
Characterizing Dynamics of Information Leakage in
Security-Sensitive Software Process

Yuichiro Kanzaki Hiroshi Igaki Masahide Nakamura Akito Monden
Ken-ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara, Japan 630-0192

Email: {yuichi-k, hiro-iga, masa-n, akito-m, matumoto}@is.naist.jp

Abstract

Minimizing information leakage is a crucial problem
in DRM software development processes, where se-
curity information (e.g., device keys and S-BOX of
CPRM systems) must be rigorously managed.

This paper presents a method to evaluate the
risk of information leakage in a software process for
security-sensitive applications. A software process is
modeled as a series of sub-processes, each of which
produces new work products from input products.
Since a process is conducted usually by multiple de-
velopers, knowledge of work products is shared among
the developers. Through the collaboration, a devel-
oper may tell others the knowledge of products that
are not related to the process. We capture the trans-
fer of such irrelevant product knowledge as the infor-
mation leakage in a software process.

In this paper, we first formulate the problem of
information leakage by introducing a formal software
process model. Then, we propose a method to derive
the probability that each developer d knows each work
product p at a given process of software development.
The probability reflects the possibility that someone
leaked the knowledge of p to d, unless it is equal to 1.0.
We also conduct a quantitative case study to demon-
strate how the information leakage varies depending
on the assignment of developers.

1 Introduction

The development of a complex and large-scale soft-
ware system requires the collaborative effort of many
people with an elaborate software process (Jacobson,
Booch & Rumbaugh 1999). A (whole) software pro-
cess is composed of partially-ordered sub-processes
(simply called processes) such as design, coding and
testing, as well as work products (simply products)
which can be the input or output of each process.

Typically, multiple developers participate in a
common process. Given input products, the devel-
opers collaborate with each other, and produce out-
put products. Through the collaboration, they usu-
ally share their knowledge of the products in or-
der to achieve the process efficiently. Thus, when
multiple developers participate in a process, cer-
tain knowledge transfer may occur in the process.
From the viewpoint of the efficiency, the knowledge
transfer should be improved, since it helps develop-
ers to acquire a similar understanding of the pro-

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Information Security Work-
shop (AISW2005), Newcastle, Australia. Conferences in Re-
search and Practice in Information Technology, Vol. 44. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

cess (Keller, Tabeling, Apfelbacher, Grone, Knopfel,
Kugel & Schmidt 2002).

Requirement

……
……

Secret Info

……
……

Specification

Encoded
Secret Info・・・・・・・・・・Encoded
Secret Info・・・・・・・・・・Spec・・・・・・・・・・・・・

A A B C

……
……

Code

P1
Design

P2
Coding

Figure 1: Security-Sensitive Software Process

However, in the development of security-sensitive
software such as DRM applications (Chow, Eisen,
Johnson & van Oorschot 2002)(Liong & Dixit 2004),
the transfer of the product knowledge is not always
encouraged. For more comprehension, we introduce
a simple example.

Figure 1 shows a software process consisting of two
processes P1 and P2. P1 is a design process con-
ducted by developer A, where A produces a product
Specification from given two products Requirement
and SecretInfo. Here we assume that SecretInfo is
confidential information (e.g., device keys or S-BOX
of CPRM systems (4C-Entity 2001)) only A is autho-
rized to see, and that it must appear in Specification
in a certain encoded form. P2 is a coding process
in which A, B and C participate. The three devel-
opers collaborate with each other and produce Code
from Specification. Since A knows Specification, A
may explain it to B and C in the collaboration. This
knowledge transfer is reasonable, since Specification is
necessary for B and C to perform P2 together. Even if
A does not give the explanation, B and C must know
Specification. On the other hand, both Requirement
and SecretInfo are irrelevant to P2, since they are not
directly connected to P2. However, what happens if
A tells B or C the knowledge about SecretInfo in P2?
Then, B or C gets to know SecretInfo, which ruins
the security scheme.

