
Mission-Oriented Large-Scale Environment Sensing
Based on Analogy of Military System

Hikaru Inomoto, Sachio Saiki, Masahide Nakamura

Graduate School of System Informatics, Kobe University
1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan

inomoto@ws.cs.kobe-u.ac.jp
sachio@carp.kobe-u.ac.jp
masa-n@cs.kobe-u.ac.jp

Shinsuke Matsumoto

Graduate School of
Information Science and

Technology, Osaka University
shinsuke@ist.osaka-

u.ac.jp

ABSTRACT
As typically seen in Smart City, emerging technologies en-
able large-scale environment sensing using IoT devices de-
ployed in a wide area. From the viewpoint of cost and ef-
ficiency, infrastructure of the large-scale environment sens-
ing should be shared by multiple applications, with dynam-
ically adapting the sensing behavior for different purposes.
To achieve this, the infrastructure must implement a clever
method that can command and control a lot of IoT devices
in good order. To implement such multi-purpose large-scale
environment sensing, we introduce an analogy of military
system. Specifically, we propose a mission-oriented sensing
with army hierarchy, where individual IoT devices and their
dynamic purposes are regarded as soldiers and missions, re-
spectively.

CCS Concepts
•Computer systems organization → Embedded and
cyber-physical systems; Cloud computing; •Human-centered
computing → Ubiquitous and mobile computing systems
and tools; •Applied computing → Service-oriented archi-
tectures;

Keywords
Mission-oriented sensing, Large-scale environment sensing,
Context-aware sensing, IoT

1. INTRODUCTION
Large-scale environment sensing using IoT devices is at-

tracting a lot of attention, due to the rapid progress of IoT
(Internet of Things)[8][3] and Cloud Computing. The large-
scale environment sensing is promising for various applica-
tions. For example, Smart City [6] collects environmental

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iiWAS ’16, November 28-30, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-4807-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3011141.3011148

sensor data from whole city and provides value-added ser-
vices to residents using the data. Smart Agriculture [7] mea-
sures states of cultivation and crops in broad farms. Smart
Mobility [11] monitors various data from road traffic net-
works.

To achieve such the large-scale environment sensing, this
paper especially focuses on the following three requirements:

Requirement R1 (Shared sensing infrastructure)
To perform the large-scale sensing, the administrator
has to deploy a huge number of sensing devices as the
sensing infrastructure, and maintains them properly.
From the viewpoint of cost and efficiency, the sensing
infrastructure must be shared among multiple applica-
tions, instead of being dedicated to a single applica-
tion.

Requirement R2 (Dynamic sensing configuration)
For some applications, it is effective to update the sens-
ing configuration dynamically, depending on a situa-
tion such as day of week, time of day, sensing loca-
tions. For example, the road traffic monitoring gath-
ers high-density data in commuter rush hours, while
it steps down the sampling rate in light-traffic hours.
This dynamic configuration can reduce the data vol-
ume without declining the quality of information 1.

Requirement R3 (Admitting heterogeneous devices)
The sensing infrastructure should accommodate het-
erogeneous devices, in order for multiple applications
to use the shared infrastructure for various purposes.
In general, each application has own interesting en-
vironmental attributes (e.g., temperature, humidity,
brightness, sound level, vibration, human presence).
Even for the same attributes, sensors with different
performance may be required for different purposes.

The latest IoT devices and Cloud services can be used as a
means to implement large-scale environment sensing. How-
ever, there is no systematic methodology considering the
above requirements R1, R2, R3 together, as far as we know.
To fulfill the requirements, we need a clever method that can
command and control many heterogeneous devices in good
order, for different purposes and situations.

1The sensing method that changes behaviors depending on
a situation is generally called context-aware sensing [9].

To cope with the requirements, we present a novel plat-
form of large-scale environment sensing by borrowing an
analogy of military system. Typically, a military consists
of many soldiers controlled by military system. A military
has a mission, and each soldier performs concrete actions
according to the mission. The mission can be updated dy-
namically, and soldier’s actions are changed accordingly by
the mission update. In the proposed method, we regard in-
dividual devices in the large-scale sensing infrastructure as
soldiers. Also, we consider the sensing tasks given by various
applications as missions. Then, we propose mission-oriented
sensing platform, which commands and controls many de-
vices in good order for dynamically-updated missions.

