
ソフトウェア開発プロセスにおける情報漏えいのリスク評価

神崎 雄一郎 井垣 宏 中村 匡秀 門田 暁人 松本 健一

奈良先端科学技術大学院大学 情報科学研究科
630-0192 奈良県生駒市高山町 8916-5

{yuichi-k, hiro-iga, masa-n, akito-m, matumoto}@is.naist.jp

あらまし ソフトウェアプロセスにおいて，情報漏えいのリスクを評価するための方法を提案する．
本論文では，入力されたワークプロダクトをもとに新たなワークプロダクトを生成するサブプロセ
スの集合をソフトウェアプロセスとみなす．また，実行中のサブプロセスとは無関係なワークプロダ
クトが，ある開発者から共同作業を行っている別の開発者に渡ることを，情報漏えい (information
leakage)とする．まず，形式的なソフトウェアプロセスモデルの導入を通して情報漏えいの定式化
を行う．その上で，任意の開発者が任意のワークプロダクトに関する知識を持つ確率を計算する
方法を提案する．

Evaluating the Risk of Information Leakage in Software Process

Yuichiro Kanzaki Hiroshi Igaki Masahide Nakamura Akito Monden
Ken’ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara, 630-0192 Japan

Abstract This paper presents a method to evaluate the risk of information leakage in software
development process. A software process is modeled as a series of sub-processes, each of which
produces new work products based on input products. Since a (sub-)process is conducted usually
by multiple developers together, information of work products is shared among the developers.
For this, a developer might tell others information of some products that are not related to the
process. We regard the flow of such unrelated information in the shared process as ”leakage”.

In this paper, we first formulate the problem of information leakage by introducing a formal
software process model. Then, we propose a method to derive the probability that each developer
d knows each work product p at a given process of software development.

1 Introduction

Software development companies often work
with other organizations to develop large-scale
software. Cooperative developments, however,
can cause some security problems, such as theft
of source code, and leakage of private informa-
tion contained in work products.

An important factor of the security prob-
lems is redundant access to work products dur-
ing a development process. To control access
to work products, there has been proposed a
number of methods [1, 2]. Although the ac-

cess control methods are of great value in re-
ducing redundant accesses, we usually can not
ensure enough security only by the methods
since each information can be passed on from
person to person.

We focus in this paper on the person-to-
person transmission of information. We as-
sume that when a developer works with other
ones, there is a possibility that information
that he/she knows is passed to the other. Fig-
ure 1 illustrates an example of passing infor-
mation. When SubDesign1 is performed, Al-

ice may pass on UseCase that she obtained
when RequirementAnalysis is performed, to
Dan who is working together. If Dan receives
UseCase, he may pass on it to Bob when Coding
is performed. Although both Bob and Dan
don’t handle RequirementAnalysis, they might
obtain UseCase. As seen in this example, we
suppose that information appeared in a pro-
cess can be passed on to those who do not
directly handle works that require the infor-
mation. We regard the flow of such unrelated
information in the shared process as ”leakage”.

Coding

SubDesign2

RequirementAnalysis

SubDesign1

Alice

Alice

Dan

Bob

Dan

Charles

UseCase ……
……

UseCase

UseCase

……
……

……
……

……
……

……
……

Spec1 Spec2

Design1 Design2

Figure 1: Passing Information

The goal of this paper is to propose a method
that can be used to evaluate the risk of infor-
mation leakage in software development pro-
cess. We first formulate the problem of infor-
mation leakage by introducing a formal soft-
ware process model. Then, we propose a method
to derive the probability that each developer d
knows each work product p at a given process
of software development.

The rest of this paper is organized as fol-
lows: In Section 2, we give definitions of soft-
ware process model. Section 3 describes the
proposed method for characterizing dynamics
of information leakage. Finally, Section 4 con-
cludes the paper and future work.

2 Preliminaries

2.1 Software Process Model

Definition 1 (Software Process Model) A
software process model is defined by
P = (U,WP,PC, I, O,AS), where:

• U is a set of all developers participating
the process.

• WP is a set of all work products devel-
oped in the process.

• PC is a set of all (sub-)processes per-
formed in the process.

• I is an input function PC → 2WP that
maps each process p ∈ PC onto a set
IP (⊆ WP) of input products of p.

• O is an output function PC → 2WP that
maps each process p ∈ PC onto a set
OP (⊆ WP) of output products of p.