From the above observation, we consider that in
a security-sensitive software process, the knowledge
transfer with any such irrelevant products should be
warned as information leakage. Note that the risk
of the information leakage varies, depending on the
structure of the software process and the assignment
of developers to each process. For example, in Figure
1 if A is not assigned to P2, no leakage occurs.

The goal of this paper is to propose a framework
to evaluate the risk of the information leakage quanti-
tatively, for a given software process. To achieve this,
we first formulate the problem of information leak-
age by introducing a formal software process model.
The model is based on the conventional process-
centered software engineering environment (Feiler &

Humphrey 1993)(Garg & Jazayeri 1995). Our con-
tribution is to formulate product knowledge of each
developer on top of the model, focusing on the pro-
cess structure and the developer assignment.

Next, assuming that the knowledge of the irrel-
evant products can be transferred (i.e., leaked), we
present a method to compute a probability that each
developer knows each product. The probability re-
flects the risk that someone leaked the product to the
developer. We derive the probability by deriving a
recurrence formula from the given software process
model.

Finally, we conduct a case study to demonstrate
how the information leakage varies depending on the
assignment of developers. The case study shows
quantitatively that too much collaboration among de-
velopers significantly increases the risk of information
leakage.

The rest of this paper is organized as follows:
In Section 2, we give definitions of software process
model. Section 3 describes the proposed method for
characterizing dynamics of information leakage. In
Section 4, we conduct a case study. We review the re-
lated work in Section 5. Finally, Section 6 concludes
the paper and presents directions of future work.

2 Preliminaries

2.1 Software Process Model

We start with a definition of a software process model.
The model is based on the conventional process-
centered software engineering environment (Feiler &
Humphrey 1993) (Garg & Jazayeri 1995), where the
software development is modeled by partially-ordered
activities (processes) operating with given or inter-
mediate working products. In addition to the con-
ventional model, our model involves the assignment
of developers to specify explicitly who participates in
each process.

Definition 1 (Software Process Model)
A software process model is defined by
P = (U,WP, PC, I,O, AS), where:

• U is a set of all developers participating in the
development.

• WP is a set of all work products.

• PC is a set of all processes.

• I is an input function PC → 2WP that maps
each process p ∈ PC onto a set IP (⊆ WP) of
input products of p.

• O is an output function PC → 2WP that maps
each process p ∈ PC onto a set OP (⊆ WP) of
output products of p.

• AS is an developer assignment function PC →
2U that maps each process p ∈ PC onto a set of
developers participating in the process p.

Figure 2(a) shows an example of the software pro-
cess model, which simplifies an implementation stage
of a security-sensitive application. The model con-
tains five developers, eight work products, and six
processes. The scenario assumed in the model is
briefly explained as follows:

Example Scenario: The implementation stage pro-
duces an object code from a given design specification.
In the stage, the design specification is revised by a
review process. Then, by applying a security analysis
to the reviewed specification, any security-sensitive
information is isolated from the specification. The

rest of the specification is called ModuleSpec. From
the security information, authorized developers de-
sign a specification, called S-ModuleSpec for an in-
dependent security module in which the raw security
information is encoded. A main module and the secu-
rity module are coded respectively from ModuleSpec
and S-ModuleSpec. Finally, these two modules are
integrated as the object code.

In Figure 2(a), let us take the process Review.
This models the review of the design specification.
It takes DesignSpec as an input product, and outputs
a reviewed specification (Rev-Spec). In this example,
only developer A is responsible to conduct the pro-
cess. Next, consider the process SecAnalysis. This
takes Rev-Spec as an input, and outputs ModuleSpec
and SecurityInfo. Two developers A and B partici-
pate the process. By the similar discussion, we can
see the process model achieves the example scenario.

By definition, each process has a set of input prod-
ucts and a set of output products. This allows us to
draw a given process model by a Petri net (Marsan,
Balbo, Conte, Donatelli & Franceschinis 1995), by as-
sociating WP with places, PC with transitions, con-
necting a place and a transition with an arc according
to I and O. Figure 2(b) shows a schematic represen-
tation of the example process with Petri net. Also,
we associate a set of developers with each correspond-
ing transition based on AS, depicted in the left of the
transition. Note that the use of Petri net is just for
better comprehension of the overview of the process
structure, but is not essential to our methodology.