For Requirement R1, we allow every application to re-
quest missions to the sensing platform. A mission involves
sensing configuration information to be specified based on
the purpose of the application. Upon receiving a mission,
the sensing platform collects requested data from appropri-
ate sensors, and stores the data on a designated database.
For requirement R2, we design the platform so as to ac-
cept dynamic update of running missions. Based on struc-
tured chain of commands, the platform delivers the mission
update to proper devices, and forms a new sensing config-
uration to the devices. For requirement R3, we abstract
the heterogeneous sensing devices as uniform soldiers with
different equipment. The platform delegates all the device-
proprietary operations to the soldier.

To implement the above mechanisms, we construct a mil-
itary hierarchy within the sensing platform, consisting of
three ranks: (Soldier) a sensing device measuring sensor
values, (Leader) an edge device controlling a group of sol-
diers within a division of the target area, and (Commander)
a regional server managing commands and controls for all
the devices. Using the mission-oriented sensing based on
this hierarchy, we aim to implement large-scale environment
sensing.

In this paper, we especially focus on the concept design of
the mission-oriented sensing, and discuss an implementation
method based on the military analogy. We also develop a
prototype system, and conduct an experimental evaluation
in a real environment using the prototype.

2. PRELIMINARIES

2.1 Large-Scale Environment Sensing
We use a term environment sensing to refer to any ac-

tivities that measure and collect environmental data with
one or more environmental sensors. Typical environmental
data include temperature, humidity, brightness, sound vol-
ume, vibration, gas pressure, and human presence. Thanks
to the latest IoT technology, the measured sensor data can
be delivered via the internet. The proper combination of
IoT and Cloud services enables large-scale and broad-area
environment sensing with reasonable cost.

The large-scale environment sensing we focus on in this
paper refers to an environment sensing in a broad (indoor or
outdoor) area, in which a large number of sensors measure
the area collaboratively, send the data via network, and store
the data in a designated database (in a cloud, for instance).
The large-scale environment sensing is characterized by the
vast sensing area, a large number and wide variety of sensors,
and the large volume and density of measured data. The
infrastructure for such large-scale environment sensing is es-

pecially promising for cyber-physical smart systems, such as
smart city and smart agriculture.

The behavior of the large-scale environment sensing is de-
termined by sensing configuration, which specifies how the
sensing is conducted. The sensing configuration should de-
scribe from where the platform collects data, what the target
environment attributes are, to which database the collected
data are stored, and other parameters. The sensing configu-
ration usually varies from one application to another. So we
assume that the configuration is derived from the purpose
of individual application.

2.2 Challenges
Challenges of the large-scale environment sensing lie in its

scale.
The first challenge is due to the cost of sensing infras-

tructure. The large-scale environment sensing requires the
provision, installation, operation and maintenance of a large
number of sensing devices within a vast area, which yields
huge cost and effort. Because of that, it is unrealistic that
each application has its own infrastructure. Considering in-
creasing demand of cyber-physical smart systems, the sens-
ing infrastructure must be shared among multiple applica-
tions. This justifies Requirement R1 in Section 1.

The second challenge is due to resource requirements. The
large-scale sensing can generate a large volume of data quite
easily. Handling these big data requires a large amount of
resources such as database storage, network infrastructure,
and computing resource. To achieve efficient use of the re-
sources, it is preferable to change the sensing configuration
dynamically depending on situation. Similar to the road
monitoring example in Section 1, an advertising application
in a shopping mall may want dense sensing in a certain floor
where a special sale event is taking place. Also, the shop-
ping mall may want to stop sensing after closing to save disk
usage. This justifies Requirement R2 in Section 1.

The third challenge is from the variety of sensing devices
in the infrastructure. Preferably, the large-scale environ-
ment sensing measure a wide variety of environment data
for various applications. So the infrastructure must ac-
commodate heterogeneous sensing devices. For this, it is
unrealistic to force every application developer to manage
all device-dependent configuration. This severely declines
the usability of the infrastructure. Also, the portability of
the configuration across different areas is not guaranteed.
Therefore, the sensing platform should accommodate het-
erogeneous devices with isolating device-dependent opera-
tions and application-defined sensing configuration. This
makes application developers free from proprietary device
knowledge. This justifies to Requirement R3 in Section 1.

2.3 Scope of Paper
To clarify the scope of this paper, we put the following as-

sumptions in the large-scale environment sensing dealt with
the proposed method.

• The target sensing area satisfies environmental condi-
tions under which all devices work correctly.

