
Characterizing Project Evolution
on a Social Coding Platform

Koji Toda∗, Haruaki Tamada†, Masahide Nakamura‡¶, Kenichi Matsumoto§,

∗ Department of Computer Science and Engineering, Fukuoka Institute of Technology, Fukuoka, Japan.
† Faculty of Information Science and Engineering, Kyoto Sangyo University, Kyoto, Japan.

‡ Graduate School of System Informatics, Kobe University, Hyogo Japan.
§ Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.

¶ Riken, AIP, Tokyo, Japan

Abstract—Social coding platforms (SCPs) have realized spon-
taneous software evolution, where new source code and ideas are
spontaneously proposed by altruistic developers. Although there
are many projects operated by active communities performing
spontaneous evolution, it is yet unclear that how such successful
projects and communities have been formed and governed. In
this paper, we propose a method that can investigate the history
of every project in the SCP. Introducing the concept of project
as a city, we consider every project in the SCP as a city, where
a government and citizens develop a city through collaborative
activities. We then identify essential attributes that characterize
a state of a city. For each attribute, we develop metrics that
quantify the state S(p, t) of a project p at time t. An experimental
evaluation investigating GitHub projects of famous code editors
shows that the proposed metrics well visualize the history of the
projects from essential perspectives of a city.

Index Terms—social coding, software evolution, project mea-
surement, software metrics, governance, smart city

I. INTRODUCTION

Social coding [1] is a modern approach to software devel-
opment, which places an emphasis on formal and informal
collaboration. Due to the emerging social coding platforms
(SCP, for short) such as GitHub [2] and Bitbucket [3], the
social coding is now widely adopted not only in open-source
projects, but in commercial software development.

In the SCP, software is developed and maintained collabo-
ratively by a community of developers and users. The SCP
provides a space for the people to create a project, have
communication, play and build whatever they want. Moreover,
every developer can hack and modify the code as he/she likes
by forking the project. Then, the developer can request the
project owner to merge his/her modification to the original
code. If the owner finds it useful, the owner commits the merge,
which creates a new version of the software. In GitHub, the
above three activities are implemented as commands fork,
pull request, and merge, respectively.

From the perspective of software evolution [4], the above
process of code modification is quite unique. Traditionally,
when new features and/or better solutions are requested by
users or customers, a project manager designs tasks, and
directs developers to work in a top-down manner. Then, the
developers modify the code according to the requirement.

However, in the social coding, the code modification can
be proposed by spontaneous and altruistic developers in the
community. Thus, the software evolution can be triggered in
a bottom-up way. We call this new type of software evolution
spontaneous software evolution [5].

The spontaneous software evolution by the social coding is
a powerful means to achieve fast, flexible, and sustainable evo-
lution of the software. Also, it often derives innovative ideas
that a project owner has never imagined, realizing advanced
features and products. For example, microsoft/vscode
[6] is a GitHub project of a powerful code editor, where a lot
of people have discussion, developers actively present codes,
and many innovative features have been added. Thus, we can
see that microsoft/vscode is a successful project in the
context of spontaneous software evolution.

However, we do not know how such a successful project
has been managed, or how such an active community has
been formed and governed. To clarify these issues, we need to
investigate the history, starting when the project was created,
and leading to the current shape. Fortunately, since the SCP
accumulates various event logs, we can look back how the
project was for any past time. More specifically, for a given
project p and timestamp t, let S(p, t) denote a state of p at t.
Observing S(p, t) with varying t derives a sequence of states,
which characterizes how p has been evolved. The challenge
here is how to define S(p, t) so that it well characterizes the
spontaneous software evolution within p.

The goal of this paper is to propose a method that can cope
with the following research questions:

RQ1: How and by what can we define the state S(p, t)?
RQ2: How has the state of a successful project changed?
To address RQ1, we first introduce the concept of project

as a city. Borrowing the idea of smart city modeling [7],
we consider every project in the SCP as a city, where a
government and citizens develop a city through collaborative
activities. We investigate a mapping that associates constructs
and activities of a city with entities and actions of the SCP.
We then identify essential attributes that characterize a state
of a city: population, size, urban problem, problem solving
ability, capability of government. Finally, we define metrics N-
STAR, N-MGCL, N-RIS, R-RIS, LT-CIS, R-MGPR, LT-PR,

978-1-7281-1651-8/19/$31.00 ©2019 IEEE
SNPD 2019, July 8-11, 2019, Toyama, Japan

525

and R-PRLP. Each metric quantifies a corresponding attribute
of a project p at timestamp t, which can be calculated from
data accumulated in the SCP. Thus, the values of the metrics
characterize the state S(p, t), reasonably.

