
26 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Recently many frameworks are deployed without proper documents to explain their correct usage. In the
absence of proper documents, application developers often write code to call a framework API in a wrong
way. Such a wrong API call tends to bring about a failure after its complex chain of infection inside of a
framework. The complexity and the lack of implementation knowledge about a framework make it difficult for
application developers to debug this kind of failure. In the preceding study the authors focused on unexpected
side effects that are caused by wrong API calls and bring about failures, and developed a dynamic analysis
technique to detect such side effects. In this paper, the authors introduce a case study to find a wrong API
call using our technique.

A Case Study of Dynamic
Analysis to Locate

Unexpected Side Effects
Inside of Frameworks

Izuru Kume, Nara Institute of Science and Technology, Ikoma, Japan

Masahide Nakamura, Kobe University, Kobe, Japan

Naoya Nitta, Konan University, Kobe, Japan

Etsuya Shibayama, The University of Tokyo, Tokyo, Japan

Keywords:	 Application Framework, Debug, Dynamic Analysis, Object-Oriented Programming Language,
Program Understanding, Side Effect, Software Engineering

INTRODUCTION

Recently many frameworks are used in soft-
ware development without proper documents
to explain their correct usage (Shull, Lanubile
& Basili, 2000). As a result, application devel-
opers often write code to call APIs provided
by frameworks in wrong ways (Monperrus &

Mezini, 2013). Several static analysis tech-
niques (Monperrus & Mezini, 2013; Mishne,
Shoham & Yahav, 2012) are proposed to solve
this problem, but they don’t cover such wrong
API calls that maintainers can find them faulty
only by examining their runtime conditions
such as the reference structure among involved
objects, the timing of inversion of controls to
trigger the API calls, and etc.

DOI: 10.4018/IJSI.2015070103

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 26-40, July-September 2015 27

We pursue a method to debug wrong API
calls as defects. In general, debugging a failure
requires an examination of source code and its
execution. Such a task is necessary in finding
a chain of infection (Zeller 2009). In this task,
maintainers are required to find erroneous states
based on their implementation knowledge of
the system under debugging. For example, they
should find that some value of a local variable is
faulty, or a method is invoked at a wrong timing.

Maintainers of a framework application,
who are application developers and suspect a
wrong API call, try to trace back the execution
from a failure to this wrong API call. Because
such a wrong API call produces an erroneous
state inside of the framework, they have to
examine the source code of the framework and
its runtime states. Usually they are new to the
implementation details of the framework, and
thus their task to detect a chain of infection
inside of the framework is very difficult and
time consuming.

To cope with this problem, we leverage
possibly unexpected side effects which seem to
be hidden from frameworks, and cause failures
via outdated objects’ state. In our preceding
study (Kume, Nitta, Nakamura & Shibayama,
2014), we developed a dynamic analysis
technique to detect such hidden updates and
uses of outdated states in a program execution
trace. In this paper, we introduce a case study
where we found wrong API calls by detecting
an unexpected side effect using our technique.

The rest of this paper is as follows: In
section PRELIMINARY, we introduce basic
concepts of framework applications, and we
also explain the difficulty to debug wrong
framework API calls. In section PROPOSED
APPROACH, we explain an overview of
our dynamic analysis technique. In section
CASE STUDY, we introduce our case study,
and discuss the usefulness and limitation of
our technique in section DISCUSSION. Sec-
tion RELATED WORK is for explaining our
related work, and we state our conclusion in
CONCLUSION.

PRELIMINARY

Operations, Statements,
and Dependency

We assume that frameworks and their applica-
tions are implemented in Java language. Java
objects consist of class instances and arrays.
Operations on objects are method invocations
(except for static methods), and accesses to
their instance variables or array components.
An operation is expressed as a statement or an
expression in a statement.

Parameters of a method invocation consist
of its receiver (if any) and arguments. We call
instance variables and array components persis-
tent variables. When a persistent variable of an
object is accessed to assign or get a value, then
we say that the object is used as a carrier of
the value, and that the object carries the value.