2.2 Order among Processes

Suppose that P = (U,WP, PC, I, O, AS) is given.
For p ∈ PC, w ∈ I(p) and w′ ∈ O(p), we use a
triple (w, p, w′) to represent a product dependency of
process p, where a work product w′ is produced by
p from w. The product dependencies implicitly spec-
ify a partial order between processes, since a process
needs input products that have been generated by
other processes.

Definition 2 (Order of Processes) For processes
p and p′, we say that p is executed before p′ (de-
noted by p < p′) iff there exists a sequence (w0, p, w1)
(w1, p1, w2) ... (wn−1, p

′, wn) of product dependencies.
For processes q and q′, if any < is not defined between
q and q′, we say that q and q′ are independent.

Let us consider the previous example. As depicted
in Figure 2(b), we can see the order among the six
processes, i.e., Review < SecAnalysis < Coding1 <
Integrate, and Review < SecAnalysis < S-Design <
Coding2 < Integrate. Note that the order is partial at
this moment. Indeed, no order between Coding1 and
S-Design (or Coding2) is defined, thus they are inde-
pendent. The independent processes can be executed
in any order, even concurrently.

2.3 Assumption on Software Process Model

In this paper, we put the following two assumptions
for a given process model P = (U,WP, PC, I,O, AS).

Assumption A1: There exists no sequence
(w0, p0, w1) (w1, p1, w2) ... (wn−1, pn, wn) of
product dependencies such that w0 = wn.

Assumption A2: For any pair of independent pro-
cesses p and p′, if AS(p) ∩ AS(p′) 6= φ, then an
order between p and p′ must be given.

U = { A, B, C, D, E}
PD = { DesignSpec, Rev-Spec, SecurityInfo,

ModuleSpec, S-ModuleSpec, MainModule,
SecurityModule, ObjectCode }

PC = {Review, SecAnalysis, S-Design, Coding1,
Coding2, Integrate }

I(Review)={DesignSpec}
I(SecAnalysis)={Rev-Spec}
I(S-Design)={SecurityInfo}
I(Coding1)={ModuleSpec}
I(Coding2)={S-ModuleSpec}
I(Integrate)={MainModule, SecurityModule}

O(Review)={Rev-Spec}
O(SecAnalysis)={ModuleSpec,SecurityInfo}
O(S-Design) = {S-ModuleSpec}
O(Coding1)={MainModule}
O(Coding2)={SecurityModule}
O(Integrate)={ObjectCode}

AS(Review)={A}
AS(SecAnalysis)={A, B}
AS(S-Design)= {A, B}
AS(Coding1)={A, C}
AS(Coding2)={B}
AS(Integrate)={C, D, E}

Design
Spec

Rev-Spec

Module
Spec

Security
Info

Security
Module

Main
Module

Review
{A}

{A, B}

{A, C}

{A,B}

Coding1

S-Design

SecAnalysis

Integrate{C, D, E}

Object
Code

{B} Coding2

S-Module
Spec

(a) Software Process Model (b) Petri-Net Representation

Figure 2: Process Model Example

Assumption A1 states that the product dependencies
never form a loop. This is quite reasonable for gen-
eral software processes. Indeed, it is unrealistic that
a work product newly obtained is used as the input
of the processes that have been completed previously.
By this assumption, we have a consistent partial or-
der among processes for a given sequence of product
dependencies.

Assumption A2 says that independent processes p
and p′ must be ordered in case that the same devel-
oper is assigned to both p and p′. This is based on the
observation that a developer cannot engage in more
than one processes simultaneously. Let us consider
the process model in Figure 2. In this example, pro-
cesses Coding1 and S-Design are independent. How-
ever, they cannot be executed simultaneously, since
the same developer A is assigned to both processes
(i.e., AS(S−Design)∩AS(Coding1) = {A}). Hence,
we need to give an order between them, for instance,
S-Design < Coding1, so that A conducts S-Design
first.

