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Abstract. We propose four methods for improving the accuracy of
aggregation query-result estimation using histograms and/or kernel den-
sity estimation and the efficiency of query processing on a distributed
key-value store (D-KVS). Recently, aggregation queries have played a
key role in analyzing a large amount of multidimensional data generated
from sensors, Internet-of-Things devices, etc. A D-KVS is a platform
to manage and process such large-scale multidimensional data. How-
ever, querying large-scale multidimensional data on a D-KVS sometimes
requires a costly data scan owing to its insufficient support for indexes.
Since aggregation-query results do not always need to be accurate, our
four methods are not only for estimating accurate query results rather
than obtaining accurate results by scanning all data, but also improv-
ing query-processing performance. We first propose two kernel density
estimation-based methods. To further improve query-result estimation
accuracy, we combined each of these two methods with a histogram-
based scheme so that we can dynamically select an optimal estimation
method based on the relationship between a query and the data distribu-
tion. We evaluated the efficiency and accuracy of the proposed methods
by comparing them with a current method and showed that the proposed
methods perform better.

Keywords: Query-result estimation · Data summarization ·
Histogram · kernel density estimation · Distributed key-value store

1 Introduction

Due to the spread of the Internet and smartphone, large-scale multidimensional
data, called big data have recently been collected and it is becoming increasingly
important to analyze and use big data. One of the most useful operations that
enable such analysis is an aggregation query; however, there are various chal-
lenges in computing aggregation queries for large-scale multidimensional data.

c© Springer Nature Switzerland AG 2019
C. Ordonez et al. (Eds.): DaWaK 2019, LNCS 11708, pp. 310–320, 2019.
https://doi.org/10.1007/978-3-030-27520-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27520-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-27520-4_22


Accurate Query Result Estimation and Its Efficient Processing 311

A key-value store (KVS) [10] is suitable for managing large-scale data. A KVS
is a simplified table-type database in which a tuple consists of two attributes:
key and value. Because of its simple structure, it is easy to decentralize data
over several servers by horizontal partitioning, which is also called a distributed
KVS (D-KVS). However, in many cases, D-KVSs support an index only on a
key. Therefore, it is difficult to execute flexible and complex queries because of
the costs incurred in carrying out a data scan over a large amount of data. There
have been several studies on efficiently processing aggregate operation for large-
scale multidimensional data on D-KVSs [3,12,18–20]. Watari et al. [19] proposed
a method for mutually using a relational database (RDB) [4] and D-KVS. With
their method, the data space is split into several hyper-rectangles, which are
called grids. A partial aggregation value for each grid is computed and stored
in the D-KVS. Given a query, scans of the data in grids that are completely
included in the query range are omitted because the aggregation values of such
grids have already been computed. This optimization reduces the amount of data
to be scanned. However, for grids that partially overlap the query range, it will
still execute data scans for these grids, which may result in a large number of
data scans in some cases.

To omit these costly data scans, we propose four methods for estimating
query results, rather than obtaining accurate results, using a histogram and ker-
nel density estimation (KDE). Histograms [7–9,14,15] are known as a lightweight
and less accurate estimation scheme, whereas KDE [17] is more accurate and
costly. With these estimation schemes, we construct a histogram based on the
data in each grid and/or carry out KDE for each bucket of the histogram. At
query processing, the value of the query result is estimated using only a pre-
computed histogram and KDE results. We also aim at further improvement in
estimation accuracy and query throughput with the advantages of this histogram
and KDE.

Besides histograms and KDE, there have been many approaches for approxi-
mate query processing, such as wavelets [2], cardinality estimation algorithms [6],
deterministic algorithms [5]. However, only a few studies refer to the distributed
multidimensional approximate query processing.

We evaluated the efficiency of the proposed methods by comparing their
query throughput performance with Watari et al.’s method [19] on a cluster
machine and showed that the proposed methods perform better. We also com-
pared the query-result estimation accuracy of each of the proposed methods.

2 Related Work

2.1 Partial Pre-Aggregation

Partial pre-aggregation [13,19] is a method of improving aggregation-processing
efficiency by reducing the number of data scans. This method splits the database
into several blocks and pre-computes aggregation results for each block. When
processing aggregate operations, the pre-computed results are reused as much
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as possible. Some aggregation queries can be efficiently evaluated with partial
pre-aggregation values.