In addition to ordinary dependency among
statements (Tip, 1995), we introduce new kinds
of dependency among operations and state-
ments. A get operation on a persistent variable
depends on the operation that assigned the
got value to the persistent variable. A method
invocation whose receiver is not null executes
the method body bound at runtime based on the
receiver class. Thus method receivers work in a
similar way to operands of conditional branch-
ing statements.

A value carrier itself may have been carried
by another object, which is the carrier of the car-
rier of the value. We may further get the carrier
of the carrier of the carrier of the value. For a
carried value, we can thus obtain a sequence of
references of persistent variables which have
brought the value. We call such a sequence a
reference path to the value or its carrier.

Application Frameworks

We categorize classes and methods in a frame-
work application. We call classes (methods)
contained in a framework framework classes
(framework methods). We call those classes
(methods) other than framework classes ap-
plication-specific classes (application-specific

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

methods) (Kume, Nakamura & Shibayama,
2012). Application-specific classes implement
application-specific features. We also use terms
hot spots, template methods, and hook methods,
which are introduced in (Pree, 1994) in order
to discuss framework architectures. We call a
framework method that represents a hot spot a
hot spot method, and its class a hot spot class.

Application developers implement applica-
tion-specific classes that inherit hot spot classes
and override their hot spot methods. Application
developers should understand (1) which hot spot
classes to inherit, (2) at which timing overriding
methods are invoked, and (3) when and how to
invoke framework methods which implement
the framework APIs (Heydarnoori, Czarnecki,
Binder & Bartolomei, 2012).

Examples of framework API calls are
found in dependency injection (Fowler, 2004)
such as GUI initialization. We name hot spot
classes and those framework classes that imple-
ment framework APIs exposed framework
classes. Hot spot methods and API methods are
named exposed framework methods. Exposed
framework classes model basic entities in the
application domain of a framework, and their
methods represent the features of the entities.

An exposed class is an application-specific
class, an exposed framework class, or a Java
library class. An exposed method is a method
of an exposed class and is visible in applica-
tion-specific classes. Application developers
usually understand the entities represented by
exposed framework classes, and the features
implemented by their methods.

API methods are necessary for an appli-
cation-specific part to setup a correct state
inside of a framework which results in a correct
effect in later execution. The correspondence
between setup calls and their results is hidden
inside of the framework. Understanding such
correspondence requires the implementation
knowledge of the framework. Therefore, it is
difficult for application developers, who usu-
ally lack such knowledge, to find a wrong API
call by examining the execution inside of the
framework.

PROPOSED APPROACH

Assumptions

Our approach aims at supporting application
developers who try to debug a wrong API
call in a framework application. We assume
that application developers don’t have proper
documents that explain correct ways to call
framework APIs. We assume such a case that
a wrong API call results in an unexpected side
effect, and this side effect causes a failure. In
other words, the chain of infection triggered
by the wrong API call involves the unexpected
side effect.

The application developers understand
the application domain entities and their rep-
resentation by exposed framework classes.
They understand relationships among exposed
framework classes and their instances in terms
of the domain concepts. They can explain the
usages of parameters of exposed methods in
terms of the domain concepts.

For example, they can explain the internal
process accomplished by an exposed method
like this: “This framework method removes a
graph edge, which is the method receiver, from
the current diagram.” They also understand
the class relationships in terms of the domain
concepts. Thus they can explain the meaning
of reference paths like this: “A graph edge con-
nects this node with another.”

Basic Idea

The basic idea of our approach is to find wrong
API calls by detecting their unexpected side
effects which cause failures. (Figure 1) Our
approach enables application developers to
avoid a time consuming task to track the chain
of infection from a failure back to a wrong
API call. In general, framework applications
have many side effects at runtime. Therefore,
we must support application developers to
find unexpected side effects that lead them to
wrong API calls.

For this support, we use a dynamic analysis
tool developed in our preceding study (Kume,

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 26-40, July-September 2015 29

Nitta, Nakamura & Shibayama, 2014). Given
a trace of a failed execution, our tool detects
side effects which cause a failure and match
a behavioral pattern to suggest their unex-
pectedness. Our tool also detects behavioral
‘bad smells’. Such bad smells are related to
detected side effects, and suggest that some
of them are really unexpected. Detected side
effects and bad smells are called symptoms in
our preceding study (Kume, Nitta, Nakamura
& Shibayama, 2014).