To address RQ2, we conduct an experiment where we
observe the evolution of GitHub projects of famous code
editors: atom/atom [8], adobe/brackets [9], and
microsoft/vscode [6]. The result showed that the pro-
posed metrics well visualized the history of the three projects
from essential perspectives of a city.

II. PRELIMINARIES

A. GitHub: Social Coding Platform

GitHub [2] is a cloud-based platform for software de-
velopment. GitHub uses Git for version control of codes
and documents, and also provides many features of social
networking. GitHub is now one of the biggest social coding
platforms, acquiring 28 million users over the world.

In GitHub, source code and documents of a software project
are stored in a repository, which is maintained by one or
several core members. Basically, only the core members are
allowed to modify the code within the repository. A fork
creates a copy of the repository, which allows any other
developer to hack and modify the code without affecting the
original. If the developer would like to share the modifications,
he/she can send a pull request. If, after careful review, the
core members agree to accept the modifications, they merge
the modifications with the original repository. If they do not
agree, the pull request is rejected and closed.

If a GitHub user is interested in a particular project, he/she
can star the repository. The number of stars reflects the popu-
larity of the project. If a user finds bugs, needs enhancements,
or has any other requests, he/she can create an issue in the
repository. For the issue, another user may send a comment to
solve, or a developer may modify the code and sends a pull
request. An issue is closed when the problem is solved.

B. Spontaneous Software Evolution

Software evolution deals with the process by which software
is modified to adapt to the changing environment and/or
new requirements [4]. In the conventional software project,
a project manager controls the process for the evolution,
while developers work as directed by the manager. The SCP
like GitHub changes the process. Developers can propose
modifications in the form of pull requests, while a manager
reviews the pull requests and decides to merge or not.

We call this new type of evolution spontaneous software
evolution [5]. We are currently studying how to achieve the
spontaneous software evolution in projects, including commer-
cial software development. Major challenges include:

• How should a project be governed and managed?
• How can social overheads be reduced?
• How can the motivation of communities be raised?

The goal of this paper, which investigates the history and states
of projects in the SCP, is motivated from the first challenge.

III. CONCEPT OF PROJECT AS A CITY

A. Key Idea
To address the research question RQ1 in Section I, we here

introduce a concept of project as a city. As seen in Section
II-A, every project in a SCP is governed by core members.
Developers and users, who are interested in the project, form
a community. Everybody can see the code and event log, and
has a chance to ask a request or propose code modifications.
Thus, there is no static hierarchy in the community.

This observation of the SCP reminds us of a smart city
[7]. In a smart city, various kinds of data about a city is
collected and opened to citizens. Based on the information,
the government and the citizens can collaboratively work to
enhance performance of the city, as well as well-being of the
citizens. This is quite similar to social coding in the SCP.

In [7], a state of a city is defined by a vector [s1 : v1, s2 :
v2, ..., sm : vm], where si is a state variable representing an
interesting attribute, and vi is its value. Considering a city as
a state machine, a smart city service is defined as a sequence
of actions that directs the city from the current (as-is) state
to an acceptable (to-be) state. We take the same analogy to
define the state S(p, t), by associating elements in the SCP
with those in a city.

B. Associating Elements
We define a mapping from basic elements of SCP to some

constructs of a city. For better understanding, we take GitHub
as a representative SCP in the following explanation.

• A project is associated with a city.
• The code of the project is associated with function of

the city. Thus, merging new code lines corresponds to
developing new function of the city.

• The core members are associated with the government,
since they have authority to change the city.

• Users and developers who are interested in the project
correspond to citizens. For a practical purpose, we regard
a user who gave a star to the project as a citizen.

• An issue is associated with a problem in (or request for)
the city, which is raised by a citizen. Creating (or closing)
an issue corresponds to posing (or solving, respectively)
the problem.