• All the devices for the environment sensing are in-
stalled at fixed locations, and they don’t move.

• Stable power and network connectivity are supplied to
every device.

It can be seen from these assumptions that our target is
large-scale sensing with relatively mild environment con-
straints. We do not assume severe environment with, for in-
stance, gale wind, heavy rain, or ultra-hot gas, under which
the devices may be broken. Also, we do not assume mobile
sensors with limited power and unstable network.

Under the above assumptions, we try to propose a method
that implements large-scale environment sensing, fulfilling
Requirement R1-R3 in Section 1.

3. MISSION-ORIENTED LARGE-SCALE
ENVIRONMENT SENSING

In order to address the challenges in the previous section,
we propose a novel platform of large-scale environment sens-
ing, called mission-oriented environment sensing.

3.1 Key Idea
The mission-oriented environment sensing is a method of

IoT sensing, which defines every sensing configuration as a
mission. Intuitively, a mission is a requirement of an ap-
plication, which characterizes the sensing configuration. A
mission includes environment attributes to be collected, lo-
cations where the data is measured, a sampling rate, an
address of database to which the data is stored, and so on.

Each application creates a mission based on its own pur-
pose, and then requests to the sensing platform. The plat-
form interprets the mission, and tells concrete instructions
to relevant sensing devices. Based on the instruction, each
device measures specified data. The data is finally stored
in a designated database. A mission can be dynamically
added, updated or deleted. Also, the platform can accept
multiple mission simultaneously.

Since the proposed platform can accept multiple missions
in parallel, it can be shared by multiple applications, which
addresses Requirement R1. A mission can be updated dy-
namically depending on a context, which addresses Require-
ment R2. A mission is device-independent description to be
interpreted by the platform, which addresses Requirement
R3.

3.2 Mission
A mission must contain all necessary information for the

platform to execute the large-scale environment sensing. Through
an interrogative analysis (i.e., WHAT, WHERE, WHEN,
HOW, WHO, WHY), we derive the following six parame-
ters to be involved in a mission.

(WHAT) requirement: This parameter specifies what data
should be collected in the mission. It is defined by
a set of environment attributes, such as temperature,
brightness, humidity, motion, gas pressure, etc.

(WHERE) place: This parameter specifies where the data
should be measured in the mission. It is defined by a
set of identifiers of places within the target data.

(WHEN) trigger: This parameter specifies when the data
should be measured in the mission. It is defined by a
sampling rate (e.g. every 10 sec.) or a sampling con-
dition (e.g. record when the value is greater than 28).

(HOW) destination: This parameter specifies how the data
should be stored in the mission. It is defined by an ad-
dress of a database.

Table 1: An instance of requested mission
Parameter Value
requirement [barometer, brightness, humidity, temperature]
place 1F corridor, Building of system informatics
trigger {interval:10}
destination mongodb://xxx.xx.xxx.xx/sensing
supervisor KobeUniv-CSBuilding-Platform01
purpose {app: TestApp, mode: env-monitoring-default}

(WHO) supervisor: This parameter specifies who is re-
sponsible for the mission. It is defined by an identifier
of a region server that manages all sensors within the
area.

(WHY) purpose: This parameter specifies why the mis-
sion is requested. It is defined by an application ID and
its execution mode. These are used for distinguishing
the corresponding mission from multiple missions.

We assume, in the above parameters, that requirement,
place, trigger, description are given by an application
that uses the proposed sensing platform. On the other hand,
supervisor and purpose are assigned by the platform when
the mission is accepted.

Table 1 shows an instance of a mission. This mission
supposes a situation that an application (TestApp) measures
environment data in corridor of the first floor, building of
system informatics of Kobe university. The mission requires
to collect barometer, brightness, humidity, temperature with
the interval of 10 seconds, and requests to store the data to
sensing database of MongoDB.

3.3 Introducing Military Analogy
To execute multiple and dynamic missions consistently

with the large number of sensing devices, it is essential to
command and control these many sensors in good order. To
achieve this, we introduce an analogy of military system.
Intuitively, all devices in the infrastructure are regarded as
soldiers, which collaboratively work to accomplish given mis-
sions. From various concepts in the military field, we par-
ticularly focus on the following three concepts:

3.3.1 Hierarchy for Divide and Conquer
A military generally adopts a hierarchical system to man-

age many soldiers orderly in a divide and conquer manner.
We make full use of this hierarchy to construct an architec-
ture of the proposed mission-oriented sensing, which is as
shown in Fig. 1. In the proposed architecture, we classify
devices in the infrastructure into the following three classes:

Soldier: A soldier is a sensor node that actually measures
environment values in the bottom of the hierarchy. Ac-
cording to an order given by his superior (Leader, see
below), a soldier measures data and sends the data
to the superior as a report. Normally, a soldier corre-
sponds to an IoT device having one or more environ-
ment sensors. In this case, the sensors are regarded as
equipment of the soldier.