For example, consider an aggregate operation for a relation B to obtain the
sum of the heights of records satisfying age < 20, where B consists of age and
height. Assume that B is split into two blocks B1 and B2, each of which has its
own partial sum of the heights. B1 and B2 have only the records that satisfy
age < 15 and age ≥ 15, respectively. According to this information, it is not
necessary to scan the data in B1, and only B2 needs to be scanned.

Watari et al. [19] proposed a method of efficiently processing aggregation
queries for large-scale multidimensional data using partial pre-aggregation with
a cluster combining an RDB and a D-KVS. With their method, the data space
is split into several hyper-rectangles (grids) by designating the number of data
entries (grid size) in each grid. After the split, partial pre-aggregation values for
each grid are pre-computed, and the results are stored. At query processing, high
efficiency is achieved using the pre-computed partial pre-aggregation values.

Given a query range QR, the aggregation query of the data within QR with
their method is processed as follows.

Step 1. Find all grids that intersect a QR by using the metadata of grids in
the RDB. Let Gs be a set of the obtained grids. Check if each grid range is
completely included in QR.

Step 2. Combine the partial pre-aggregation results of the grids in the Gs that
are completely included in the QR. These partial pre-aggregation values can
be obtained quickly because they are pre-computed and stored in the D-KVS.

Step 3. Scan all data in the grids in the Gs that partially overlap the QR
(hereafter, referred to as surrounding grids) and aggregate the values within
the QR.

Step 4. Combine the results obtained in Steps 2 and 3.

However, for grids that partially overlap the query range, it will still per-
form data scans with their method (hereafter, we call this method the All-Scan
method), which could reduce query throughput.

2.2 Query Processing with Histograms

Poosala et al. proposed a technique called MHIST of dividing the multidimen-
sional data distribution into a histogram [16]. The essential idea of MHIST is
to choose the top p − 1 attributes A1 . . . Ap−1, which belong to the distribution
D, whose marginal distributions in D are the most in need of partitioning, and
split D into p buckets along A1 . . . Ap−1. This procedure is repeated until the
number of buckets reaches the predetermined upper limit.

The meaning of “the most in need of partitioning” varies depending on which
histogram is adopted. From the experiment by Poosala et al., the best estimation
accuracy was obtained by MHIST adopting the max-diff histogram [15] with 2
splits (hereafter, this method is abbreviated as MHIST). The aim of a max-diff
histogram is to avoid putting attribute values with vastly different frequencies
into the same bucket.
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Muralikrishna et al. [11] proposed a scheme for using histograms to estimate
the query results called Uniform Scheme. In this scheme, the data distribution
in each bucket of a histogram is assumed a uniform distribution. Therefore, the
estimated result for a given query Q is calculated as the following expression

∑

Bi∈Q

FBi
· V olume(Bi ∩ Q)

V olume(Bi)

where FBi
is the frequency of bucket Bi. The validity of this assumption will

enhance as the volume of each bucket becomes smaller, regardless of the actual
data distribution.

3 Proposed Methods

3.1 Näıve Methods

In addition to pre-aggregation methods [13,19], we introduce our two näıve data
summarization methods using histograms and KDE. We store the summarized
result (hereafter, statistical data) and estimate the query result by using these
statistical data to avoid full data scans at query processing. The processes of
both data summarization as preprocessing and query-result estimation using
statistical data are described as follows.

Step1. Divide the data space into several grids using the All-Scan method and
store the aggregated values for each grid. This step in Fig. 1 shows that the
entire data space is divided into six grids.

Step2. Construct a histogram for each grid using MHIST and save these results.
This step in Fig. 1 means a histogram was constructed based on the data that
grid 000 contains.

Step3. In case of use KDE, which is used based on the data in each bucket of the
histogram constructed at Step 2 and save the results. This step in Fig. 1 is for
the result of KDE based on the data in one of the buckets of the histogram
from grid 000.

Given a query Q, we use pre-aggregated values for the grids that are com-
pletely included in the query range. This part follows the All-Scan method. On
the other hand, for the surrounding grids, we use statistical data obtained from
MHIST and KDE to estimate aggregation results (Fig. 2).

We now discuss our two näıve methods for estimating aggregation results
using statistical data and compare them with a previous method.

