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Abstract—In this position paper, we explore a way to assess
deployment architectures for intelligent Cyber-Physical Systems
(iCPS). Our long-term goal is to establish a method that allows a
software architect of iCPS to choose an appropriate deployment
architecture, based on requirements on quality, cost and security.
As the first step towards the goal, this paper first presents
an abstract model of iCPS to capture the possible deployment
configurations. We then propose a method that assesses cost-
related attributes for the configurations. Finally, we investigate
security threats within different configurations, to help the
engineer to achieve the configuration choice.

Index Terms—Assessment Model, Software Engineering, Soft-
ware Architecture, Cyber-Physical Systems, Machine Learning

I. INTRODUCTION

Nowadays, more and more software systems and solutions

are making use of Machine Learning (ML) to make complex

decisions towards the end-goal of undertaking some actions.

Cyber-Physical Systems (CPS) (integration of computation,

networking and physical processes) are impacted by this trend.

Indeed, thanking to emerging Internet of Things (IoT), a huge

amount of data can be collected from the physical world, and

fed to ML algorithms to implement intelligent CPS (we call

iCPS). The trend of iCPS is spread to various areas, including

health, energy, and transportation [1]–[3].

To implement an iCPS application with a (supervised) ML

algorithm, it is necessary to train a prediction model. This

training usually requires a large amount of memory and high-

performance resources, as well as complex libraries. There-

fore, a reasonable solution to perform the model development

is to use a ML platform on a cloud (such as Microsoft Azure,

Google AI platform, Amazon AWS platform). The trained

prediction model is then deployed as a Web service within a

cloud. On the other hand, the software component that uses the

prediction model is deployed on the edge side. The component

takes input data from a physical space, and makes intelligent

decisions based on the prediction derived by the model.

However, such a deployment configuration is not always

best, due to a variety of requirements of individual iCPS, such

as security, latency, and cost. Data might contain personal and

confidential information, making cloud computing sensitive

without special pre-treatment. After the model development,

moving computation closer to the physical space could reduce

latency and overhead, which is especially important for iCPS

with realtime requirements (such as self-driving cars) [4].

Thus, there is no obvious way for a software architect to

determine the best deployment configuration of iCPS, even

if all the requirements and constraints are known.

Our long-term goal is to establish a method that allows

the software architect of iCPS to choose an appropriate de-

ployment architecture, based on requirements on quality, cost

and security. As the first step towards the goal, this paper

especially focuses on assessing the costs and security of iCPS

posed by the deployment configuration. We first present an

abstract model of iCPS to capture the possible deployment

configurations. We then propose a rule-based method that

assesses cost-related attributes for the configurations. Finally,

we investigate security threats within different configurations,

to help the architect to choose appropriate configuration based

on given security requirements.

II. DEPLOYMENT ARCHITECTURE OF ML-BASED CPS

A. Intelligent Cyber-Physical System (iCPS)

Cyber-physical systems (CPS) are systems that are built

from the seamless integration of computation and physical

components. Emerging cloud computing and IoT technologies

allow a wide range of system configuration to meet individual

requirements and use cases [3]. Figure 1 shows a typical ar-

chitecture of CPS, in which the cloud computing is exploited.

In the figure, devices in a physical world collect data, and

send the data to an edge component (i.e., local server). The

edge component can communicate with cloud servers via the

Internet, in order to use any computational resource as a
service. Using the data and the resources on the cloud, the

edge commands actions for some devices [5].

Integrating machine-learning (ML) technologies with CPS

may implement more intelligent and challenging applications,

where decisions and behaviors cannot be specified by explicit

rules. We call such applications intelligent CPS (iCPS).

Figure 2 depicts a data flow diagram (DFD), showing

how an iCPS application typically works. The first step to

implement iCPS is to build a Predictive Model (PM) from

Training Data-Sets (DTS). This Model Learning (ML) process
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Fig. 1. Architecure of CPS with cloud and edge systems

is supposed to be performed once (or periodically with a low

frequency) based on manual experiments.

Once a predictive model is built, it is deployed on the ap-

plication to be used for intelligent decision making, as shown

in the Decision Taking (DT) process. The process collects the

data from a device, and requests the predictive model for a

prediction based on the data. Based on the prediction returned,

the application takes a decision to command an action to a

device. This process is executed whenever there is a request,

with a frequency from few millisecond to several hours/days,

depending on the application.