Leader: A leader is an edge device (or edge server) that
manages a group of soldiers in a certain division within
the target area. A leader interprets an operation given
by his superior (Commander, see below), and sends
concrete orders to his subordinates (his soldiers). A

operation
report

Commander

sensor-data

mission

DB

Leader

Soldier

orderreport

division

Sensing
Area

App

App

App

DB

DB

Figure 1: Architecture of proposed sensing platform

leader also receives and summarizes reports from his
soldiers, and sends the summary reports to his com-
mander. We assume that a leader captains several to
a dozen of soldiers within the same division (e.g., one
room, one floor, etc.). Hence, each division of the tar-
get area is governed by a leader and his soldiers. As a
result, place in the mission can be mapped into leaders
that govern relevant divisions.

Commander: A commander is a regional server that man-
ages all the leaders in the target area, and works as a
mediator between the sensing platform and applica-
tions. A commander interprets a mission requested
by an application, creates operations for the mission,
and sends them to relevant leaders. In addition, a com-
mander gathers reports from leaders, and sends them
to the designated database.

3.3.2 Stepwise Refinement of Mission
In our design thought, a mission is defined by the six

device-independent parameters (See Section 3.2). So the
applications do not have to understand a variety of device-
proprietary operations and configurations. In fact, however,
every device needs concrete device operation and configura-
tion. To fill the gap, the proposed platform lets the com-
mander, the leader, and the soldiers transform a mission into
a more concrete one through stepwise refinement.

More specifically, a mission can have the following three
levels of abstraction, as appeared in Section 3.3.1.

Mission: As defined in Section 3.2, a mission is device-
independent sensing requirement, defined by individ-
ual applications using the six parameters. A mission
is at the highest abstraction level.

Operation: An operation is a set of tasks to be performed
by a group of soldiers in a division under a leader for

accomplishing the mission. Based on a given mission,
a commander generates a set of operations, each of
which is sent to a leader.

Order: An order is a concrete instruction given to a soldier
for accomplishing the operation. Based on a requested
operation, a leader generates a set of orders, each of
which is delivered to a soldier.

3.3.3 Communication with Order–Report Protocol
As in a military, every communication in the proposed

platform must be performed based on a pair of order and
report. That is, every device receives an order from his
superior, then works for the order, and finally reports the
result to the superior. In this order–report protocol, the de-
vice cannot work for anything else, or cannot communicate
with irrelevant devices.

The proposed platform executes multiple missions in par-
allel. Hence, a mission identifier is assigned to every order
and report. The mission identifier is generated from the
purpose parameter of a mission. It is used to identify which
mission a given order (or report) relies on.

3.4 Workflow of Environment Sensing
We here illustrate the workflow of large-scale environment

sensing with the proposed platform.
Step 1: An application creates (or updates) a mission based
on the application’s purpose, and submits the mission to a
commander.
Step 2: On receiving a mission, the commander finds lead-
ers who are responsible for the area specified in place of
the mission. For each leader found, the commander cre-
ates an operation and sends it to the leader. The operation
includes requirement, trigger, and purpose. They are re-
fined from the mission, so that the leader can understand

DB

Sensing
Area

SoldierSoldierSoldier

Leader

Raspberry Pi

MongoDB

CentOS Server

Personnel
Resolver

Commander

SoldierSoldierSoldier

Leader

BLE

Raspberry Pi

JSON/HTTP

1F

2F

3F

JSON/HTTP

Figure 2: System configuration of the prototype

necessary sensor attributes, measurement schedule, and a
mission identifier, respectively.
Step 3: On receiving an operation, a leader finds soldiers
in his subordinates that have appropriate sensors specified
in requirement. For each soldier found, the leader creates
an order and sends it to the soldier. The order includes
requirement, trigger, and purpose. They are refined from
the operation, so that the soldier can perform appropriate
environment sensing.
Step 4: On receiving an order, a soldier initiates envi-
ronment sensing according to the order. The soldier mea-
sures environment attributes described in requirement with
a specified timing in trigger. The soldier sends the values
as a report to his superior (the leader) with a mission ID in
purpose, a soldier ID, and time stamp.
Step 5: The leader receives reports from his subordinates,
and stores the reports on hand with location information. At
regular time intervals. The leader sends the stored reports
to his superior (the commander).
Step 6: The commander receives the data from the leader.
Finally, the commander sends the data to a database speci-
fied in destination.

