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Abstract—In this article, we describe the work we did to
validate a case study application that includes a learning feature.
Our objective was to express properties that can be used for
testing or monitoring the quality of the application, taking to
account the learning dimension. To express relevant properties,
we had to modify the architecture of the application to add
supplementary output. They indicate whether the learning phase
is achieved or not, and if the system notices some significant
changes in the environmental conditions. Here, we report about
the lessons learnt about this process.

Index Terms—Learning System; Validation; Testability; Design
for Testing

I. INTRODUCTION

Nowadays, Artificial Intelligence (AI) is becoming more
and more important in software systems. Learning ability for
new apps or systems is a promise of a personalised experience
for every user based on individual preferences. Thus, user’s
satisfaction is expected to be improved.

For example, authentication facilities are now offered for
smart-phones that learn and recognise the user’s face [1].
Virtual personal assistants are able to learn the user voice to
satisfy the voice commands. AI systems send recommenda-
tions for shopping[2]. Self-driving cars are travelling more and
more kilometres.

However, safety or security problems are regularly risen for
those applications [3]. This makes AI more suspicious for
users and increases the need of validation, verification, and
even certification [4]. But learning features make software
system much more difficult to validate [5]. Indeed, while
learning the user’s habits or the environmental characteristics,
the system behaviour is evolving in an unpredictable way [6].
Specification becomes somehow difficult to express, which
impacts the validation procedures.

In this article, we report the lessons learnt from the valida-
tion of a case study application that includes a learning feature.
To be able to express properties that can be used for testing
or monitoring, we had to modify the design of the systems.
In Section II, we first report on some related works dedicated
to the validation of machine learning algorithms and systems
that include such algorithms. We then detail our case study
(Section III) and the expression of properties (Section IV).
We discuss on the lessons learnt in Section V.

II. MACHINE LEARNING AND VALIDATION

A. Validation of the algorithms

There is a large variety of Machine Learning (ML) al-
gorithms dedicated to different applications. For example,
classification ones are used to classify discrete inputs to
predefined categories. Clustering algorithms are used to group
similar inputs (into clusters). Regression analysis is used for
prediction and forecasting.

A ML algorithm is expected to predict well after training.
This property is called generalisation. The first step of the vali-
dation is thus to check the quality of the prediction, also called
performance of the ML algorithm. This can be compared to
the functional validation step in software engineering, which
aims to ensure that a program is doing well what it is supposed
to do.

Performance measures are specific to the algorithm classes
that is considered. For pattern recognition and binary clas-
sification, this is evaluated through precision, recall and F-
measure (the weighted harmonic mean of precision and recall)
[7]. They are based on the count of true/false positive/negative
verdicts. True (resp. False) verdict are used to differentiate
when the answer of the system recognises (or not) the input.
Positive (resp. negative) verdict states whether the answer
is correct or not. For algorithms such as classification and
regression, generalisation error can be evaluated to measure
how accurately the algorithms are able to predict outcome
values for previously unseen data [8].

Other properties can also be expected for ML algorithms.
Stability evaluates how much a ML algorithm is perturbed
by small changes to its inputs: the predictions of a stable
algorithm will not be very affected if the inputs change
just a little bit [9]. For a large class of learning algorithms,
notably empirical risk minimisation algorithms, certain types
of stability ensure good generalisation. Training speed,
efficiency, compactness are also dimensions that can be
evaluated, especially to compare different algorithms.

To evaluate the quality of the algorithms, several methods
are proposed. In holdout evaluation, data available for training
are split into two sets, one for the training itself, the second



one for the validation [10]. This can be done randomly or may
involve more complex sampling methods.

Cross-validation denotes a set of more sophisticated valida-
tion methods. Basically, they consist in dividing the dataset
into equally sized groups of instances (called folds). The
learning algorithm is then applied several times, each time
using the union of all subsets but one, which is used as a test
set [11]. The cross-validation methods are different from one
another by the way to build the folds and to use them. To
produce the learning set, some test methods can be applied
[12], [13].