• AS is an developer assignment function
PC → 2U that maps each process p ∈
PC onto a set of developers conducting
the process p.

Figure 2(a) shows an example of software
process model, which simplifies an implemen-
tation stage of a security software development.
The whole process consists of five developers,
eight work products, and six sub-processes.
The scenario is briefly explained as follows:

Example Scenario: The process produces an
object code from a given design specifi-
cation. The design specification is re-
viewed first. From the reviewed specifi-
cation, the security information is sepa-
rated for an independent security mod-
ule. The rest of part is used to code a
main module. The main module and the
security module are finally integrated to
obtain the object code.

In Figure 2(a), let us take the process Re-
view. This models the review of the design
specification. It takes DesignSpec) as an input
product, and outputs the reviewed specifica-
tion (Rev-Spec). In this example, only devel-
oper A is responsible to conduct the process.
Next, consider the process SecAnalysis. This
takes Rev-Spec as an input, and outputs Mod-
uleSpec and SecurityInfo. Two developers A
and B participate the process. By the simi-
lar discussion, we can see the process model
achieves the example scenario.

By definition, each process has a set of input
products and a set of output products. This
allows us to draw a given process model by
a Petri net, by associating WP with places,
PC with transitions, connecting a place and a
transition with an arc according to I and O.
Figure 2(b) shows a schematic representation
of the example process with Petri net. Also,
we associate a set of developers with each cor-
responding transition based on AS, depicted
in the left of the transition. Note that the use

U = { A, B, C, D, E}
PD = { DesignSpec, Rev-Spec, SecurityInfo,

ModuleSpec, S-ModuleSpec, MainModule,
SecurityModule, ObjectCode }

PC = {Review, SecAnalysis, S-Design, Coding1,
Coding2, Integrate }

I(Review)={DesignSpec}
I(SecAnalysis)={Rev-Spec}
I(S-Design)={SecurityInfo}
I(Coding1)={ModuleSpec}
I(Coding2)={S-ModuleSpec}
I(Integrate)={MainModule, SecurityModule}

O(Review)={Rev-Spec}
O(SecAnalysis)={ModuleSpec,SecurityInfo}
O(S-Design) = {S-ModuleSpec}
O(Coding1)={MainModule}
O(Coding2)={SecurityModule}
O(Integrate)={ObjectCode}

AS(Review)={A}
AS(SecAnalysis)={A, B}
AS(S-Design)= {A, B}
AS(Coding1)={A, C}
AS(Coding2)={B}
AS(Integrate)={C, D, E}

(a) Software Process Model

Design
Spec

Rev-Spec

Module
Spec

Security
Info

Security
Module

Main
Module

Review
{A}

{A, B}

{A, C}

{A,B}

Coding1

S-Design

SecAnalysis

Integrate{C, D, E}

Object
Code

{B} Coding2

S-Module
Spec

(b) Schematic Representation

Figure 2: Process Model Example

of Petri net is just for better comprehension
of the overview of the process structure, but is
not essential to our methodology.

2.2 Order among Processes

Suppose that P = (U,WP,PC, I, O,AS) is
given. For p ∈ PC, w ∈ I(p) and w′ ∈ O(p),
we use a triple (w, p, w′) to represent a product
dependency of process p, where a work prod-

uct w′ is produced by p from w. The product
dependencies implicitly specify a partial order
between processes, since a process needs input
products that have been generated by other
processes.

Definition 2 (Order of Processes) For pro-
cesses p and p′, we say that p is executed be-
fore p′ (denoted by p < p′) iff there exists a se-
quence (w0, p, w1) (w1, p1, w2) ... (wn−1, p

′, wn)
of product dependencies. For processes q and
q′, if any < is not defined between q and q′, we
say that q and q′ are independent.

Let us consider the previous example. As
depicted in Figure 2(b), we can see the order
among the six processes, i.e., Review < Sec-
Analysis < Coding1 < Integrate, and Review
< SecAnalysis < S-Design < Coding2 < Inte-
grate. Note that the order is partial at this mo-
ment. Indeed, no order between Coding1 and
S-Design (or Coding2) is defined, thus they are
independent. The independent processes can
be executed in any order, even concurrently.

2.3 Assumption on Software Process
Model

In this paper, we put the following two as-
sumptions for a given process model
P = (U,WP,PC, I, O,AS).