• A pull request is associated with a solution proposal for
a problem. Creating a pull request based on an issue
corresponds to a situation that a citizen sends a proposal
of solving a problem to the government. Merging a pull
request corresponds to a situation that the government
accepts the proposal and applies the solution to the city.

C. Essential Attributes Characterizing Evolution
Once we consider every project in the SCP as a city, it

would be easier to consider what are the essential attributes to
define the state. When we discuss the history and the evolution
of a city, the following attributes are important, although they
do not cover everything of the city:

1) Population: It is an indicator characterizing how much
the city attracts citizens.

526

2) Size: It is an indicator characterizing how much the city
is developed to be smarter and more convenient.

3) Problems: It is an indicator that reflects how much
citizens have difficulty in living in the city.

4) Ability of Problem Solving: It reflects the performance
of the city resolving the problem.

5) Capability of Government: It reflects the performance
of government to process proposals from citizens and
solve the problems.

For a given project p in SCP and timestamp t, we consider
a metric mi(p, t) that quantitatively measures i-th essential
attribute. Then, we define the state as a vector:

S(p, t) = [m1(p, t),m2(p, t), ..., mn(p, t)]

where concrete definition of mi’s is given in the next section.

IV. DEVELOPING METRICS FOR CHARACTERIZING
EVOLUTION OF PROJECT AS A CITY

A. Population

The population is the most basic and important factor of the
city. This is because increasing population promotes activities
of the city, opinions from new citizens, and workloads to solve
the problems. The population surely influences other attributes
of the city, such as the size of the city, the quantity and the
divergence of problems, performance of problem solving, and
the capability of the government.

When a software development project is associated with a
city, the population should be the number of all participants
of the projects, including core members, non-core developers,
and interested users. However, it is difficult to count the exact
number of participants since not all the participants directly
give feedback or code contribution.

We adopt the number of stars to characterize the population
of the project. This is because every user can add a star, even if
he/she does not give direct contribution but is at least interested
in the project. Therefore, the number of stars is a reasonable
metric to quantify the population of the project.

We define the metric N-STAR(p, t) as the number of stars
that a project p has earned by the time t.

Note, however, that the number of stars in GitHub is a bit
different from the real population of a city, strictly speaking.
In GitHub, once a user attaches a star, he/she would not
detach the star even if the project becomes out of interests.
In that sense, the population of a project should be evaluated
by observing the growth rate of N-STAR(p, t) as well as its
absolute value.

B. Size

The size of a city is also a key factor as important as
the population, representing how much the city is developed.
When a software project is associated with a city, the degree of
city development can be associated with the amount of source
code that has been added or modified within the repository.

The amount of source code can be simply measured by
LoC (Lines of Code). In GitHub, when a pull request is
merged, modifications of the source code are recorded as a

diff format, from which we can calculate the number of
added/deleted lines of code. By accumulating the lines of code
for all merged pull requests, we can represent the size of how
much the project has been developed.

We here define the metric the number of merged code lines.
Let p be a project, t be timestamp, r be a pull request. Let
lmod(r) be the lines of code that are modified within r.
Let cpr(p, t) be a set of pull requests in p closed before t,
and mpr(p, t) ⊆ cpr(p, t) be a set of pull requests merged
before t. Then, the metric the number of merged code lines,
N-MGCL(p, t), is defined by

N-MGCL(p, t) =
∑

r∈mpr(p,t)

lmod(r) (1)

N-MGCL(p, t) represents the lines of code that have been
merged within p before t, characterizing the size of p at t.

C. Problem

The problem within a city is an obvious obstacle for future
evolution of the city. Various problems may arise as the
population and the size of the city grow. It is not surprising
to see that the number of problems is increasing when no
action is taken. Preferably, any problem should be resolved
as soon as it occurs. If the problems remain unsolved, the
citizens are disappointed to the city and the government, then
they would leave. Therefore, government need to recognize
remaining issues and make an action plan to solve them.