The above workflow is executed for every mission, and
Steps 4, 5 and 6 are repeatedly performed until the mission is
updated or canceled. If there are multiple missions, multiple
workflows are executed in parallel.

4. IMPLEMENTATION
To evaluate the proposed method, we implemented a pro-

totype of the platform.
All the software program of the soldier, the leader and

the commander are written in the Python language. Each
program was deployed as a Web service, to which external
program can access by JSON/HTTP protocol. The com-
munication was basically from a subordinate to a superior,
where an order is pulled and a report is pushed.

We also implemented personnel resolver as a Web service,
with which each personnel (i.e., program in the military hi-

Figure 3: Raspberry Pi 3 and SensorTag

erarchy) can resolve his superior and division based on his
own ID. When starting up, each personnel accesses the per-
sonnel resolver to identify under whom he works.

The hardware configuration of the prototype is shown in
Fig. 2. We used SensorTag [2] (a product of Texas In-
struments Incorporated) for the sensing devices. SensorTag
contains multiple environment sensors (barometer, temper-
ature, humidity, brightness, gyroscope, accelerometer, mag-
netometer). These values can be obtained via Bluetooth
Low Energy (BLE). Raspberry Pi 3 was used as the execu-
tion platform of a leader and his subordinates, which were
as described in Fig. 2. For each SensorTag, one soldier pro-
cess is allocated. Each soldier obtains designated sensor val-
ues from the corresponding SensorTag via BLE. The devices
used in the prototype are shown in Fig. 3. A commander
process and the personnel resolver program were installed
on a CentOS server.

5. EXPERIMENTAL EVALUATION

5.1 Purpose of Experiment
To evaluate the proposed method, we conduct an exper-

iment in a real environment using the prototype. The pur-
pose of the experiment is to check basic features of the pro-
posed platform. Especially, we confirm the parallel execu-
tion of multiple missions as well as dynamic mission updates.
We conduct the experiment in a real environment, instead
of software simulation. This is to evaluate feasibility and
limitations of the proposed method in practical setting.

5.2 Experiment Setting
The experiment has been conducted in corridors of build-

ing of system informatics, Kobe university. The building
has five floors. In every floor, one RaspberryPi and two
SensorTags (east and west) were installed. For example,
Fig. 4 shows a floor plan of the first floor, showing positions
of devices deployed.

SensorTag
Raspberry Pi

S102-1
office
room

S101
Computational

intelligence
Lab

S102-2
dean's room

West East

Men
WC

S103
acade-
mic's
room

S104
Optimum

System
Design

Lab

S105
Applied Optics

Lab II

1F S106
Applied Optics

Lab I

S107
Applied
Optics

Exp
Lab II

entry hall

S108
ante-
room

Access-
ible
WC

Figure 4: Positions of installed devices (1F)

Table 2: Common parameters of three missions
Parameter Value

requirement
[barometer, brightness, humidity, temperature,

accelerometer, gyroscope, magnetometer]
place All five floors
destination mongodb://dbserv/sensing
supervisor Commander001

Table 3: Configuration of trigger

day time slot
interval

M1 M2 M3

day 1
14:30 - 21:00 10 sec

10 sec 120 sec
21:00 - 9:00 120 sec

day 2
9:00 - 21:00 10 sec

21:00 - 9:00 120 sec
day 3 9:00 - 14:30 10 sec

The experiment was conducted for three days from 14:30
of July 9th, 2016, to 14:30 of July 11th, 2016. Three missions
M1, M2, and M3 were prepared to perform the environment
sensing in parallel within the three days. The three mis-
sions respectively correspond to context-aware sensing (M1),
high-density sensing (M2), low-density sensing (M3). The
missions were configured by the same setting for require-

ment, place, destination, supervisor, as shown in Ta-
ble 2. Only trigger was changed to make the comparison
clearer, which is as shown in Table 3. Note in the table
that M2 and M3 have static intervals of 10 and 120 seconds,
respectively. As for M1, the sampling intervals are dynami-
cally changed for night and day.

