temp. outside

user_temp: {18,24,28}; --formal parameter

HVAC1: process HVAC(user_temp,AC_pwr,AC_set,AC_mode,
TM_inside_pwr,TM_inside_currentTemp,TM_outside_pwr,
TM_outside_currentTemp,Ventilation_pwr,
ENV_T_in,ENV_T_out);

ASSIGN
init(TM_inside_pwr):= off;
init(TM_inside_currentTemp):= 25;
init(TM_outside_pwr):= off;
init(TM_outside_currentTemp):= 25;
init(AC_pwr):=off;
init(AC_set):=24;
init(AC_mode):=cooling;
init(Ventilation_pwr):= off;
init(user_temp):= {18,24,28};
init(ENV_T_in):= 25;
init(ENV_T_out):= 25;
next(ENV_T_in):= {15,25,40}; --Changes arbitrarily
next(ENV_T_out):= {15,25,40};--Changes arbitrarily

--#### HVAC Service ####

MODULE HVAC(user_temp,AC_pwr,AC_set,AC_mode,Ti_pwr,
Ti_tmp,To_pwr,To_tmp,VN_pwr,ENV_T_in,ENV_T_out)

VAR
pc:{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27};
active: {0,1};
end:{0,1};
Ti_temp: {15,25,40}; -- Local variable
To_temp: {15,25,40}; -- Local variable

DEFINE
-- #pc=0 BEGIN PROGRAM

begin_service :=1;

-- #pc=1 WHILE (END()=0)
while1_cond := (end=0) ;
while1_cond_ng := !(end=0) ;

-- #pc=2 TM_inside.ON()
pre2_Ti_ON := 1;
post2_Ti_ON := (Ti_pwr=on);
post2_Ti_ON_Ti_pwr := on;

-- #pc=3 TM_outside.ON()
pre3_To_ON := 1;
post3_To_ON := (To_pwr=on);
post3_To_ON_To_pwr := on;

-- #pc=4 TM_inside.measureTemp()
pre4_Ti_MT := (Ti_pwr=on);
post4_Ti_MT := (Ti_tmp=ENV_T_in);
post4_Ti_MT_Ti_tmp:= (ENV_T_in);

-- #pc=5 Ti_temp:= Ti_CurrentTemp -- Assignment
pre5_ASM := 1;
post5_ASM := 1;
post5_ASM_Ti_temp := (Ti_tmp);

-- #pc=6 TM_outside.measureTemp()
pre6_To_MT := (To_pwr=on);
post6_To_MT := (To_tmp=ENV_T_out);
post6_To_MT_Tp_tmp:= (ENV_T_out);

-- #pc=7 To_temp:= To_CurrentTemp -- Assignment
pre7_ASM := 1;
post7_ASM := 1;
post7_ASM_To_temp := (To_tmp);

-- #pc=8 AC.ON()
pre8_AC_ON := 1;
post8_AC_ON := (AC_pwr=on);
post8_AC_ON_AC_pwr := on;

-- #pc=9 AC.setTemperature(user_temp)
pre9_AC_ST := (AC_pwr=on);
post9_AC_ST := (AC_set=user_temp);
post9_AC_ST_AC_tmp:= user_temp;

-- #pc=10 WHILE (Ti_temp > user_temp)
while10_cond := (Ti_temp > user_temp);
while10_cond_ng:= !(Ti_temp > user_temp);

-- #pc=11 AC.setMode(’cooling’)
pre11_AC_SM := (AC_pwr=on);
post11_AC_SM := (AC_mode=cooling);
post11_AC_SM_AC_mode := cooling;

-- #pc=12 IF (Ti_temp > To_temp)
if12_cond := (Ti_temp > To_temp);
if12_cond_ng := !(Ti_temp > To_temp);

-- #pc=13 WHILE (Ti_temp > To_temp)
while13_cond := (Ti_temp > To_temp);
while13_cond_ng := !(Ti_temp > To_temp);

-- #pc=14 Ventilation.ON()
pre14_VN_ON := 1;
post14_VN_ON := (VN_pwr=on);
post14_VN_ON_VN_pwr := on;

-- #pc=15 TM_inside.measureTemp()
pre15_Ti_MT := (Ti_pwr=on);
post15_Ti_MT := (Ti_tmp=ENV_T_in);
post15_Ti_MT_Ti_tmp:= (ENV_T_in);

-- #pc=16 Ti_temp:= Ti_CurrentTemp -- Assignment
pre16_ASM := 1;
post16_ASM := 1;
post16_ASM_Ti_temp := (Ti_tmp);

-- #pc=17 TM_outside.measureTemp()
pre17_To_MT := (To_pwr=on);
post17_To_MT := (To_tmp=ENV_T_out);
post17_To_MT_To_tmp:= (ENV_T_out);

-- #pc=18 To_temp:= To_CurrentTemp -- Assignment
pre18_ASM := 1;
post18_ASM := 1;
post18_ASM_To_temp := (To_tmp);

-- #pc=19 WHILE dummy2
while19_dummy := 1;

-- #pc=20 Ventilation.OFF()
pre20_VN_OFF := 1;
post20_VN_OFF := (VN_pwr=off);
post20_VN_OFF_VN_pwr := off;

-- #pc=21 WHILE dummy
while21_dummy :=1;