Learning and validation with cross-validation approaches
can give very good results. But they are mainly dedicated
to situations “in the lab”. For “in the wild” cases, i.e., for
real world situations where applications learn from the final
user, simpler approaches might be applied due to lack of time
or data. Poorer results are observed [14]. For this reason, it
is necessary to consider also the quality of the final system
considered as a whole.

B. Validation of the final system

Validation of a system that includes some learning feature is
difficult. As said previously, the final usage of the application
is not easily predictable since it varies with respect to the
environment. Sometime, even for one specific user, her needs
may evolve with the time. This makes specification impossible
to express with precision [5] [15] . For the same reasons,
it is usually not possible to assess precisely the environment
characteristics of the final system.

In [16], authors use simulations to evaluate the quality of
an online adaptive system for electric wheelchairs that learn
to avoid obstacles. For this specific application, some safety
properties are easy to express, e.g., the wheel chair should
not enter in collision with any obstacles. But quality of the
learning is more difficult to assess with a property. So, authors
evaluated manually the path smoothness of the wheel chair
in different environments, based on a comparison of two
algorithms.

In [17], authors focus on the validation of learning features
embedded in applications dedicated to intelligent inhabited
environments. They performed experiments in which an in-
telligent application learned and adapted itself to the user
behavior, while she stayed in a real equipped flat for five days.
Here again, the quality of the learning feature is assessed by
a comparison of the results of different algorithms.

Model-checking approach has been used in [18]. Authors
focus on the safety and robustness validation of vision systems
that can be used for self-driving cars. One of the considered
safety properties is that “self-driving cars steering angle should
not change significantly for the same road under different
lighting conditions”. To evaluate this invariant, authors propose
a framework that transforms a given image with different
transformation functions (e.g., rotation). The objective is to
assess the quality of the final application (after learning) by
analysing how often the invariant is violated.

In [19], authors advocate the usage of quantitative verifi-
cation at run-time to identify and even predict requirement
violations, in addition to off-line verification for self-adaptive
feature, but it is not clear how to adapt them for specifying
properties on learning.

In [20], authors advocate the usage of metamorphic testing
to ease the problem of the oracle expression ML applications.
Metamorphic testing aims at creating new test cases from the
existing ones thanks to a transformation. Well chosen, the
transformation approximates the expected outputs of the new
tests based on the expected outputs of the old ones.

Beyond the expression of the expected properties (and/or
the metamorphic relation), system testing remains difficult
to apply, especially because it requires to control the input
of the system [21]. For instance, testing an intelligent home
application that regulates the home temperature may require
to be able to modify the home temperature by other means,
in order to check that the system under test reacts correctly.
Overheating a room in winter in order to check that the air-
conditioner can cool it correctly is often unacceptable. .

For this reason, the final system is often tested in a simulated
environment before deployment [22]. For a validation after
deployment, monitoring is often preferred [23] [24]. It consists
in observing the outputs of the system without controlling the
inputs.

C. A software engineering viewpoint of testability

Software testing is the process of executing a program with
the intent of finding errors [25]. It has emerged as one of the
major techniques to evaluate the implementation reliability.
Unfortunately, testing is usually an expensive process. It can
represent more than 40% of the total cost of the software
development [26].

Testability denotes the ability of a system to be tested [27].
Originally, testability was defined for hardware components.
For software systems, several definitions have been proposed.
In [28], testability is defined as the effort needed for test-
ing. For Binder, testability is the relative ease and expense
of revealing software faults [29]. Other definitions allow a
quantitative evaluation of the testing effort [30] or represents
the probability to observe an error at the next execution if
there is a fault in the program [31].

Being able to characterise and to produce testable systems
has become a preoccupation more and more important for
software companies. Basically, it often means to increase the
ability to observe the internal behaviours of the system under
test (observability) and/or to increase the ability to control the
system under test (controllability).

The case study that follows was a source of reflection for the
expression of properties that can be used for testing oracle or
monitoring. To express them, we had to modify the application
design. In the following, we first describe the case study. We
then show how the expression properties impacted the design.