B. Considering Deployment Configurations of iCPS

In order to simplify the problem, let us suppose that any

iCPS can be abstracted by the four components (DTS, ML,

PM, and DT) and physical devices, as shown in Figure 2. Then,

each of the four components can theoretically be deployed

either on the edge or on the cloud, considering the architecture

of CPS (see Figure 1).

Since there exist two different deployments for each of the

four, there are thus 16(= 24) possible deployment configu-

rations, as illustrated in Figure 3. In each configuration, two

boxes are depicted where the upper box represents a cloud, and

the lower box represents an edge. For example, configuration

(4) represents that TDS and ML are deployed on the cloud,

whereas PM and DT are deployed on the edge. An arrow

between components represents a data flow, as defined in the

DFD in Figure 2.

C. The Problem: How to Choose the Best Configuration?

A major challenge of designing iCPS lies in the fact that it is

not obvious for software architects which deployment config-

uration best suits a given set of requirements and constraints.

The best configuration should be determined based on various

attributes of the target application. However, in this paper, we

narrow our focus on the cost and the security only.

1) Cost: The cost of machines, computation, networking,

operation, and maintenance in both edge (local) and cloud

(remote) infrastructures is an important factor to take into

account. Cloud computing can provide on-demand and elastic

data storage
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Fig. 2. Abstract data flow diagram of iCPS applications

computation resources. Hence, using the cloud for machine

learning or deploying applications/services on the cloud pro-

duces the cost merit. The maintenance is carried out by the

platform provider. In the cloud-based machine-learning plat-

form, various kinds of algorithms and processes are ready to

use, and they are facilitated by application program interfaces

(API). To reproduce such an environment locally on an edge

server, the time and expertise are required as well as huge

memory and high performance computers.

2) Security: The security of iCPS takes different dimen-

sions among the deployment configurations. It depends on

whether or not the configuration allows appropriate protection

against common threats and attacks to the processes, as well

as the confidentiality and authenticity of the data.

When an iCPS application is connected to the Internet, the

security becomes a crucial factor. The tight interaction between

the software and the physical components in CPS enables

cyber-attacks to have catastrophic physical consequences [6].

For instance, over a half million pacemakers have been re-

called by the American Food and Drug Administration, due

to fears that hackers could exploit cyber-security flaws to

modify the patient’s heartbeat [7]. In case of ML algorithms,

the poisoning attack for the training data can modify the

prediction model [8]. Theoretically, if the data doesn’t traverse

the network, the security is supposed to be increased. The less

data is in the network, the less the data is in a breach or leak.

Just considering these factors, it is quite confusing to choose

an appropriate configuration. In the next section, we try to

propose a method that can assess the cost and the security,

for the sixteen deployment configurations.

III. TOWARDS CONFIGURATION EVALUATION

Our long-term goal is to establish a method that allows

software architects of iCPS to quantitatively evaluate the

deployment configuration for a given set of requirements

and constraints. Towards the goal, this paper presents brief

assessment methods with respect to the cost and security.

A. Assessing the Cost

Every iCPS application requires to create a predictive model

by machine learning, before the application is in operation.

The resources and the time needed for the model learning
phase are quite different from those in the operation phase.

In addition, the predictive model should be updated during
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Fig. 3. The 16 possible deployment configurations for iCPS

the maintenance phase. For these reasons, we decided to

distinguish the cost of the three phases.

The cost at the edge side and the cost at the cloud side are

considered separately. The cost at one side is highly dependent

on the components that are deployed. In the learning phase, the

locations of TDS, ML, and PM are considered. In the operation

phase, the locations of PM and DT are considered. In the

maintenance phase, all the four components are considered. To

compare different configurations by cost, we try to rate every

configuration, depending on where each component is present.

As an example, we chose to rate 1.5 when TDS is present on a

side; 2.5 for ML; 0.5 for PM; 0.5 for DT. These values were

chosen because; a huge capacity of memory is required for

storing the training data; a large memory, high performance

computing, and many libraries are required for the machine-

learning task; the predictive model is usually smaller than

the training data set; the size of decision-taking component

depends on the application but usually requires considerably

smaller resources than the machine learning task.