-- #pc=22 AC.setMode(’fan’)
pre22_AC_SM := (AC_pwr=on);
post22_AC_SM := (AC_mode=fan);
post22_AC_SM_AC_mode:= fan;

-- #pc=23 WHILE dummy1
while23_dummy :=1;

-- #pc=24 TM_inside.OFF()
pre24_Ti_OFF := 1;
post24_Ti_OFF := (Ti_pwr=off);
post24_Ti_OFF_To_pwr:= off;

-- #pc=25 TM_outside.OFF()
pre25_To_OFF := 1;
post25_To_OFF := (To_pwr=off);
post25_To_OFF_To_pwr:= off;

-- #pc=26 AC.OFF()
pre26_AC_OFF := 1;
post26_AC_OFF := (AC_pwr=off);
post26_AC_OFF_AC_pwr := off;

-- #pc=27 ENDING PROCESS
end_service := 1;

ASSIGN
init(pc) := 0;
init(active) :=0;
init(end) := 0;
init(Ti_temp) := 25;
init(To_temp) := 25;

-- #### Transition Relations ####

next(user_temp) := user_temp;
next(Ti_pwr):=case

(pc = 2) & pre2_Ti_ON : post2_Ti_ON_Ti_pwr;
(pc = 24) & pre24_Ti_OFF : post24_Ti_OFF_To_pwr ;
1 : Ti_pwr;
esac;

next(Ti_tmp):= case

(pc = 4) & pre4_Ti_MT : post4_Ti_MT_Ti_tmp;
(pc = 15) & pre15_Ti_MT : post15_Ti_MT_Ti_tmp;
1 : Ti_tmp;
esac;

next(Ti_temp):= case
(pc = 5) & pre5_ASM : post5_ASM_Ti_temp;
(pc = 16) & pre16_ASM : post16_ASM_Ti_temp;
1 : Ti_temp;
esac;

next(To_pwr):= case
(pc = 3) & pre3_To_ON : post3_To_ON_To_pwr ;
(pc = 25) & pre25_To_OFF : post25_To_OFF_To_pwr ;
1 : To_pwr;
esac;

next(To_tmp):= case
(pc = 6) & pre6_To_MT : post6_To_MT_Tp_tmp;
(pc = 17) & pre17_To_MT : post17_To_MT_To_tmp;
1 : To_tmp;
esac;

next(To_temp):= case
(pc = 7) & pre7_ASM : post7_ASM_To_temp;
(pc = 18) & pre18_ASM : post18_ASM_To_temp;
1 : To_temp;
esac;

next(AC_pwr):= case
(pc = 8) & pre8_AC_ON : post8_AC_ON_AC_pwr;
(pc = 26) & pre26_AC_OFF : post26_AC_OFF_AC_pwr;
1 : AC_pwr;
esac;

next(AC_set):= case
(pc = 9) & pre9_AC_ST : post9_AC_ST_AC_tmp;
1 : AC_set;
esac;

next(AC_mode):= case
(pc = 11) & pre11_AC_SM : post11_AC_SM_AC_mode;
(pc = 22) & pre22_AC_SM : post22_AC_SM_AC_mode;
1 : AC_mode;
esac;

next(VN_pwr):= case
(pc = 14) & pre14_VN_ON : post14_VN_ON_VN_pwr;
(pc = 20) & pre20_VN_OFF : post20_VN_OFF_VN_pwr;
1 : VN_pwr;
esac;

-- ###### Program Counter ######

next(pc):= case
(pc=0) : 1;
(pc=1) & while1_cond : 2;
(pc=1) & while1_cond_ng : 24;
(pc=2) & pre2_Ti_ON : 3;
(pc=3) & pre3_To_ON : 4;
(pc=4) & pre4_Ti_MT : 5;
(pc=5) & pre5_ASM : 6;
(pc=6) & pre6_To_MT : 7;
(pc=7) & pre7_ASM : 8;
(pc=8) & pre8_AC_ON : 9;
(pc=9) & pre9_AC_ST : 10;
(pc=10) & while10_cond : 11;
(pc=10) & while10_cond_ng : 22;
(pc=11) & pre11_AC_SM : 12;
(pc=12) & if12_cond : 13;
(pc=12) & if12_cond_ng : 21;
(pc=13) & while13_cond : 14;
(pc=13) & while13_cond_ng : 20;
(pc=14) & pre14_VN_ON : 15;
(pc=15) & pre15_Ti_MT : 16;
(pc=16) & pre16_ASM : 17;
(pc=17) & pre17_To_MT : 18;
(pc=18) & pre18_ASM : 19;
(pc=19) & while19_dummy : 13;
(pc=20) & pre20_VN_OFF : 21;
(pc=21) & while21_dummy : 10;
(pc=22) & pre22_AC_SM : 23;
(pc=23) & while23_dummy : 1;
(pc=24) & pre24_Ti_OFF : 25;
(pc=25) & pre25_To_OFF : 26;
(pc=26) & pre26_AC_OFF : 27;
(pc=27) & end_service : 0;
1 : pc;
esac;

next(end):=case
(pc=0) : {0,1};
1 : end;
esac;

next(active):=case
(pc=27) : 0;
(pc=0) : 1;
1 : active;
esac;

FAIRNESS running
FAIRNESS (end=0 & pc=1)

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