By these assumptions, if we fix a developer u,
then the processes in which u participates are totally-
ordered.
Proposition 1 Let P = (U,WP,PC, I, O,AS) be a
given process model with Assumptions A1 and A2.
For a developer u ∈ U , let PCu = {p|p ∈ PC ∧ u ∈
AS(p)} be a set of all processes to which u is assigned.
Then, PCu is totally-ordered.
Consider the process model in Figure 2 with S-
Design < Coding1. Then, the processes to be
conducted by each user are ordered as follows:

PCA : Review < SecAnalysis < S-Design < Coding1
PCB : SecAnalysis < S-Design < Coding2
PCC : Coding1 < Integrate
PCD : Integrate
PCE : Integrate

Since PCu are totally-ordered, any process in PCu
has at most one immediate predecessor.
Definition 3 (Predecessor of Process) Let
pu1 , pu2 , ..., puk

be all processes in PCu such that pu1
< pu2 < ... < puk

. For pui ∈ PCu, we call pui−1

immediate predecessor of pui with respect to u, which
is denoted by predu(pui). Also, we define predu(pu1)
to be ε (empty).

In the above example, we have predA(Coding1) =
S-design, which means that A participates in S-
design immediately before Coding1. Also, we have
predC(Coding1) = ε meaning that Coding1 is the
first process that C engages in.

3 Characterizing Dynamics of Information
Leakage

3.1 Product Knowledge of Developers

To perform a process p, developers engaging in p must
know all the input products of p. Based on the input
products, they develop the output products. Hence,
when finishing p, they should be acquainted with the
output products as well. Thus, when a process is per-
formed, the developers acquire knowledge about the
related (i.e., input/output) products. For each devel-
oper, the knowledge is accumulated in the sequence
of completed processes. This dynamics depends on
the given process model, specifically, I, O and AS.

For example, consider the example in Figure 2.
Developer A participates process Review. Hence,
when Review is finished, A must know products De-
signSpec and Rev-Spec. Similarly, the completion
of SecAnalysis provides the knowledge of Rev-Spec,
ModuleSpec and SecurityInfo for both A and B. Thus,
when A completes SecAnalysis, A knows four prod-
ucts; DesignSpec, Rev-Spec, ModuleSpec, Security-
Info.

Definition 4 (Product Knowledge) Let P =
(U,WP, PC, I, O, AS) be a given software process
model. For u ∈ U and p ∈ PC, we define a set of
working products Know(u, p) (⊆ WP) s.t.

Know(u, p) =
⋃

u∈AS(p′)∧p′≤p

(I(p′) ∪O(p′))

Know(u, p) is called product knowledge of developer
u at the completion of process p.

We use the term “knowledge” in some abstract sense,
which can be refined in terms of, for instance, the

essential idea or mechanism, the product’s document
itself, or the access method to the product.

Let us compute Know(B, Coding2) with Figure
2. Before Coding2, B has participated in SecAnal-
ysis and S-Design. Hence, accumulating the in-
put/output products of these three processes, we have
Know(B,Coding2) = { Rev-Spec, SecurityInfo, Mod-
uleSpec, S-ModuleSpec, SecurityModule }.

For convenience, we represent Know(u, p) with
a binary vector. Let w1, w2, ..., wn be all work
products in WP . Then, we denote Know(u, p)
= [wp1, wp2, ..., wpn], where wpi = 1 iff wi ∈
Know(u, p), otherwise wpi = 0. Then, the product
knowledge of all users at the completion of the last
process (i.e., Integrate) can be represented in Table 1.