Note that TDS should be on the same side as ML to execute

the learning phase. Therefore, if TDS exists at another side of

ML, it has to be moved, and the resources for TDS should

be counted for both side. Similarly, PM is generated at the

same side as ML. Therefore, if the configuration deploys PM

at another side, then PM has to be moved and the resources

should be counted for both sides.

Table I presents the values obtained with the proposed

method. For example, Configuration 4 requires a small cost

on the edge during the learning phase. In the operation phase,

however, the cost is maximized on the edge, and is zero on the

cloud. In Configuration 8, the operation costs are balanced on

both sides. The actual cost will be derived by multiplying each

value by the unit price of the platform, and the time spent for

each phase, which depend on individual iCPS applications.

B. Assessing the Security

The security threats to iCPS are mainly related to two activ-

ities: (1) preventing the system from working correctly, or (2)

stealing the primary data. In the first case, an attacker inserts

incorrect data or modifies correct data in DTS to produce a

wrong PM. They are called poisoning attack or evasion attack

[9]. Also, communications between PM and DT can be altered

or subject to denial-of-service (DoS) attacks. Moreover, DT

can be a source of attacks (e.g., service manipulation). Data

can be stolen at any levels. For instance, the literature [8],

indicates that it is possible to infer a part of original model or

dataset on the basis of input/output pairs.

Of course, the deployment configuration influences the

security issues [10], [11]. If PM and DT are deployed on

different side, a DoS attack to PM increases the reponse time
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TABLE I
ASSESSING THE COST IN DIFFERENT CONFIGURATIONS

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Learning cost (edge) 4.5 4.5 2 0.5 4.5 4.5 1.5 0 4.5 4.5 2 0.5 4.5 4.5 1.5 0
Learning cost (cloud) 0 1.5 4.5 4.5 0.5 2 4.5 4.5 0 1.5 4.5 4.5 0.5 2 4.5 4.5

Operation cost (edge) 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0
Operation cost (cloud) 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1

Maintenance cost (edge) 5 5 2.5 1 5 5 2 0.5 4.5 4.5 2 0.5 4.5 4.5 1.5 0
Maintenance cost (cloud) 0 1.5 4.5 4.5 0.5 2 4.5 4.5 0.5 2 5 5 1 2.5 5 5

of the prediction, and thus declines the performance. If DT

is on the cloud, an attacker may attempt to re-size the cloud

resources, to increase the operation cost [11].

Also, the edge side is not free of threats [12]. Privacy leak-

age, service manipulation, injection of information, and even

physical damage can be achieved on the edge side, facilitated

by the usage of vulnerable equipment or inappropriate system

administration. We are currently in the process to derive rules

to assess the security threats for the deployment configuration.

C. Limitations

We assumed the simplified architecture and model for iCPS

(see Figures 1 and 2). We did not count the fog computing,

nor the case where DT is spread on the cloud and edge.

IV. CONCLUSION AND FUTURE PERSPECTIVES

In the context of intelligent CPS with machine-learning

technologies (iCPS), data and software components can be

deployed either on the cloud or on the edge. Although

such deployment configuration influences the quality, cost,

and security of the target application, it is not obvious for

software architects how to determine the best configuration

for a given set of requirements and constraints. In this paper,

we investigated a method that briefly assesses the deployment

configuration of iCPS with respect to the cost and the security.

Introducing the architecture and data flow models, we first enu-

merated 16 possible configurations. We then defined methods

to assess the configurations for the cost and the security.

Our future perspective is to extend the method for other

quality attributes, including reliability, compatibility, main-

tainability, and portability, as defined in the SQuaRE [13].

A second perspective is to introduce quantitative functions

associated to the attribute assessment. For instance, the net-

work usage is correlated to the size of DTS in the learning

phase, as well as the volume of communication between DT

and PM in the operation phase. Complex models have been

proposed in the literature to evaluate the cost at both side [14].

The idea is to re-investigate those models to derive a more

abstract and universal view. Our final goal is to recommend

the best configuration. For this, we need to develop a method

that collects requirements and constraints from the user (e.g.

the size of the training data, the location of the data, the edge

capabilities). In the workshop, we hope to discuss these issues

with interested researchers and practitioners.
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