1. Previous method: MHIST
First, we consider a previous study that only used MHIST and Uniform
Scheme in Sect. 2.2 for estimation. We call this method MHIST.
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Fig. 1. Process of data summarization Fig. 2. Process of query-result estimation

2. Proposed näıve method 1: All-KDE
We considered obtaining more detail summarized data by using KDE to
achieve more accurate estimation than MHIST since KDE can be used to
understand the data distribution in more detail. We call this method All-
KDE.
After histograms are constructed using MHIST, KDE is carried out for data
distribution in each bucket and store several points from estimated distribu-
tion. Therefore, Sum(Bi, Q) is calculated as the following expression, where
Kij ∈ Q means that the j-th estimated point in Bi is included in Q.

Sum(Bi, Q) =
∑

Kij∈Q

Kij

3. Proposed näıve method 2: Part-KDE
Though All-KDE can be used to understand the distribution in more detail,
the amount of the data obtained with KDE becomes large and this could cause
a decrease in query throughput. As a result of the histogram constructed with
MHIST, in some cases, there are several buckets that do not have a domain
range for a certain dimension (the minimum and maximum values of the
attribute’s domain are the same). We refer to such a bucket as a dimension
diminished bucket.
We assume that the data distribution in the bucket can be regarded as a
uniform distribution for a dimension diminished bucket; thus, KDE is not
carried out. For normal buckets, KDE is carried out in the same manner as
with All-KDE. Given a Q, if the dimension diminished bucket satisfies Q, the
estimated value is calculated using Uniform Scheme in the same manner as
with MHIST, and for normal buckets that satisfy Q, precomputed estimated
values obtained with KDE are used.
Therefore, Sum(Bi, Q) is expressed as follows.

Sum(Bi, Q) =

⎧
⎪⎨

⎪⎩

FBi · V olume(Bi∩Q)
V olume(Bi)

(if Bi is a dimension diminished bucket)

∑

Kij∈Q

Kij (otherwise)



Accurate Query Result Estimation and Its Efficient Processing 315

By modifying All-KDE to carry out KDE only for normal buckets, the data
size of the statistical data reduces. Therefore, it is possible to achieve higher
query throughput than with All-KDE and prevent deterioration in estimation
accuracy. We call this method Part-KDE.

By combining histogram and KDE, it is expected that All-KDE and Part-KDE
can improve the estimation accuracy.

3.2 Hybrid Methods

In this section, we focus on the relationship between the overlap rate ORij of
query Qi to a surrounding grid Gij and the estimation error in each surrounding
grid. We aim to further improve estimation accuracy by dynamically selecting
the estimation method based on ORij .

Before explaining our further methods, we introduce the overlap rate and the
error index. The overlap rate ORij between Qi and one of the surrounding grids
of Qi, Gij , is defined as follows.

ORij =
V olume(Gij ∩ Qi)

V olume(Gij)

On the other hand, the error index EIij for grid Gij is defined as

EIij =
Error of Gij

TrueV alue of Qi

This error index means how much the error of the individual grid affects that of
the entire query result compared with its true value. The error index of a grid
is higher as its error to the entire query result becomes greater.

We introduce our two hybrid methods which dynamically select an estimation
method applied to each grid to improve estimation accuracy and query through-
put. This idea is based on the assumption that the best estimation method
changes according to the overlap rate.

By combining MHIST and All-KDE (hereafter, MA), it is expected that
both estimation accuracy and query throughput would improve because MHIST
is the lightest among the näıve estimation methods. We also consider combining
MHIST and Part-KDE (hereafter, MP) to enhance throughput, because Part-
KDE has less overhead than All-KDE.

4 Experimental Evaluations

The experimental evaluations were conducted on a cluster with 13 PCs run-
ning HBase 1.2.0 (D-KVS) and PostgreSQL 9.6.1 (RDB) with the following two
datasets.
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Extended Indoor Sensor Data: Based on 2 million real data entries collected
from indoor environmental sensors, each of which data entry has 16 attributes,
we generated pseudo dataset by replicating the data, resulting in 100 million
data entries. We call such data extended indoor sensor data (EIS Data). Four-
dimensional range queries are carried out for EIS data.

San Francisco Bay Area Data: We generated 22 million points of moving
objects in the San Francisco Bay Area using a network-based generator [1].
Each data entry has two attributes, latitude and longitude. In addition, we
assumed each data entry as a running car and gave it car speed as the third
attribute. We call such data San Francisco bay area data (SFB Data). Two-
dimensional range queries are carried out for SFB data.