Table 1: Know(u, Integrate) (u ∈ {A,B, C,D, E})
u DSpc RSpc SInfo MSpc SSpc MMo SMo OCod
A 1 1 1 1 1 1 0 0
B 0 1 1 1 1 0 1 0
C 0 0 0 1 0 1 1 1
D 0 0 0 0 0 1 1 1
E 0 0 0 0 0 1 1 1

3.2 Leakage of Product Knowledge

Now suppose a situation that; a developer may tell
his/her product knowledge to other developers shar-
ing the same process.

As an example, consider Coding1 in Figure 2. This
process is shared by A and C. Assuming an order S-
Design < Coding1, the product knowledge of A and
C at Coding1 are computed as follows:

DSpcRSpcSinfoMSpcSSpc MMoSMo OCod

Know(A,Coding1) = [1 1 1 1 1 1 0 0]
Know(C,Coding1) = [0 0 0 1 0 1 0 0]

Coding1 is the first process that C participates in.
Hence, at this moment, C is supposed to know only
ModuleSpec and MainModule. C does not need to
know all the rest of products. On the other hand, A
has more product knowledge than C, because A has
previously participated in three other processes.

Assume now that during Coding1, A tells C the
product knowledge that C does not know, say Se-
curityInfo, with some probability. Then, C becomes
to know SecurityInfo although C has never directly
touched it before. Once C knows SecurityInfo, the
knowledge would be propagated to D and E, since C
shares the subsequent process, Integrate, with D and
E. As a result, the isolation of security information
would be in vain.

Thus, when multiple developers work in the same
process, the product knowledge can be spread from
the developer who knows the product to ones who do
not know. We regard this as information leakage in
the software process, which is specifically defined as
follows.

Definition 5 (Leakage) For developers u, u′ ∈ D,
a work product w ∈ WP and a process p ∈ PC, we
say that u may leak w to u′ at p iff {u, u′} ⊆ AS(p)
and w ∈ Know(u, p) and w 6∈ Know(u′, p).

The above definition of leakage might be broad a
bit. Indeed, it covers a case that a security product
w is known to an unauthorized developer u′. On the
other hand, someone may say that it is not leakage
if w is not a security-sensitive product, or if u and u′
work for the same company. However, for simplicity
and generality of the model, we keep this broad def-
inition. More detailed criteria of the leakage should
be tuned depending on the target software process.

3.3 Stochastic Product Knowledge

Now, let us take the leakage of product knowledge
into account in our model. Specifically, we introduce
the following assumption for a given process model
P = (U,WP, PC, I,O, AS):
Assumption A3: For u, u′ ∈ U and w ∈ WP , let

leak(u, w, u′) be a probability that u leaks w to
u′. We assume that leak(u,w, u′) is given for any
u, u′ and w.

Then, in a process p, a developer u may happen to
know a product w such that w 6∈ Know(u, p), since
someone could leak w to u with a certain probability.
This motivates us to deal with the product knowledge
in a stochastic manner.

Let us consider a probability that a developer u
knows a work product w at the completion of process
p, which we denote Pkn(u, p, w). When u knows w
at the completion of p, two cases can be considered.
Case C1: w ∈ Know(u, p), or

Case C2: w 6∈ Know(u, p) and some developers leak
(or leaked) w to u.

Case C1 means that w is already count in u’s product
knowledge. For this case, we have Pkn(u, p, w) = 1.0.
Case C2 can be further divided into two sub-cases.
Case C2a: u has already known w before p, or

Case C2b: [u ∈ AS(p)] and [u did not know w be-
fore p] and [in p some developers sharing p with
u leak w to u].

The probability that Case C2a holds is

P (C2a) = Pkn(u, predu(p), w)

which means that u knew w in the predecessor pro-
cess. Next, the probability for Case C2b can be for-
mulated by

P (C2b) = C(u, p) ∗ (1− Pkn(u, predu(p), w)) ∗ Pleak

where C : U × PC → {0, 1} such that C(u, p) = 1
iff u ∈ AS(p), otherwise C(u, p) = 0, and Pleak is a
probability that some developers sharing p leak w to
u.