Assumption A1: There exists no sequence
(w0, p0, w1) (w1, p1, w2) ... (wn−1, pn, wn)
of product dependencies such that w0 =
wn.

Assumption A2: For any pair of indepen-
dent processes p and p′, if AS(p)∩AS(p′) 6=
φ, then an order between p and p′ must
be given.

Assumption A1 states that the product depen-
dencies never form a loop. This is quite rea-
sonable for general software processes. Indeed,
it is unrealistic that a work product newly ob-
tained is used as the input of the processes
that have been completed previously. By this
assumption, we have a consistent partial or-
der among processes for a given sequence of
product dependencies.

Assumption A2 says that independent pro-
cesses p and p′ must be ordered in case that the
same developer is assigned to both p and p′.
This is based on the observation that a devel-
oper cannot engage in more than one processes
simultaneously. Let us consider the process

model in Figure 2. In this example, processes
Coding1 and S-Design are independent. How-
ever, they cannot be executed simultaneously,
since the same developer A is assigned to both
processes (i.e., AS(S−Design)∩AS(Coding1)
={A}). Hence, we need to give an order be-
tween them, for instance, S-Design < Coding1,
so that A conducts S-Design first.

By these assumptions, if we fix a developer
u, then the processes in which u participates
are totally-ordered.

Proposition 1 Let P = (U,WP,PC, I, O,AS)
be a given process model with Assumptions
A1 and A2. For a developer u ∈ U , let PCu =
{p|p ∈ PC ∧ u ∈ AS(p)} be a set of all pro-
cesses to which u is assigned. Then, PCu is
totally-ordered.

Consider the process model in Figure 2 with S-
Design < Coding1. Then, the processes to be
conducted by each user are ordered as follows:

PCA : Review < SecAnalysis < S-Design < Coding1
PCB : SecAnalysis < S-Design < Coding2
PCC : Coding1 < Integrate
PCD : Integrate
PCE : Integrate

Since PCu are totally-ordered, any process
in PCu has at most one immediate predecessor.

Definition 3 (Predecessor of Process) Let
pu1 , pu2 , ..., puk

be all processes in PCu such
that pu1 < pu2 < ... < puk

. For pui ∈ PCu,
we call pui−1 immediate predecessor of pui with
respect to u, which is denoted by predu(pui).
Also, we define predu(pu1) to be ε (empty).

In the above example, we have predA(Coding1)
= S-design, which means that A participates
in S-design immediately before Coding1. Also,
we have predC(Coding1) = ε meaning that
Coding1 is the first process that C engages in.

3 Characterizing Dynamics of Infor-
mation Leakage

3.1 Product Knowledge of Developers

To perform a process p, developers engag-
ing in p must know all the input products of
p. Based on the input products, they develop
the output products. Hence, when finishing
p, they should be acquainted with the out-
put products as well. Thus, when a process is
performed, the developers acquire knowledge
about the related (i.e., input/output) prod-
ucts. For each developer, the knowledge is ac-
cumulated in the sequence of completed pro-
cesses. This dynamics depends on the given
process model, specifically, I, O and AS.

For example, consider the example in Fig-
ure 2. Developer A participates process Re-
view. Hence, when Review is finished, A must
know products DesignSpec and Rev-Spec. Sim-
ilarly, the completion of SecAnalysis provides
the knowledge of Rev-Spec, ModuleSpec and
SecurityInfo for both A and B. Thus, when
A completes SecAnalysis, A knows four prod-
ucts; DesignSpec, Rev-Spec, ModuleSpec, Se-
curityInfo.

Definition 4 (Product Knowledge) Let P =
(U,WP, PC, I,O, AS) be a given software pro-
cess model. For u ∈ U and p ∈ PC, we define
a set of working products Know(u, p) (⊆ WP)
s.t.

Know(u, p) =
⋃

u∈AS(p′)∧p′≤p

(I(p′) ∪O(p′))

Know(u, p) is called product knowledge of de-
veloper u at the completion of process p.

We use the term “knowledge” in some abstract
sense, which can be refined in terms of, for in-
stance, the essential idea or mechanism, the
product’s document itself, or the access method
to the product.