FIG. 1. ABSTRACT SOFTWARE LIFE-CYCLE OF
THE INTELLIGENT AIR-CONDITIONNER

III. CASE STUDY

A. The application under test

Our case study is an “intelligent air-conditioner” (iAC).
It controls a classical air-conditioner and offers a planning
functionality. Thanks to this last one, the user can choose a
timer value above which the room temperature is expected to
be equals to a chosen one. To make this possible, the system
includes an intelligent feature that learns how long it takes to
warm or to cool the room (room thermal inertia).

The life-cycle of the iAC software is depicted at an abstract
level in Figure 1. It includes two parts, which denote the
time before and after the deploiement of the application. The
learning phase is carried out once the iAC is installed in the
user house.

We chose this case study because it is an example of a
system “in the wild”: it is not possible to achieve training on an
pre-existing data set nor is it possible to apply cross validation
methods. It is also difficult to achieve testing at system level
(i.e., on a real installation) because the environment of the
system is hardly controllable for the reasons given Section
II-B.

Our objective is thus to achieve monitoring of the system
execution in order to check that the system behaviours are
adequate. By monitoring, we mean that a program will peri-
odically check that the inputs and outputs of the iAC satisfy
the expected behaviours. We especially want to detect if the
learning phase carried out after the installation leads to inac-
ceptable behaviours (to prevent situations such as Tay chatbox
[6]). The difficulty relies in expressing what are the adequate
behaviours, i.e., to express the right specification/properties. In
the following, we report on the work done to elaborate those
properties, which takes place within the development phase of
the lifecyle.

Intuitively, the user expects that the the planing functionality
works correctly (the required temperature should be reached
on schedule). This means that the learning feature should learn
correctly the thermal inertia. Of course, at the beginning, the
system can fails, but the error should be less and less with
the time. The user could expect that the learning does not
last too long. Another important requirement of the planning
functionality is that it is supposed to spend as less energy
as possible to achieve the chosen temperature: i.e., it should
switch-on the AC just on time w.r.t. the room thermal inertia.

The classical air-conditioner can be switched on and off.
It has three modes: Cooling, Heating and Idle. The
AC enters the Cooling mode if the observed temperature
is beyond the required temperature of more than one degree.
It enters in the Heating mode if the observed temperature

FIG. 2. SIMPLIFIED TEST HARNESS

is below the required temperature of more than one degree. It
enters in the Idle mode when the observed temperature is
equal to the required one ± 0.5. The required temperature can
only be set between 17 and 27oC.

For the case study, both classical and intelligent air-
conditioners were developed in Java. The learning feature was
implemented as an ad-hoc algorithm. It has no importance by
itself, since the system will be considered as a black-box for
the validation point of view [21].

B. The validation harness

As said previously, our case study aims at providing a
support to express some expected properties of a system with
learning abilities. For this reason, the validation harness is
very simple. It consists of a simulator and an environment
component, which are controlled by a JUnit test (see Figure 2).

The environment component aims at simulating the room
temperature evolution, which is read by the temperature sen-
sors of AC and iAC. It is possible to modify the room inertia
rules during the simulation to fake some environment changes
(e.g., outside temperature, opened windows).

The simulator is responsible for the validation progress. It
includes:

• initialisation methods, to create, initialise and connect the
iAC, AC and environment components,

• property methods (also called oracle methods), in which
expected properties of the system under test are expressed

• a “step” method that deals with the evolution of the
system for a given time lapse. During one “step”, the
simulator checks the state of the AC and asks the envi-
ronment to update accordingly equation (1).

temp =

 temp+ δ1 if AC is On and Heating

temp− δ2 if AC is On and Cooling (1)
temp− δ3 if AC is Idle or Off

The simulator is solicited with a JUnit test file, in which it
is possible to specify a modification of δ1, δ2 and δ3 during
the simulation. In this test file, it is also possible to evaluate
the value of the oracle properties as JUnit assertions. Thus,
if one of these properties is violated during the simulation, a
Fail verdict is raised by JUnit.