5.3 Result
Through the three-day environment sensing by 3 mis-

sions in 10 locations, and 7 kinds of sensors, the total 210
sets of time-series sensor data were collected. For example,
the brightness in west-side of third floor (3F-west) and ac-
celerometer in east-side of fifth floor (5F-east) are shown in
Fig. 5 and Fig. 6, respectively. Around 2 a.m. of July 10th,
processes of leaders of 4F and 5F were accidentally stopped
by a server problem. The processes were restarted 9 a.m.
of the same day. We can see in Fig. 6 that the data lacked
during the failed term.

As a comparison of data with different intervals, the bright-
ness in 1F-east with intervals of 10 seconds (M2) and 120
seconds (M3) are shown in Fig. 7. The two time-series data
were collected by missions M2 and M3 at the same location
and time. We can see from the graphs that two missions
simultaneously measured the same brightness with different
resolutions.

Compared to the west side (see Fig. 5), the brightness of
the east side is low even in day time, because the west side

12:00
PM

6:00
PM

12:00
AM

6:00
AM

12:00
PM

6:00
PM

12:00
AM

6:00
AM

12:00
PM

6:00
PM

0

200

400

600

800

time

br
ig

ht
ne

ss
 [l

ux
]

Figure 5: brightness in 3F-west (M2)

x
y
z

12:00
PM

6:00
PM

12:00
AM

6:00
AM

12:00
PM

6:00
PM

12:00
AM

6:00
AM

12:00
PM

6:00
PM

-1.0

-0.5

0.0

0.5

1.0

time

ac
ce

le
ro

m
et

er
 [g

]

Figure 6: accelerometer in 5F-east (M3)

is near a sunburst window.
Fig. 8 shows the humidity measured by mission M1, where

the sampling interval was changed at 9 p.m. It can be seen
that the density of data was changed at the time. It means
that the dynamic mission update was achieved successfully.

Finally, we evaluate the data loss by counting the num-
ber of data actually measured. The result is shown in Table
4. Theoretically, mission M2 should count 1, 209, 600 data
points, since 6 points per minute × 60 minutes × 48 hours ×
10 devices × 7 sensor attributes. Mission M3 should count
100, 800 points, since it is one-twelfth of those of M2. Mis-
sion M1 switched its sampling interval between 10 and 120
seconds every half a day. Therefore M1 should count the
half of those of M2 and the half of those of M3, which is
655, 200 in total. As shown in Table 4, the data loss rate
within the three-day sensing was around 7% for M1, and
10% for M2 and M3.

5.4 Discussion
We can see in Fig. 5 that the brightness in the corridor

was high in daytime and was low in nighttime. So it is con-
firmed that the environment sensing was properly performed
according to the mission. In Fig. 7, the two time-series data
have the same shape but different resolution. Thus it is con-
firmed that different missions M2 and M3 were performed in
parallel at the same time. In Fig. 8, we can see that the den-
sity of data points changed at 9 p.m, which justifies that the
dynamic update of mission M3 was successfully performed
by the prototype.

As for the data loss shown in Table 4, a major cause of this
is due to the failure of the leader processes in 4F and 5F. By
this failure, environment sensing of 7 hours in the two floors
was suspended. This was equivalent to 5.8% loss of the total
sensing. Another cause of the data loss is due to unstable
wireless communication between SensorTags and Raspberry
Pi. We had to deploy Raspberry Pi inside a pipe space where
the power and wired network were available. Since the space
was surrounded by walls and an iron door, BLE connections
between SensorTags and RaspberryPi sometimes lost. This

12:00 PM 2:00 PM 4:00 PM 6:00 PM 8:00 PM 10:00 PM 12:00 AM
0

5

10

15

time

b
ri
g
h

tn
e
ss

 [
lu

x]

(a) Mission M2 (interval 10 sec)

12:00 PM 2:00 PM 4:00 PM 6:00 PM 8:00 PM 10:00 PM 12:00 AM
0

5

10

15

time

b
ri
g
h

tn
e
ss

 [
lu

x]

(b) Mission M3 (interval 120 sec)

Figure 7: brightness in 1F-east

8:30 PM 8:40 PM 8:50 PM 9:00 PM 9:10 PM 9:20 PM 9:30 PM
67.5

67.8

68.1

68.4

68.7

time

hu
m

id
ity

 [%
]