Let us compute Know(B, Coding2) with Fig-
ure 2. Before Coding2, B has participated
in SecAnalysis and S-Design. Hence, accu-
mulating the input/output products of these
three processes, we have Know(B, Coding2)
= { Rev-Spec, SecurityInfo, ModuleSpec, S-
ModuleSpec, SecurityModule }.

For convenience, we represent Know(u, p)
with a binary vector. Let w1, w2, ..., wn be
all work products in WP . Then, we denote
Know(u, p) = [wp1, wp2, ..., wpn], where wpi =
1 iff wi ∈ Know(u, p), otherwise wpi = 0.
Then, the product knowledge of all users at
the completion of the last process (i.e., Inte-
grate) can be represented in Table 1.

Table 1: Know(u, Integrate) (u ∈
{A,B,C, D,E})

u DSpc RSpc SInfo MSpc SSpc MMo SMo OCod
A 1 1 1 1 1 1 0 0
B 0 1 1 1 1 0 1 0
C 0 0 0 1 0 1 1 1
D 0 0 0 0 0 1 1 1
E 0 0 0 0 0 1 1 1

3.2 Leakage of Product Knowledge

Now suppose a situation that; a developer
may tell his/her product knowledge to other
developers sharing the same process.

As an example, consider Coding1 in Figure
2. This process is shared by A and C. Assum-
ing an order S-Design < Coding1, the product
knowledge of A and C at Coding1 are com-
puted as follows:

Know(A,Coding1) = [1 1 1 1 1 1 0 0]
Know(C,Coding1) = [0 0 0 1 0 1 0 0]

Coding1 is the first process that C partic-
ipates in. Hence, at this moment, C is sup-
posed to know only ModuleSpec and Main-
Module. C does not need to know all the rest
of products. On the other hand, A has more
product knowledge than C, because A has pre-
viously participated in three other processes.

Assume now that during Coding1, A tells C
the product knowledge that C does not know,
say SecurityInfo, with some probability. Then,
C becomes to know SecurityInfo although C
has never directly touched it before. Once C
knows SecurityInfo, the knowledge would be
propagated to D and E, since C shares the sub-
sequent process, Integrate, with D and E. As
a result, the isolation of security information
would be in vain.

Thus, when multiple developers work in the
same process, the product knowledge can be
spread from the developer who knows the prod-
uct to ones who do not know. We regard this
as information leakage in the software process,
which is specifically defined as follows.

Definition 5 (Leakage) For developers u, u′ ∈
D, a work product w ∈ WP and a process
p ∈ PC, we say that u may leak w to u′ at p
iff {u, u′} ⊆ AS(p) and w ∈ Know(u, p) and
w 6∈ Know(u′, p).

The above definition of leakage might be
broad a bit. Indeed, it covers a case that a
security product w is known to an unautho-
rized developer u′. On the other hand, some-
one may say that it is not leakage if w is not a
security-sensitive product, or if u and u′ work
for the same company. However, for simplic-
ity and generality of the model, we keep this
broad definition. More detailed criteria of the
leakage should be tuned depending on the tar-
get software process.

3.3 Stochastic Product Knowledge

Now, let us take the leakage of product knowl-
edge into account in our model. Specifically,
we introduce the following assumption for a
given process model P = (U,WP, PC, I, O, AS):

Assumption A3: For u, u′ ∈ U and w ∈ WP ,
let leak(u,w, u′) be a probability that u
leaks w to u′. We assume that leak(u,w, u′)
is given for any u, u′ and w.

Then, in a process p, a developer u may
happen to know a product w such that w 6∈
Know(u, p), since someone could leak w to
u with a certain probability. This motivates
us to deal with the product knowledge in a
stochastic manner.

Let us consider a probability that a devel-
oper u knows a work product w at the comple-
tion of process p, which we denote Pkn(u, p, w).
When u knows w at the completion of p, two
cases can be considered.

Case C1: w ∈ Know(u, p), or

Case C2: w 6∈ Know(u, p) and some devel-
opers leak (or leaked) w to u.

Case C1 means that w is already count in u’s
product knowledge. For this case, we have
Pkn(u, p, w) = 1.0. Case C2 can be further
divided into two sub-cases.

Case C2a: u has already known w before p,
or

Case C2b: [u ∈ AS(p)] and [u did not know
w before p] and [in p some developers
sharing p with u leak w to u].