Within the concept of the project as a city, a problem is
associated with an issue (a bug report, a request of a new
feature, etc.). The issue is closed when the problem is resolved.
Therefore, we measure remaining issues to characterize the
problems that the city currently has. For a project p and
timestamp t, let N-AIS(p, t) be the number of all issues
that have been created before t within p. Let N-CIS(p, t) be
the number of closed issues that have been created before t
within p. Then, we define the number of remaining issues
N-RIS(p, t), and the ratio of remaining issues R-RIS(p, t):

N-RIS(p, t) = N-AIS(p, t) − N-CIS(p, t) (2)

R-RIS(p, t) =
N-RIS(p, t)

N-AIS(p, t)
(3)

D. Ability of Problem Solving

The ability of problem solving is an important factor for
the future development of the city. If the government or the
citizens cannot solve problems quickly, more problems will be
accumulated, which declines citizen’s satisfaction. From this
reason, the city should have an ability to solve the problems
as quickly as possible.

To quantify the ability of the problem solving, we adopt the
time taken to solve an issue. If it takes very long time to close
an issue, or an issue remains unsolved, we can see that the
ability is low. Thus, we characterize the ability by the lifetime
of the issue. For a given issue x, let since(x) be the time when
x is created, and let until(x) be the time when x is closed.

527

Then, the lifetime of issue x, denoted by lt(x), is defined by
a time difference:

lt(x) = until(x) − since(x)

Now let CIS(p, t) be a set of issues within p that have been
closed before t. Then, we define the lifetime of closed issues,
LT-CIS(p, t) as follows:

LT-CIS(p, t) =

∑
x∈CIS(p,t) lt(x)

N-CIS(p, t)
(4)

The greater value of LT-CIS(x) indicates that the problems
tend to be left unresolved for a long time. For convenience,
we represent the time difference lt(x) and LT-CIS(p, t) by a
unit of day.

E. Capability of Government

An important role of the government is to review every
proposal from citizens (i.e., pull request) and to decide if the
proposal should be accepted or rejected. To evaluate this pro-
cess, we consider the following three attributes: acceptability,
agility, and soundness.

1) Acceptability: The acceptability is the degree of how
much the government accepts proposals from citizens. There-
fore, the acceptability is related to openness or the degree
of democracy of the city. If most of the proposals from the
citizens are not accepted, the citizens are disappointed to the
government, and they would leave the the city.

Since the proposal is associated with a pull request, we
measure the ratio of merged pull requests among all pull
requests to characterize the acceptability of government. If the
ratio is too low, developers as citizens may not be motivated
to propose new pull requests.

We define the ratio of merged pull requests, R-MGPR(p, t)
as follows:

R-MGPR(p, t) =
|mpr(p, t)|
|cpr(p, t)| (5)

where mpr(p, t) and cpr(p, t) are those defined in Section
IV-B.

2) Agility: The agility represents the degree of how quickly
the government determines the acceptance (or rejection) of
the proposal. Therefore, the agility is related to the speed of
evolution of the city. If the government spends long time to
decide the acceptance, the evolution of the city becomes slow
down or is stopped.

To quantify the agility of the government, we adopt the
lifetime of pull requests. For a pull request r, let since(r) be
the time when r is created, and let until(r) be the time when
x is closed. Then, the lifetime of pull request r, denoted by
lt(r), is defined by a time difference:

lt(r) = until(r) − since(r)

Then, for a project p and timestamp t, we define the lifetime
of pull requests, LT-PR(p, t) as follows:

LT-PR(p, t) =

∑
r∈cpr(p,t) lt(r)

|cpr(p, t)| (6)

TABLE I
METRICS OF THE CHOSEN PROJECTS

Projects Stars Commits Issues PRs Created at
vscode 73,554 48,840 67,825 5,148 2015-09-03
atom 48,654 36,581 14,648 4,393 2012-01-20
brackets 29,756 17,739 9,276 5,474 2011-12-07

LT-PR(p, t) represents the average life time of all pull
requests that have been closed before t within p. For conve-
nience, we represent the time difference lt(r) and LT-PR(p, t)
by a unit of day.

3) Soundness: The soundness represents the degree of how
carefully the government considers the quality of the proposal.
For the purpose of quality assurance, most SCP recommends
a rule that every pull request must be reviewed by one or more
third-person developers. If this rule is obeyed, the number of
developers involved in a pull request must be two or more.
However, this rule is sometimes ignored by core members or
specific members of a project. If such cases occur frequently,
the soundness of the review process is declined, and thus the
quality of pull requests cannot be assured.