Figure 8: humidity in 1F-east (M1)

led to the data loss.
To cope with this problem, we have to implement a self-

healing feature within individual soldier and leader to re-
cover the connection, or a feature alerting problems so that
a superior can detect the failure. In addition to the features,
in case that a leader fails, we can deploy multiple leaders for
same sensing area in advance, and let an operational leader
take over the failed leader. The mechanism can be real-
ized by a commander, in a way that the commander orders
the take-over action when a failure of a leader is detected.
Note, however, that a leader cannot always take over a failed
leader due to compatibility of hardware / software or sensor
device’s specification.

In Fig. 7, we can observe short pulses of the brightness
in the night time. The SensorTag measuring this brightness
was installed beside a toilet as shown in Fig. 4. Therefore,
the SensorTag captured automatic lighting of the toilet as a
short pulse, which can infer the entrance of the toilet. In-
terestingly, we can observe two consecutive pulses around
8 p.m. in Fig. 7-(a), but only one pulse in Fig. 7-(b).
This means that mission M3 missed one of the two toilet en-
trances. As seen in this example, decreasing sensing density
can reduce the data size, but may cause loss of information.
Therefore, each mission should be carefully designed based
on its purpose, considering the trade-off between data size
and information quality.

In the proposed platform, measured sensor data are cached
on a leader’s hand and sent to a commander periodically, as
described in Section 3.4. This means that the measured data

Table 4: Count of collected data
mission actual count expected count loss rate

M1 608, 118 655, 200 7.18%
M2 1, 090, 733 1, 209, 600 9.82%
M3 89, 194 100, 800 11.52%

may not be always fresh when the data reach the database.
The large-scale sensing infrastructure communicates large
volume data, and gets heavy loads from a lot of data trans-
fer’s overheads. To reduce the load we reduce the num-
ber of transfer using the cache mechanism, and this leads
to decreasing freshness of the data. For some applications,
however, high freshness of information is important. For
instance, an application that monitors home situation on-
line (e.g. abrupt increase of room air temperature, sud-
denly rising sound volume) needs fresh sensor data. On the
other hand, the freshness is not important for an applica-
tion that calculates average temperature every day with a
batch process. Fresh data can be collected by performing
sensing without cache, although this increases the load of
data transmission. In other words, information freshness
and reducing the load on infrastructure are in a trade-off
relation. To allow applications to choose freshness or reduc-
ing the load, we consider introducing freshness as a mission
parameter, which adjusts the cache level.

In the proposed platform, all sensor data measured in a
sensing area are aggregated to upper layers of the hierarchy,
and are eventually gathered to a database through a com-
mander. A commander receives all leaders’ reports and can
be a bottleneck of data flow. There are several ways to cope
with the bottleneck of the commander. First, we try to re-
duce the number of transfer. This approach needs long-time
cache as described above. Second, we compress the report
data. This approach can reduce volume of information by
summarizing cached data, or by compressing the data on
communication protocols. In our prototype, changing data
format from JSON to MessagePack [1] 2, compressing HTTP
communication by gzip, or using MQTT as a communication
protocol instead of HTTP can be promising methods.

Third, we let a leader bypass the data without routing a
commander. Each leader sends own reports to database di-
rectly to eliminate loads of receiving reports from comman-
ders. In this way, commander can focus entirely on man-
aging their subordinates’ state or making and sending op-
erations. However, individual leaders have to manage right
destination of every report, which may increase the total
complexity of the system.

6. RELATED WORK
Perera et al. [9] proposed a mobile sensing platform for

context-aware sensing in the IoT domain. Their approach
measures sensor data only when a pre-defined context holds.
It requires each sensing device (i.e., a soldier in our method)
to install a middle-ware for the context evaluation. So it
assumes relatively rich devices such as smartphones. Our
approach differs in that the context reasoning is up to indi-
vidual applications, and that the sensing platform dynami-
cally changes the sensing configuration by mission update.

2a data format expressing data structure likes JSON, as bi-
nary instead of text data. In general, it needs less data size
than JSON.

In this sense, our method can work with cheaper and fixed
devices, which is good for large-scale environment sensing.

Sakakibara et al. [10] proposed an autonomous sensor box
and management services for easy provisioning and manage-
ment of IoT sensors.