Symptoms

A symptom is a collection of executed state-
ments and operations on objects that satisfy a
particular condition. We defined three condi-
tions for matching candidates of unexpected
side effects and two kinds of bad smells. The
candidates are called cross-boundary side ef-

fects, and the bad smells outdated states and
aliasings.

A cross-boundary side effect consists of
an assignment operation on a value carrier,
a method invocation, a reference path to the
carrier, and statements to form a data flow. We
illustrate an example of cross-boundary side
effect in the left side of Figure 2. Here, the
candidate side effect is brought by an assign-
ment operation on a carrier obj. The assignment
operation is executed under an application-
specific method, which has been invoked in a
framework method.

Under the application-specific method, the
carrier is accessed via a reference path from one
of the method parameters. After this method
returns to the framework method, the assigned
value or another value which depends on the
assigned value is used there.

Figure 1. Method overview

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

From a lexical viewpoint, the access to obj
and therefore the assignment operations on one
of its persistent variables are ‘hidden’ from the
framework method. If the framework develop-
ers didn’t assume such a side effect, then it is
an unexpected one made by this application-
specific method1.

An outdated state symptom represents a
kind of interference by a side effect at condi-
tional branching. It is defined as the dependency
of a conditional branching statement both on
an old and a new value of the same persistent
variable. An outdated state combined with a
cross-boundary side effect should be suspi-
cious because the side effect makes a wrong

branching based on the unexpectedly updated
state. (Figure 2)

An aliasing symptom represents the exis-
tence of more than one reference paths to the
same value carrier. The reference path in an
aliasing may tell application developers some
anomaly using application developers’ domain
knowledge.

Judgment of API Calls

For a detected cross-boundary side effect, ap-
plication developers can examine the invocation
chain under which the side effect is executed.
They should judge if there is an API call which
introduces a mismatch between the intention of

Figure 2. Symptoms that suggest an unexpected side effect

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 26-40, July-September 2015 31

a template method and actual behavior of its
hook methods.

A template method intends that its hook
methods take some roles in its whole task. The
actual behavior of each of the hook methods
must match its intended role. Application de-
velopers need to check if their actual behaviors
match their intended roles. This judgment re-
quires a technique to understand a framework’s
internal behavior without its implementation
knowledge.

We believe that reference paths among
instances of exposed classes give application
developers enough information for their judg-
ment. Exposed classes of value carriers in a
reference path combined with their mutual refer-
ence structure will help application developers
understand as which a framework regards the
obtained object. Such information about value
carriers and hook method parameters enables
application developers to understand the in-
tended roles of side effects and invoked hook
methods. We have shown such a case study
in our preceding study (Kume, Nakamura, &
Shibayama, 2012).

Implementation

Our analysis tool generates an execution trace
of a framework application under debugging
with its byte code under instrumentation using
BCEL2. A generated trace contains executed
statements and operations as well as depen-
dency among them similar to that of Wang &
Roychoudhury (2004). In addition, the trace
categorizes classes and methods as we explained
in section PRELIMINARY.

Obtaining execution traces of Java Col-
lection Framework classes may be possible.
However, our tool does not do it for the original
JDK classes. Instead, our tool substitutes the
original JDK library classes with correspond-
ing Open JDK classes before instrumentation.
It is for avoiding a possible violation of the
license terms.

Our tool starts an analysis process for an
uncaught exception. It detects symptoms on
which the exception depends. It depicts how

the exception statement depends on each of the
detected symptoms. For this purpose, our tool
abstracts the invocation chain under which the
exception is thrown. The abstraction is based
on an exposed method in the invocation chain.
The exposed method is the ‘nearest’ one in
the sense that no other exposed methods are
executed under it.

The invocation chain is abstracted in
terms of (1) the control flow which invokes
the exposed method, (2) the parameters of the
method, and (3) the control flow which executes
the exception throwing statement.