The probability that Case C2a holds is

P (C2a) = Pkn(u, predu(p), w)

which means that u knew w in the predecessor
process. Next, the probability for Case C2b
can be formulated by

P (C2b) = C(u, p)∗(1−Pkn(u, predu(p), w))∗Pleak

where C : U×PC → {0, 1} such that C(u, p) =
1 iff u ∈ AS(p), otherwise C(u, p) = 0, and
Pleak is a probability that some developers shar-
ing p leaks w to u.

Next, we formulate Pleak. Let u1, u2, ..., uj

be developers who share p with u (i.e., {u1, u2,
..., uj} = AS(p) − {u}). In order for ui to
leak w in p, two conditions are required; (1)
ui needs to have known w before p, and (2) ui

leaks w to u. Therefore, the probability that
ui leaks w to u in p is

Pkn(ui, predui(p), w) ∗ leak(ui, w, u)

Now, u knows w iff at least one of u1, u2, ..., uj

leaks w to u in p, which is the complement

Pkn(u, p, w) =

1.0 (· · · if w ∈ Know(u, p))

Pkn(u, predu(p), w)+
C(u, p) ∗ (1− Pkn(u, predu(p), w)) ∗ [1−∏

ui∈AS(p)−{u}{1−
Pkn(ui, predui(p), w) ∗ leak(ui, w, u)}] (· · · if w 6∈ Know(u, p))

Figure 3: Probability that a developer u knows a work product w at the completion of a process
p

of “none of u1, u2, ..., uj leaks w to u in p”.
Hence,

Pleak = 1−
∏

ui∈AS(p)−{u}
{1− Pkn(ui, predui(p), w)
∗ leak(ui, w, u)}

Combining all together, we finally derive
Pkn(u, p, w), which is a probability that u knows
w at the completion of p, in Figure 3.

Note that Pkn(u, p, w) is specified as a re-
currence formula with respect to the process
p. According to Assumptions A1 and A2, the
set of processes that u participates in is totally
ordered. Hence, predu(p) is uniquely obtained.
Also, by Assumption A3, leak(ui, w, u) is given.
Therefore, the value of Pkn(u, p, w) can be cal-
culated deterministically.

Pkn(u, p, w) is now defined as stochastic prod-
uct knowledge.

Definition 6(Stochastic Product Knowl-
edge)

Let P = (U,WP, PC, I,O, AS) be a given
software process model with Assumptions A1,
A2 and A3. Let w1, w2, ..., wn be all work
products in WP . For u ∈ U , p ∈ PC, we
define a vector Pknow(u, p) s.t.

PKnow(u, p) =
[Pkn(u, p, w1), Pkn(u, p, w2), ..., Pkn(u, p, wn)]

PKnow(u, p) is called stochastic product knowl-
edge of u at the completion of p.

Consider the example in Figure 2 with S-
Design < Coding1. For just simplicity, let
us assume a fixed probability leak(u,w, u′) =
0.01 for all u, u′ ∈ U and w ∈ WP . Then,
the stochastic product knowledge of all users
at the completion of the last process (i.e., In-
tegrate) can be obtained as shown in Table 2.

Table 2: PKnow(u, Integrate) (u ∈
{A,B,C, D,E})

u DSpc RSpc Sinfo MSpc SSpc MMo SMo OCod
A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
B 0.0199 1.0 1.0 1.0 1.0 0 1.0 0
C 0.01 0.01 0.01 1.0 0.01 1.0 1.0 1.0
D 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0
E 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0

4 Conclusion

In this paper, we have presented a method to
evaluate the risk of information leakage in soft-
ware development process. We formulated the
problem of information leakage by introducing
a formal software process model, and we then
proposed a method to derive the probability
that each developer knows each work prod-
uct at a given process of software development.
We suppose that our method can be used for
not only software development process, but
also for many kinds of processes (e.g, busi-
ness processes, medical processes) that have
security-sensitive products.

Finally, we summarize our future work. We
are going to implement a prototype system
that automates the calculation of information
leakage. Then we plan to conduct a quanti-
tative case study to demonstrate how the in-
formation leakage varies depending on the as-
signment of developers.

References

[1] D. Ferraiolo and R. Kuhn. Role-based
access controls. In 15th NIST-NCSC
National Computer Security Conference,
pages 554–563, 1992.

[2] Andrew C. Myers and Barbara Liskov. A
decentralized model for information flow
control. In Symposium on Operating Sys-
tems Principles, pages 129–142, 1997.