IV. EXPRESSING PROPERTIES

Our intelligent AC has to achieve the basic properties
expected for an AC. Informally, this means that when the AC
is On, “it should heat (resp. cool) the room when it is in its
Heating mode (resp. Cooling mode)”, and “it is supposed
to be in the Heating (resp. Cooling) mode when the room
temperature is substantially below (resp. above) the expected
one”.

In addition, the iAC has to manage correctly the timer
feature: the expected temperature should be reached on time.
Moreover, it is supposed to spend as less energy as possible
to achieve the chosen temperature. In the following, we focus
on the validation of the intelligent feature.

Let us first consider P , a property stating that the room
temperature should be equal to the expected one when the
timer is elapsed. Considering the imprecision of the measure,
such a property can be expressed as:

(P ) : iAC.timerElapsed⇒
| env.temp− iAC.requiredTemp | < 0.5

where iAC.timerElapsed is a Boolean variable that is
true exactly when the time is elapsed and false otherwise,
env.temp is the observed environment temperature, and
iAC.requiredTemp is the user required temperature. The
imprecision tolerance was arbitrary fixed to 0.5 here without
a loss of generality.

To check if the system spends as less energy as possible,
it is possible to monitor how often the AC switches from
the Idle state to an active one (Heating or Cooling),
from the moment where the timer is set until it is elapsed. To
compute this, we added the sim.iSwitch attribute in the
simulator component. It is computed like an observer property.
Ideally, sim.iSwitch value should be 0 when the time is
elapsed, but some flexibility could also be acceptable. Indeed
having too restrictive properties could provoke unnecessary
fail verdicts. For this reason, we chose the following property.

(Q) : iAC.timerElapsed ⇒ sim.iSwitch ≤ 1

Moreover, it would be inefficient from an energetic point of
view to heat the room just after heating it (or conversely). To
capture those situations, in an identical way than previously, it
is possible to monitor the number of switches from Heating
to Cooling states (and conversely), and to express an
property on the maximum number of changes while a timer
is active.

One problem with the previous properties is that they can
raise false negative verdicts, i.e., they can be violated even
if the system is correct. Three situations have been identified
during our tests: (1) the user tries to fix an unfeasible timer,
(2) the environmental characteristics have changed during the
execution (e.g., a door or window which had been left open),
or (3) the training of the system is not achieved.

To fix situation (1), we modify the iAC program, in order to
make timer activation possible only when the system evaluates

that it has enough time to reach the required temperature
within the delay. If it has not, a notification is sent to the user
and the AC is switched-on immediately. This has no impact
on the previous properties, because the timer is not activated
in this situation.

To fix situations (2) and (3), we need to know whether the
training is achieved and if the environmental conditions have
changed during the execution. In order to get that information,
we modify the system design in order to have two new
Boolean outputs. The first one, iAC.stillLearning, is
true as long as the system considers that its training is
not achieved. The second one, iAC.envModification,
is true if the system noticed significant changes in the
environmental conditions while it was trying to achieve the
timer requirement, and false otherwise.

Thanks to these two outputs, it is possible to rewrite P and
Q properties so that a failure occurs only if they are violated
after the training end and if the environmental characteristics
are the same as the one which were learnt.

(P ′) : not P ⇒ ( iAC.stillLearning ∨
iAC.envModification )

(Q′) : not Q ⇒ ( iAC.stillLearning ∨
iAC.envModification )

It is worth noting that iAC.stillLearning is an im-
portant feedback about the system’s learning ability. It al-
lows expressing several properties about the quality of the
learning feature. For instance, if the system stays in the state
iAC.stillLearning after using the timer feature “a lot
of” times, it may denote a difficulty. Of course, the acceptable
learning time (i.e., number of activations) has to be defined.
Let iAC.nbActivation be the number of activations of
the timer since the iAC installation. The following L property
is a way to express a too long training process (5 being chosen
arbitrarily):

(L) : ( iAC.nbActivation > 5 ) ∧ iAC.timerElapsed
⇒ not iAC.stillLearning

Similarly, iAC.envModification can be used to
evaluate the learning feature quality. If it is true “too
often”, it may denote that the system is not able to predict
correctly the environment behaviours. In the case of our
case-study, the room thermal inertia is susceptible to strongly
depends of the door’s state (i.e., if it is open or close). If
the system is not aware of the door status, it may be not
able to learn properly the thermal inertia. The analysis of the
iAC.envModification variations is a possible way to
detect such a situation.