A symptom is related to a particular value
carrier which plays an important role in its
behavior. As for a cross-boundary side effect,
it is the object which is accessed from a method
parameter and has its persistent variable as-
signed a value. For an outdated state symptom,
it is the carrier of an old and a new value. For
an aliasing symptom, it is the value carrier
accessed via the multiple reference paths. Our
tool summarizes classes of such value carriers
of depicted symptoms. In addition, our tool
outputs reference paths to these carriers in
detected symptoms.

Our tool assigns a unique ID number to each
of executed operations and referenced objects.
Application developers can use these ID num-
bers in order to make correspondence between
user inputs and invoked event handlers. Thus
they can relate visualization results to runtime
objects3 by examining these output results.

CASE STUDY

Example Application

We have debugged a wrong API call in a
simple UML editor4 built on GEF5, a practical
open source framework for graph editors. The
framework and this UML editor were developed
by a third party. The GEF version used in this
experiment had been outdated already, and a
newer and bug fixed version has been released.
GEF itself is built on Swing, and Swing events
are passed to an application specific part through
GEF’s event handlers.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

Figure 3 shows the architecture of this
application. Some of the class names and a
part of class hierarchy are abbreviated in order
to simplify our explanation. Two framework
classes FigNode and FigEdge represent general
graph nodes and their edges, respectively. They
are GEF’s hot spot classes. They implement a
hot spot method dispose() which is invoked in
a template method in response to a user’s op-
eration to delete a graph node or a graph edge.

Application specific classes AssocNode
and AssocEdge represent nodes and edges of
UML n-ary associations, respectively. They

inherit FigNode and FigEdge respectively, and
override dispose(). The overriding methods are
actually invoked inside of GEF at runtime. These
methods are used to give chances for instances of
application specific classes to perform their own
deletion procedures. The pseudo code in figure
3 contains invocations of overridden dispose()
(expressed by super.dispose()). These are API
calls to request the framework to graphically
remove UML model elements from a diagram.

Figure 4 shows a failure example in editing
a UML diagram. This failure can be reproduc-
ible by the following user operations. First,

Figure 3. Example application

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 26-40, July-September 2015 33

create three UML Classes and connect them
with a ternary UML Association. Then select
the node of the association, and press DEL key.
At the key press, an error message is shown,
and the association is not deleted completely as
is shown in Figure 4. From the error message,
we can see that an exception is thrown because
this program tries to obtain an element from
an empty list, which is an ArrayList instance.

Detected Symptoms

Figure 5 shows the visualization result generated
by our tool6 that depicts the dependency among
detected symptoms, the invocation ArrayList.
get(int index), and the exception statement. Each
of detected symptoms is denoted by a tag name

and a unique ID number. Figure 6 summarizes
classes of carriers of these symptoms.

HiddenUpdate tag represents cross-bound-
ary side effects. OutdatedState and Aliasing tags
represent outdated state symptoms and aliasing
symptoms, respectively. Figure 5 shows that the
tool can detect only one cross-boundary side
effect (HiddenUpdate#1787).

The control flow inside of method get(int
index) depends on this side effect. We saw that
its carrier is an instance of ArrayList from the
table in Figure 6. By examining the reference
paths involved in symptoms, we also saw that
this ArrayList instance is also the carrier of
OutdatedState#1759 and Aliasing#1784.

Figure 4. Failure example

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

Judgment of API Calls

The detected cross-boundary side effect and
the exception throwing statement are executed
under the same event handler. The event handler
is invoked by Swing in response to the press of
DEL key. Figure 7 depicts the least invocation
tree to contain the side effect and the exception
throwing statement. The assignment operation
is denoted with ID [8], while the exception
statement with ID [0]. Capital letters before
ID numbers are to designate method categories
explained in section PRELIMINARY. A, F, and
J represent an application-specific method, a
framework method, and a Java library method,
respectively.

Note that A[4] and A[9] make API calls
super.dispose(). A[4] overrides the hot spot
method FigNode.dispose(), and A[9] overrides
FigEdge.dispose(). We checked if their behav-
iors match the intentions of their invokers, which
are F[3] and F[5] respectively. By making cor-
respondence between our operations on UML

model elements in Figure 4 and invoked event
handlers which create them, we could find that
the model elements are used as parameters of
the methods in Figure 7. In Figure 7, we use
the names of the method parameters (n, e1, e3)
that are shown in Figure 4.