To quantify the soundness of the government, we measure
the ratio of pull requests lacking enough participants. For a pull
request r, let nop(r) be the number of people participating in
r. For a project p and timestamp t, let mpr lp(p, t) be a set
of pull requests defined by:

mpr lp(p, t) = {r|r ∈ mpr(p, t) ∧ nop(r) < 2}

mpr lp(p, t) represents a set of pull requests violating the
above rule. That is, only one developer is involved in the pull
request, and the pull request is not reviewed by anyone else.

Then, we define the ratio of pull requests lacking partici-
pants, R-PRLP(p, t) as follows:

R-PRLP(p, t) =
|mpr lp(p, t)|

|mpr(p, t)| (7)

V. EXPERIMENTAL EVALUATION

A. Objectives and Settings

To address RQ2 in Section I (i.e., to see the states of
successful projects), we have conducted experimental evalu-
ation applying the proposed metrics to major GitHub projects.
We visualize the evolution of each project as the time-series
observation of the proposed metrics from each viewpoint of
essentials of the city (see Section III-C). We chose projects of
well-known code editors, vscode (microsoft/vscode),
atom (atom/atom), and brackets (adobe/brackets)
as targets. Those three editors are large-scale software and
have matured community.

Table I shows the code editors chosen, and their basic
project metrics. The columns of the table I represent the
project name, the total numbers of stars, commits, issues, and
pull requests, and the date when the project is created at1.

1The data is as of May 10, 2019

528

B. Data Collection

For calculating the proposed metrics, we have extracted
various data from the three projects using GitHub GraphQL
API [10], [11]. The data items collected for each element are:

• star

– the date of starred (starredAt)

• issue

– is closed
– the date of open
– the date of close

• pull request

– is closed
– is merged
– the date of open
– the date of close
– the number of added lines
– the number of deleted lines
– the number of participants
– the number of comments

Note that the date for each element is required for the time-
series analysis. We show an example that extracts the date
of starred from GitHub through the GraphQL API. Figure 1
shows a GraphQL script that queries the date of starred of
atom. When this script is sent to the API, the response shown
in Figure 2 is returned. By the limitation of the API, we can
extract only 100 entries at a time, so we repeat to send the
request to multiple pages. The after entry at the line 4 of Fig
1 specifies the start point of the pagination requested, which
is referred as the value of cursor in the response.

C. Visualizing Evolution

Based on the data collected, we calculate the proposed
metric m(p, t) for each project p, varying the timestamp t
in a daily basis since p is created until now.

Figure 3 shows the results of the analysis. Each graph in
Figure 3 contains three lines (red dotted lines, green dashed
line, and blue solid line), where the horizontal axis represents
the date. The three corresponds to the calculated metrics of
atom, brackets, and vscode, respectively. We observe
the results from the perspective of the five essential attributes.

1) Population: N-STAR(p, t) in Figure 3 characterizes the
evolution of the population of three projects. The vertical axis
plots the number of stars. From the graph, we can see that
the population of the three projects grow well. Especially, the
rapid growth of vscode is notable. Preferably, the graph of
N-STARshould continuously increase; however, the gradient
may become gentle as the project is matured.

In the graph, we can find some points that the population
suddenly grows, which are related to special events of the
projects. For example, the populations of atom and vscode
suddenly grew at the middle of 2014, and late of 2015,
respectively. We investigated the reason for the sudden growth.

1: query stargazers{

2: repository(owner: "atom", name: "atom") {

3: stargazers(first: 100,

4: after: "Y3Vyc29yOnYyOpIAzgFL8DE="){

5: totalCount

6: edges{

7: cursor, starredAt,

8: }

9: },

10: }

11: }

Fig. 1. An example GraphQL code for getting stargazed dates
{

"data": {

"repository": {

"stargazers": {

"totalCount": 48654,

"edges": [

// omit
{

"cursor": "Y3Vyc29yOnYyOpIAzgFL8uY=",

"starredAt": "2014-05-06T15:36:09Z"

}]

}

}

}

}

Fig. 2. A response JSON by posting GraphQL script shown in Figure 1

The reason was due to the first release of the projects, on Feb
27th, 2014 of atom2, and on Nov 18th, 2015 of vscode3.