Next, we formulate Pleak. Let u1, u2, ..., uj be de-
velopers who share p with u (i.e., {u1, u2, ..., uj} =
AS(p) − {u}). In order for ui to leak w in p, two
conditions are required; (1) ui needs to have known
w before p, and (2) ui leaks w to u. Therefore, the
probability that ui leaks w to u in p is

Pkn(ui, predui(p), w) ∗ leak(ui, w, u)

Now, u knows w iff at least one of u1, u2, ..., uj leaks
w to u in p, which is the complement of “none of
u1, u2, ..., uj leaks w to u in p”. Hence,

Pleak = 1−
∏

ui∈AS(p)−{u}
{1− Pkn(ui, predui(p), w)

∗ leak(ui, w, u)}
Combining all together, we finally derive
Pkn(u, p, w), which is a probability that u knows w
at the completion of p, in Figure 3.

Note that Pkn(u, p, w) is specified as a recur-
rence formula with respect to the process p. Ac-
cording to Assumptions A1 and A2, the set of pro-
cesses that u participates in is totally ordered. Hence,
predu(p) is uniquely obtained. Also, by Assumption
A3, leak(ui, w, u) is given. Therefore, the value of
Pkn(u, p, w) can be calculated deterministically.

Pkn(u, p, w) is now defined as stochastic product
knowledge.

Pkn(u, p, w) =





1.0 (· · · if w ∈ Know(u, p))

Pkn(u, predu(p), w)
+ C(u, p)
∗ (1− Pkn(u, predu(p), w))
∗ [1−∏

ui∈AS(p)−{u}{1− Pkn(ui, predui
(p), w) ∗ leak(ui, w, u)}]

(· · · if w 6∈ Know(u, p))

Figure 3: Probability that a developer u knows a work product w at the completion of a process p

Definition 6 (Stochastic Product Knowledge)
Let P = (U,WP, PC, I,O, AS) be a given software
process model with Assumptions A1, A2 and A3.
Let w1, w2, ..., wn be all work products in WP . For
u ∈ U , p ∈ PC, we define a vector PKnow(u, p) s.t.

PKnow(u, p) = [Pkn(u, p, w1), Pkn(u, p, w2), ..., Pkn(u, p, wn)]

PKnow(u, p) is called stochastic product knowledge
of u at the completion of p.

Consider the example in Figure 2 with S-Design
< Coding1. For just simplicity, let us assume a fixed
probability leak(u,w, u′) = 0.01 for all u, u′ ∈ U and
w ∈ WP . Then, the stochastic product knowledge
of all users at the completion of the last process (i.e.,
Integrate) can be obtained as shown in Table 2.

Table 2: PKnow(u, Integrate) (u ∈ {A, B,C, D, E})
u DSpc RSpc Sinfo MSpc SSpc MMo SMo OCod
A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
B 0.0199 1.0 1.0 1.0 1.0 0.0 1.0 0.0
C 0.01 0.01 0.01 1.0 0.01 1.0 1.0 1.0
D 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0
E 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0

4 Case Study

In this section, we conduct a case study to demon-
strate how the information leakage varies depending
on the given software process model. For the exper-
iment, we have implemented a software tool which
automatically derives the stochastic product knowl-
edge for a given process model.

In this case study, we further investigate the soft-
ware process model shown in Section 2.1 (see Figure
2). We change AS on some processes, and investigate
the stochastic product knowledge.

Let us recall the scenario of the process model. In
the scenario, a work product SecurityInfo is assumed
to be confidential. We also suppose that only devel-
opers A and B are authorized to access SecurityInfo.
When S-Design is completed, A and B are the only
developers that know SecurityInfo.

Our interest here is to evaluate the risk that Se-
curityInfo is leaked to unauthorized developers C, D
or E, with varying the developers assignment AS in
the subsequent three processes Coding1, Coding2 and
Integrate.

First, we define the following parameters for con-
venience:

• Uaut = {A,B}: authorized developers.

• Uuaut = {C, D,E}: unauthorized developers.