In their system, each sensing device automatically retrieves
its sensing configuration from a cloud service when booting.
This reduces human effort of installation and configuration
of a large number of devices.

This kind of mechanism is quite essential for our problem
of the large-scale environment sensing. However, their sys-
tem does not consider capabilities of dynamic configuration
update or infrastructure sharing, which are focused in this
paper.

Autefage et al. [4] proposed a service discovery system for
mobile swarm of UMS (Unmanned System). This system is
similar to ours in that the system tries to discover necessary
devices in a mission-oriented manner. The method considers
to choose an optimal communication method, depending on
the device mobility or the device network size.

We will consider these elements, when we extend our plat-
form for mobile devices where unknown devices dynamically
participate and leave from the sensing infrastructure.

Galache et al. [5] proposed a concept, ClouT, which man-
ages large-scale resources within smart city. It prescribes
unified services to abstract various computing resources (in-
frastructures, sensors, or actuators) as Cloud services.

This concept is relevant to ours in that it tries to use
the large-scale sensor infrastructure as a shared platform
among various applications. In ClouT, however, the con-
crete method for large-scale environment sensing is basically
up to the software service layer, which is out of the scope.

7. CONCLUSION
In this paper, we have presented a novel platform for

large-scale environment sensing that can be shared by mul-
tiple applications. The key idea to achieve the platform
is the mission-oriented sensing, where application-specific
sensing configurations are given by missions. The proposed
method introduces three military analogies: hierarchy for
divide and conquer, stepwise refinement of mission, com-
munication with order–report protocol. They accomplish
essential requirements of large-scale environment sensing,
(R1) shared sensing infrastructure, (R2) dynamic sensing
configuration, (R3) accommodation of heterogeneity.

We have also implemented the prototype, and conducted
an experimental evaluation with the prototype. As a re-
sult, the proposed platform was feasible for practical envi-
ronment sensing. Our future work includes development of
self-healing mechanism for disconnection, as well as exten-
sion to allow dynamic change of hierarchy.

8. ACKNOWLEDGMENT
This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (B) (No.16H02908, No.15H02701,
No.26280115), Young Scientists (B) (No.26730155), and Chal-
lenging Exploratory Research (15K12020)].

9. REFERENCES
[1] MessagePack: It’s like JSON. but fast and small.

http://msgpack.org/.

[2] sensortag. http://www.ti.com/sensortag/.

[3] L. Atzori, A. Iera, and G. Morabito. The internet of
things: A survey. Computer Networks,
54(15):2787–2805, 2010.

[4] V. Autefage, S. Chaumette, and D. Magoni. A
mission-oriented service discovery mechanism for
highly dynamic autonomous swarms of unmanned
systems. In Autonomic Computing (ICAC), 2015
IEEE International Conference on, pages 31–40, July
2015.

[5] J. A. Galache, T. Yonezawa, L. Gurgen, D. Pavia,
M. Grella, and H. Maeomichi. Clout: Leveraging cloud
computing techniques for improving management of
massive iot data. In 2014 IEEE 7th International
Conference on Service-Oriented Computing and
Applications, pages 324–327, Nov 2014.

[6] R. G. Hollands. Will the real smart city please stand
up? City: analysis of urban trends, culture, theory,
policy, action, 12(3):303–320, 2008.

[7] M. Lazarescu. Design of a wsn platform for long-term
environmental monitoring for iot applications. IEEE
Journal on Emerging and Selected Topics in Circuits
and Systems, 3(1):45–54, March 2013.

[8] D. Miorandi, S. Sicari, F. D. Pellegrini, and
I. Chlamtac. Internet of things: Vision, applications
and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[9] C. Perera, D. S. Talagala, C. H. Liu, and J. C.
Estrella. Energy-efficient location and activity-aware
on-demand mobile distributed sensing platform for
sensing as a service in iot clouds. IEEE Transactions
on Computational Social Systems, 2(4):171–181, Dec
2015.

[10] S. Sakakibara, S. Saiki, M. Nakamura, and
S. Matsumoto. Indoor environment sensing service in
smart city using autonomous sensor box. In 15th
IEEE/ACIS International Conference on Computer
and Information Science (ICIS 2016), pages 885–890,
June 2016. Okayama, Japan.

[11] X. Yu, F. Sun, and X. Cheng. Intelligent urban traffic
management system based on cloud computing and
internet of things. In International Conference on
Computer Science Service System (CSSS), pages
2169–2172, August 2012.