2) Size: N-MGCL(p, t) in Figure 3 characterizes the evo-
lution of the size of the projects, where the vertical axis
represents the number of merged code lines. From the graph,
we can see that the size of every editor grows well by the
development the new features. Although vscode started later
than other two editors, the size is actively evolving to catch
up with the two. Of course, the size would be relate to the
population of the projects mentioned in Section V-C1. The
sudden growth of N-MGCL(p, t) corresponds to large-scale
modifications, and it is often observed in development of new
features. When a flat period appears in the graph, it means the
project is inactive. This implies that there is nothing to change
the project, or that the governance of the evolution falls into
a bad shape.

3) Problems: N-RIS(p, t) and R-RIS(p, t) in Figure 3
characterizes the evolution of the problems in the projects.
The vertical axes of N-RIS(p, t), and R-RIS(p, t) are the
number of remaining issues, and the ratio of remaining issues,
respectively. In N-RIS(p, t), we can see that the evolution of
each editor represents its own characteristics. The number of
issues of atom increases gradually at the beginning of the

2https://github.com/atom/atom/releases/tag/v0.56.0
3https://github.com/microsoft/vscode/releases/tag/0.10.1

529

2012 2013 2014 2015 2016 2017 2018 2019
0

20000

40000

60000

N-STAR(p,t)
atom
brackets
vscode

2012 2013 2014 2015 2016 2017 2018 2019
0

500000

1000000

1500000

N-MGCL(p,t)
atom
brackets
vscode

2012 2013 2014 2015 2016 2017 2018 2019
0

1000

2000

3000

4000

5000

N-RIS(p,t)
atom
brackets
vscode

2012 2013 2014 2015 2016 2017 2018 2019
0.0

0.2

0.4

0.6

0.8

1.0
R-RIS(p,t)

atom
brackets
vscode

2012 2013 2014 2015 2016 2017 2018 2019
0

50

100

150

LT-CIS(p,t)
atom
brackets
vscode

2012 2013 2014 2015 2016 2017 2018 2019

0.7

0.8

0.9

1.0
R-MGPR(p,t)

atom
brackets
vscode

2012 2013 2014 2015 2016 2017 2018 2019
0

5

10

15

20

LT-PR(p,t)
atom
brackets
vscode

2012 2013 2014 2015 2016 2017 2018 2019
0.0

0.1

0.2

0.3

0.4

0.5

0.6
R-PRLP(p,t)

atom
brackets
vscode

Fig. 3. Evolution of all metrics for the code editors

530

project until 2016. After that, it becomes flat and decreases
after late 2017. The shape of the graph would tell that the
problems in the project had been addressed continuously, and
that the problems are decreased as the project is matured.

In the brackets, the issues had been stacked little by
little, and the graph once becomes flat in 2016, then the issues
are increasing again. The number of issues in vscode draws
a sawtooth wave after 2017. It means that the developers
regularly review issues, the core members solve many issues
at once at certain timing, probably before a new release.

Although the number of remaining issues is changing
uniquely for each project, the ratios is well decreased for all
projects, as shown in the graph R-RIS(p, t).

The lines in N-RIS(p, t) and R-RIS(p, t) should be con-
verged to zero. However, it is generally hard to achieve when
the population grows. Because various people post various
issues, the quality of the issues also varies, involving important
issues as well as non-essential issues.

4) Ability of Problem Solving: LT-CIS(p, t) in Figure 3
represents the ability of problem solving in the projects, char-
acterizing how many days are spent to solve the closed issues
on average. The vertical axis shows the life time of closed
issues in the number of days, indicating the velocity of prob-
lem solving. Preferably, LT-CIS(p, t) should be maintained
below a certain value d, which assures that every problem
would be solved around d days. However, LT-CIS(p, t) for all
projects are continuously increasing. This observation may be
due to the increase of the population. When a lot of issues
including non-essential ones are posted, the solutions cannot
catch up with the new issues, and not all issues are need to be
addressed. Especially, the lifetime of atom suddenly increased
since the end of 2017, which becomes over 120 days in 2019.
The reason of the sudden growth will be investigated in our
future work, taking the quality of issues into consideration.

5) Capability of Government: R-MGPR(p, t), LT-PR(p, t)
and R-PRLP(p, t) in Figure 3 represent the capability of
government in the projects.