Some variables were configured for the experiments as follows.

– Maximum number of data entries in a grid (grid size): 1000
– Upper limit of the number of buckets with MHIST: 25
– Kernel function for KDE: Gaussian

4.1 Preliminary Experiment

We measured ORij and EIij for the datasets and randomly generated aggrega-
tion range queries, and plotted it. For these plots, we drew trendlines to clarify
the relationship between the overlap rate and the error index for each estimation
method.

The results are shown in Figs. 3 and 4. From these results, we observed that
there are transition points at which the error index was inverted. For range-sum
query, the transition point for MHIST and All-KDE was 1.8% of the overlap rate,
and 3.7% for MHIST and Part-KDE. For range-count, that for MHIST and All-
KDE was 49.4%, and 85.6% for MHIST and Part-KDE. When the overlap rate is
less than these values, the error index of MHIST is the best. In other words, it is
possible to optimize the estimation accuracy and query throughput by switching
estimation methods based on the overlap rate. Although not shown here, SFB
Data case also has the similar transition points.

Fig. 3. EIS Data (Sum) Fig. 4. EIS Data (Count)
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4.2 Evaluation of Estimation Accuracy

We compared the estimation accuracy of the hybrid methods using the transition
points obtained by the preliminary experiment to that of the näıve methods.
We conducted randomly generated multidimensional range-sum and range-count
queries, so that their selectivity can be set as 0.001% and 10%. We measured
the error rate of each query for both the entire range and only the surrounding
grids.

Figures 5 and 6 show the average error rates of each method when chang-
ing each selectivity for EIS data. Figure 5 indicates that MA achieved higher
estimation accuracy than the näıve methods at all selectivities. The accuracy
of the surrounding grids at 0.001% selectivity markedly improved because there
tend to be many grids with low ORij . However, Fig. 6 shows that MA did not
always lead to the best estimation. We concluded that this result was caused
by the high/low relationship of the trendlines of the count queries (Fig. 4). The
high/low relationship of the trendlines of the count queries was not as clear as
the trendlines of the sum queries (Fig. 3). Therefore, MHIST could be inferior
to the other two näıve methods even at ORij of less than 49.4%. Though MA is
not always the best, its accuracy degradation is insignificant from the viewpoint
of the error rate of the entire query result. On the other hand, MP was inferior
to MA in many cases, but its accuracy did not deteriorate much compared with
that of MA.

Also, we observed the same tendency for SFB data (Figs. 7 and 8). For both of
the sum and count queries at all selectivities, MA achieved the best estimation
accuracy. As for MP, we confirmed the improvement of estimation accuracy
compared with Part-KDE.

Fig. 5. EIS Data (Sum) Fig. 6. EIS Data (Count)

Fig. 7. SFB Data (Sum) Fig. 8. SFB Data (Count)
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4.3 Evaluation of Query Throughput

We also evaluated the query throughput performance for the four proposed meth-
ods and others (All-Scan and MHIST). We ran the same queries under the same
conditions as mentioned in Sect. 4.2. The queries were issued from 1, 16, 32, 64,
and 128 clients simultaneously while varying selectivity.

Figures 9, 10, 11, 12 depict the results of query throughput performance for
each dataset and query. As an overall view, these results indicate that the hybrid
methods achieved higher throughput than All-KDE and Part-KDE. In addition,
Figs. 11 and 12 show that MA can achieve higher throughputs than Part-KDE
when the number of clients increased, and MP can achieve high throughputs,

Fig. 9. EIS Data (Sum) Fig. 10. EIS Data (Count)

Fig. 11. SFB Data (Sum) Fig. 12. SFB Data (Count)
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which is comparable to MHIST. This is because MHIST is adapted at almost
half or higher ORij .

In summary, MA can achieve highly accurate and efficient estimation. In
contrast, MP can provide much higher query throughput than MA with small
accuracy deterioration.

5 Conclusion

We proposed four methods for highly efficient and accurate estimation of aggre-
gation queries on large-scale multidimensional data on a cluster of an RDB and
a D-KVS. In particular, MA and MP dynamically select estimation methods
among MHIST, All-KDE, and Part-KDE to adapt the most accurate estimation
method based on the overlap rate. MA and MP can also achieve higher query
throughput through the partial use of MHIST.

For future work, we will consider a method for automatically finding transi-
tion points to switch estimation methods for arbitrary data.
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