• PCtgt = {Coding1, Coding2, Integrate}: target
processes where the developers assignment is var-
ied.

The risk of the leakage heavily depends on how the
authorized developers (A, B) collaborates with the
unauthorized ones (C, D, E) in the target processes
(PCtgt). To characterize this, we define the following
parameter for a process p.

Col(p) = |Uaut ∩AS(p)| ∗ |Uuaut ∩AS(p)|
Also, we define

Col =
∑

p∈PCtgt

Col(p)

Col(p) represents the number of combinations of au-
thorized and unauthorized developers in a process p.
This intuitively characterizes the degree of collabo-
ration where an authorized developer interacts with
an unauthorized one in p. For example, if AS(p) =
{A,B,C, D} with Uaut = {A,B}, Uuaut = {C,D},
then Col(p) = 4, which implies that there are 4 pat-
terns where an authorized A or B interacts with an
unauthorized C or D. Col is the total number of
such interactions in the target processes. Hence, the
greater the value of Col, the more the authorized de-
velopers can collaborate with the unauthorized ones.

For a fixed developers assignment as =
[AS(Coding1), AS(Coding2), AS(Integrate)],
the risk that SecurityInfo is leaked to unauthorized
developers is formulated by:

Riskas =
∑

u∈Uuaut

Pkn(u, integrate, SecurityInfo)

Using the developed tool, we have computed Riskas

for all possible assignments as ∈ 2U × 2U × 2U . Also
in the computation, we assume a fixed probability
leak(u, w, u′) = 0.01 for all u, u′ ∈ U and w ∈ WP .

Figure 4 depicts a scattered plot, where the the
horizontal axis represents Col, while the vertical axis
plots Riskas. Table 3 shows the average value of
Riskas with respect to Col.

As seen in the result, the risk that SecurityInfo is
leaked grows as Col increases. This implies that more
collaboration among authorized and unauthorized de-
velopers causes the higher risk of information leakage.
In this case study, each probability that a developer
u leaks a product w to another u′ is not very large
(i.e., leak(u,w, u′) = 0.01 = 1%). However, if the de-
velopers share many processes, the total probability
of leakage becomes significantly large. For Col = 18
where all of five developers are assigned to every tar-
get process, the risk becomes as much as 18%.

Thus, the proposed method can be used as a sim-
ple but powerful means to evaluate the software pro-
cess quantitatively from the viewpoint of the informa-
tion leakage.

5 Related Work

As far as we know, there is no research study on
a software process involving the leakage of product

00.020.040.060.080.10.120.140.160.180.2

0 2 4 6 8 10 12 14 16 18 20

Risk

Col
Figure 4: Computation Result of Risk

Table 3: Average of Risk w.r.t. Col
Col Risk

0 0.000000000
1 0.010040352
2 0.020082816
3 0.030094976
4 0.040112381
5 0.050125019
6 0.060119186
7 0.070156853
8 0.080101327
9 0.090217868

10 0.100071167
11 0.110321914
12 0.120011146
13 0.130566804
14 0.139962521
15 0.151329923
16 0.160040993
17 —–
18 0.180650505

knowledge from a person to another. Chou, et al.
(Chou, Liu & Wu 2004) presented a model for ac-
cess control named WfACL, which aims to prevent
information leakage within work flows that may exe-
cute among competing organizations. They address
issues related to management of dynamic role change
and access control. However, the model includes no
concrete method to evaluate the risk of leakage quan-
titatively.

A numerical approach to compute the informa-
tion leakage might be to use extensively Generalized
Stochastic Petri Net (GSPN) (Marsan et al. 1995).
We first examined this approach. To do this, how-
ever, both the structure of process and the dynamics
of leakage must be modeled in one GSPN. This com-
plicates the net structure, and the state space be-
comes so large that the GSPN solver cannot compute
the probability in reasonable time. Therefore, we de-
cided to treat the process description and the leakage
computation separately.