It can be noticed that a system that refuses any timer will
be correct with respect to the previous properties (because
iAC.timerActivated will never be set to true). To
detect such behaviours, we modified the simulator. Each time
a timer is set, the simulator captures the notification of the
system (acceptance or rejection of the timer). If the system
accepts the timer, nothing is done: the previous properties will



catch abnormal situations. If the system refuses the timer, the
simulator starts a specific timer counter.

If the expected temperature is reached at
the end of the timer in normal conditions
(not (iAC.stillLearning ∨ iAC.envModification)), the
system may have been too pessimistic, and a counter value
is incremented. It is then possible to express a property that
if false if the pessimistic refusal rate is greater than a given
threshold.

V. LESSONS LEARNT

With this work, our objective was to assess the quality of
the learning feature when embedded in the final system. In
this context, the issue is to guarantee that the intelligent part
of the system does exactly what it is expected to do: i.e., to
provide the right indications to take decisions and/or that it
carries out the appropriate actions.

Being able to validate the learning feature is tricky because
it is not possible to anticipate the usage and the environmen-
tal conditions of the system under consideration. Moreover,
classical validation methods such as cross-validation or output
comparison of several algorithms may not be possible to
achieve. Monitoring the system behaviour is possible as long
as expected properties can be expressed.

In order to evaluate what kind of properties it is possible
to express to qualify learning, we carried out a case study.
Beyond the specificity of the considered application, it has
been possible to elaborate general lessons.

The system is supposed to learn from its environment and/or
from its users, but sometimes, conditions are changing, either
occasionally or for a long time. It is important to design the
system in such a way that it can (1) detect those changes and
(2) provide feedback when they occur.

This has two advantages. First, it is possible to use this
feedback to express more accurate properties, and thus limit
the number of false negative verdicts in a process of testing
or monitoring. Second, it is possible to use this feedback
to detect inappropriate behaviour of the learning feature (for
instance when training lasts too long or when the system
always concludes that the conditions are changing).

Thus, designing a system with learning feature should not
consist only in inserting an algorithm upon an existing system.
One has to think about what kind of properties the new
feature has to satisfy, after what the design should include
the outputs necessary to evaluate them. This is necessary not
only for the validation step, but also to achieve transparency
and accountability of the system [32]. This approach is called
“design for testability” in software engineering [33].

To judge the quality of a learning feature, it seems to us that
safety and liveness property were a little bit too restrictive.
We needed to be able to consider the evolution of different
attributes during a period of time, from a statistical point of
view, in order to capture suspicious behaviours. Typically,
one could observe by this means the user satisfaction. As
underlined in [15], the user might be the only possible oracle to
judge the quality of the system outputs. If the user satisfaction

is also collected, it will be possible to detect when it is mostly
negative, and thus denote some learning troubles or inadequacy
of the system w.r.t. the needs.

VI. CONCLUSION AND PERSPECTIVES

In this article, we report on a case study carried out to evalu-
ate how a learning feature can be validated when embedded in
a more global system. We chose to apply monitoring approach,
consisting in observing the outputs of the system during the
execution to detect inconsistent behaviours. The difficulty was
to express properties able to detect relevant failures related to
the learning process.

The most important conclusion we have from this work is
that the expected properties of the system should be considered
during the design. While doing that, outputs necessary to
evaluate those properties have to be included, otherwise, the
final validation would be difficult.

As perspective, we are considering other use cases, in order
to see if some pattern of properties to assess quality of learning
can be detected.

Notes and Comments: This work has been funded by
the project CNRS-PICS 6999 and LIG emergence iCASATE
project.
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