The vertical axis of R-MGPR(p, t) plots the ratio of merged
pull requests which characterizes the acceptability. The accept-
ability of vscode is lower than other two editors after 2016.
To determine the ideal value is quite difficult, since it requires
to evaluate the quality of modifications performed by the pull
requests. If almost all modifications are quite important ones,
R-MGPR(p, t) should be close to 1. However, in general,
the qualities of the modification are gradually down as the
population of the project grows. In that means, the value of
R-MGPR(p, t) of three editors may be natural consequence.

The vertical axis of LT-PR(p, t) represents the lifetime of
pull requests at that time. In three editors, the values of
LT-PR(p, t) gradually increase, and they reach around 15-20
days in 2019. This means that even if the number of pull
requests increases, the capability of the community making
the decision does not significantly increase. Consequently, the
response time will be extended. LT-PR(p, t) is shorter than
LT-CIS(p, t), because an issue is posted before the problem is

solved, and a pull request is created at least after a direction
of solution is proposed.

The vertical axis of R-PRLP(p, t) plots the ratio of pull
requests lacking participants. The value of atom is around
0.3, which is significantly higher than other two editors. In
general, this result is not considered to be good. Note that the
cause of the result may be related to the policy of atom. The
ideal value of R-PRLP(p, t) is zero. That is, in the community,
all of the pull requests are reviewed by other developers before
merging. In the context of R-PRLP(p, t), the communities of
brackets and vscode obey the rule well.

D. Discussion

As shown in Figure 3, we have visualized the evolution of
the three major projects by plotting the proposed metrics on
time-series graphs. Each graph explains how the projects have
evolved from a specific viewpoint of a city. We can see that
each of the three projects has own characteristics of evolution,
however, we can also see some common observations:

1) The population and the size continue to grow for a long
time until now.

2) As the population and the size grow, the number of
problems and the time to resolve them increase. The
agility of the government also becomes slow.

3) The problems are addressed actively by the community,
decreasing the ratio of unresolved issues.

4) The acceptability of the government is converged to a
certain value, which is specific to a project. The same
observation holds for the soundness.

The first observation indicates that the increase of the
population is significantly related to the spontaneous software
evolution. The more people come to a project, the more new
issues and their resolutions are born. The second observation
reflects the existence of social overhead. As more people
come, the quality of issues and pull requests vary. The over-
head to make a consensus for every issue would be increased.
The third observation shows that in good projects, the critical
problems should be eliminated constantly, which produces
the dropping-to-the-right curve in the graph of R-RIS(p, t).
This is similar to an ideal shape of the burn-down chart of
Scrum [12]. The fourth observation reflects a policy within
core members of every project, to which we should perform
deeper investigation.

The great advantage of the proposed method is to quantify
the state of a project p at any given time t. This allows
community members to assess the current state of the project
as a city, reminding them of what the problems are, and
what should be done. Thus, monitoring the state by the
citizens themselves is crucial for the governance of the project.
Moreover, the metrics can be integrated with relevant CI
(continuous integration) and CD (continuous delivery) tools. A
promising idea is to implement a bot that triggers appropriate
actions when the current state is out of acceptable state.

The limitation of the proposed method is that the metrics
have not yet stepped into the quality aspects of elements.
For example, we did not consider the importance of issue.

531

Although fixing a critical bug may be more important than
adding a new feature, the proposed metrics do not discriminate
them. In GitHub, developers can attach labels to every issue,
which can be used to measure the importance. However, the
convention of labeling is different among individual projects.
Therefore, it is not easy to quantify the importance. Investi-
gation of such quality aspects is left for future work.

VI. RELATED WORK

GitHub repository has been analyzed in many previous
studies. Gousious et. al. [13] summarized GitHub repositories
from Feb. 2012 to Aug. 2013. However, this research does
not distinguish the type of application, does not target issues,
and does not consider time series, therefore it differs from our
research.

Steinmacher et. al. [14] analyzed qualitative and quantita-
tive aspects on pull requests submitted by developers other
than core members. However, this research’s targets are only
developers who are not core members, and that it does not
target other than pull requests, therefore it differs from our
research.

Trockman et. al. [1] investigated the influence of the badges,
which are used to make it easy to understand the transparency
of github repositories. The factors related to the badges
(transparency itself ot easy to understand the characteristics
of the project) may also affect the analysis may be related in
out future work.