In addition, much research has been focused on
different kinds of access control methods, such as role-
based access control (Ferraiolo & Kuhn 1992)(Sandhu,
Coyne, Feinstein & Youman 1996), task-based access
control (Thomas & Sandhu 1997). The goal of access
control is to ensure that only authorized people are
given access to certain resources (i.e., products in our
problem). However, the aim of the proposed is not to
control the access authority, but to evaluate the risk
of leakage as unexpected knowledge transfer among
developers.

6 Conclusion

In this paper, we have presented a method to eval-
uate the risk of information leakage in software de-
velopment process. We formulated the leakage as an
unexpected transfer of product knowledge among de-
velopers sharing the same process. We then proposed
a method to derive the probability that each devel-
oper knows each work product at any process of soft-
ware development. We also conducted a case study.
The result quantitatively shows that more collabora-
tion among authorized and unauthorized developers
causes the higher risk of information leakage.

Finally, we summarize our future work. In this
paper, only a small case study is conducted. How-
ever, to show the practical effectiveness, we need fur-
ther evaluation with more practical processes. The
proposed method is simple and generic, therefore, it
should not be limited to the security-sensitive soft-
ware process. We expect that it is well feasible for
other workflow-based applications, such as medical
work flows (Quaglini, Mossa, Fassino, Stefanelli, Cav-
allini & Micieli 1999) where private information must
be protected. Investigation of the emerging applica-
tion domain is also an interesting issue.

References

4C-Entity (2001), Policy statement on use of con-
tent protection for recordable media, (CPRM) in
certain applications. (Available online August
2001).
URL: http://www.4centity.com/

Chou, S.-C., Liu, A.-F. & Wu, C.-J. (2004), ‘Prevent-
ing information leakage within workflows that
execute among competing organizations’, The
Journal of Systems and Software . (Available
online 4 February 2004).
URL: http://www.elsevier.com/locate/jss

Chow, S., Eisen, P., Johnson, H. & van Oorschot,
P. (2002), A white-box DES implementation for

DRM applications, in ‘Proc. 2nd ACM Work-
shop on Digital Rights Management’, pp. 1–15.

Feiler, P. H. & Humphrey, W. S. (1993), Software
process development and enactment: Concepts
and definitions, in ‘Proc. 2nd International Con-
ference on Software Process’, pp. 28–40.

Ferraiolo, D. & Kuhn, R. (1992), Role-based access
controls, in ‘15th NIST-NCSC National Com-
puter Security Conference’, pp. 554–563.

Garg, P. K. & Jazayeri, M. (1995), Process-Centered
Software Engineering Environments, IEEE Com-
puter Society Press.

Jacobson, I., Booch, G. & Rumbaugh, J. (1999), The
unified software development process, Addison-
Wesley Longman Publishing Co., Inc.

Keller, F., Tabeling, P., Apfelbacher, R., Grone, B.,
Knopfel, A., Kugel, R. & Schmidt, O. (2002),
Improving knowledge transfer at the architec-
tural level: Concepts and notations, in ‘Proc.
The 2002 International Conference on Software
Engineering Research and Practice’.

Liong, Y.-L. & Dixit, S. (2004), ‘Digital rights man-
agement for the mobile internet’, Wireless Per-
sonal Communications 29(1-2), 109–119.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S. &
Franceschinis, G. (1995), Modelling with Gener-
alized Stochastic Petri Nets, John Wiley.

Quaglini, S., Mossa, C., Fassino, C., Stefanelli, M.,
Cavallini, A. & Micieli, G. (1999), Guidelines-
Based Workflow Systems, Vol. 1620/1999 of
Lecture Notes in Computer Science, Springer-
Verlag, pp. 65–75.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L. &
Youman, C. E. (1996), ‘Role-based access con-
trol models’, IEEE Computer 29(2), 38–47.

Thomas, R. K. & Sandhu, R. S. (1997), Task-
based authorization controls (TBAC): A fam-
ily of models for active and enterprise-oriented
autorization management, in ‘Proc. the IFIP
Workshop on Database Security’, pp. 166–181.