Yang et. al. [15] investigated the relationship among re-
viewers by using contribution and review comments in 4 OSS
projects. Impact analysis of the relationship between reviewers
for the rise and fall of the project will be out future work.

Constantiou et al. [16] summarize the number of commits,
the number of lines, and the number of projects for the ruby
project on GitHub in time scale. This study focuses on a
specific language, therefore it is different from the our study
that targets specific application types.

Pinto et. al. [17] analyzed the behavior of ”casual contribu-
tors” by some development language in GitHub.The research
target is only developer, therefore that is different from our
research.

Borges et. al. [18] focused on GitHub starring and analyzed
the characteristics of projects with many stars. However, the
analysis target is only star, which is different from our research
subject.

Our study is similar to these related work in that it analyzes
the GitHub repository. However, our research is different
in that it focuses on the time series change of participants
involved in the repository and its activities.

VII. CONCLUSION

To understand the mechanism of spontaneous software evo-
lution, we have presented a method that investigate evolution
of projects in social coding platforms (SCPs) . Introducing
the concept of project as a city, we first identify essential
attributes for the spontaneous evolution, then develop metrics
that quantify the state S(p, t) of a project p at time t. We also

conduct an experimental evaluation where we visualize the
evolution of projects of famous code editors within GitHub.

We are currently continuing the experimental evaluation
with more projects to find good/bad patterns of evolution
corresponding to good/bad practices. These patterns would
be crucial information to govern the project for achieving
sustainable and spontaneous evolution. Investigation of quality
aspects is also important future work.

ACKNOWLEDGMENT

Part of this work was supported by JSPS KAKENHI
Grant Numbers 17K00196, 17K00500, 17H00731, 18H03242,
18H03342, and 19H01138.

REFERENCES

[1] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle
to social coding: An empirical study of repository badges in the npm
ecosystem,” in Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, (New York, NY, USA), pp. 511–522,
ACM, 2018.

[2] “GitHub: The world’s leading software development platform.” https:
//github.com.

[3] “Bitbucket: The Git solution for professional teams.” https://bitbucket.
org.

[4] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, pp. 1060–1076, Sep. 1980.

[5] K. Matsumoto, H. Hata, M. Nakamura, H. Tamada, A. Ihara,
S. Morisaki, M. Tsunoda, K. Toda, M. Ohira, and A. Monden, “Devel-
opment of fundamental technologies to accelerate spontaneous software
evolution.” JSPS Kakenhi Grant-in-Aid for Scientific Research (A)
JP17H00731, 2017.

[6] Microsoft, “Visual Studio Code.” https://github.com/microsoft/vscode.
[7] M. Nakamura and L. du Bousquet, “Constructing execution and life-

cycle models for smart city services with self-aware iot,” in IEEE
12th International Conference on Autonomic Computing (ICAC2015),
pp. 289–294, July 2015.

[8] “Atom: The hackable text editor.” https://github.com/atom/atom.
[9] Adobe, Inc., “An open source code editor for the web, written in

JavaScript, HTML and CSS.” https://github.com/adobe/brackets.
[10] GitHub, “GraphQL API v4.” https://developer.github.com/v4/.
[11] “GraphQL June 2018 edition.” https://graphql.github.io/graphql-spec/

June2018/.
[12] G. Dinwiddie, “Feel the burn, getting the most out of burn charts,” Better

Software, vol. 11, no. 9, pp. 26–31, 2009.
[13] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of

the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, (New
York, NY, USA), pp. 345–355, ACM, 2014.

[14] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost there:
A study on quasi-contributors in open-source software projects,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pp. 256–266, May 2018.

[15] X. Yang, N. Yoshida, R. G. Kula, and H. Iida, “Peer review social
network (peRSoN) in open source projects,” IEICE Transactions on
Information and Systems, vol. E99-D, pp. 661–670, 3 2016.

[16] E. Constantinou and T. Mens, “Socio-technical evolution of the ruby
ecosystem in github,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 34–44,
Feb 2017.

[17] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More common than
you think: An in-depth study of casual contributors,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, pp. 112–123, March 2016.

[18] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 334–
344, Oct 2016.

532