By examining the reference paths among
the method parameters, we could recognize the
following process. First, framework method
F[5] obtains an edge e1 from the given node n,
and tries to dispose the edge. In A[9] the edge
e1 obtains its sibling edge e3 from node n and
remove it by an API call F[10]. The detected
cross-boundary side effect represents the ef-
fect of this removal operation on the ArrayList
instance.

It is obvious that this side effect is un-
expected for F[5] because it tries to invoke
get(int index) on this object after method A[9]
returns. Therefore, we find a mismatch between
the intention of F[5] and the behavior of A[9].

Correction of this mismatch was a bit
complicated. Method A[9] has a rationale to

Figure 5. Detected symptoms

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 26-40, July-September 2015 35

remove sibling edges. Such a removal is nec-
essary when a ternary association becomes a
binary association by removing an edge. Such
a change is accompanied by the change of its
shape. A[9] works well for such user operations.
Finally we revised A[4] so that it removes all
edges of the given node before invoking F[5].

DISCUSSION

As we found in the previous section, the call
of API method F[10] in A[9] brings about an
unexpected side effect if the following two
conditions are satisfied: (1) A[9] is invoked in
F[5], and (2) the FigEdge object is an instance
of AssocEdge. Therefore, this mismatch re-
quired us to examine the inversion of control
(invocation of A[9] by F[5]) and the dynamic
binding by AssocEdge. Static analysis methods
don’t suit this kind of examination in general.

It is also difficult to find the defect, the
wrong API call in A[4], by using an existing
debugger because our lack of the implementa-
tion knowledge of GEF. Our tool saved our
effort to find the unexpected side effect from the
failure. We only had to examine the invocation
chain under which the list object became empty,
and understood the meaning of the invocation
chain in terms of the involved objects, which
are the node and its edges.

The application under debugging has more
than 100,000 lines of code, and its invocation
structure is too complex to manually examine
step by step using an existing debugger. The
invocation tree in Figure 7 might seem to be a
little complex, although many invoked methods
under the root event handler are omitted. Many
of these omitted invocations should have been
included there if we had adopted some classical
slicing technique in Tip (1995).

From our experimental result, we can point
out several factors that made our approach ap-
plicable in practice. First, the application runs
in a event driven style, therefore we could easily
correspond object creations to users’ operations
by examining the event handlers. Second, the
classes of the parameter objects in Figure 7
represent basic entities of the graph structure
except for the ArrayList instance, which made us
easily understand their roles in the framework.

As for another factor, we point out the clar-
ity of the specification of the exposed framework
methods in Figure 7. We also point out that the
reference paths which we examined contain only
instances of exposed classes7. Therefore, we
could easily understand the structural relation-
ship among the method parameters.

As for the limitation of our approach, we
must admit that it is not applicable to so called
missing method calls problem (Monperrus,

Figure 6. Carrier classes of detected symptoms

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

36 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

Bruch & Mezini, 2010), a problem that appli-
cation-specific methods often forget necessary
API calls to their frameworks.

Our analysis tool should implement a
sophisticated user interface to provide an ab-
stract view of reference paths. In our case, our
tool summarized the classes of the symptom
subjects, all of which belong to Java Collection
Framework as we can see in Figure 7. We could

not understand their roles in the application
until we related them with instances of exposed
framework classes.

We could not avoid the examination of
the framework code, although we spent few
efforts for this task. We had to read the code of
dispose() of FigNode in order to ensure that it
throws the exception when it tries to obtain the
second edge of the nod. We couldn’t understand

Figure 7. Invocation context

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 26-40, July-September 2015 37

the meaning of such a ‘failed attempt’ without
examining the source code.

RELATED WORK

A wrong API call results in a kind of deviant
behavior (Engler, Chen, Hallem, Chou & Chelf,
2001). A deviant behavior is brought by an
implementation without the knowledge about
“correctness rules the system must obey” (En-
gler, Chen, Hallem, Chou & Chelf, 2001). Such
a wrong call in a framework application is called
deviant code (Monperrus, Bruch & Mezini,
2010). Existing approaches of deviant code
detection (Monperrus & Mezini, 2013; Mishne,
Shoham & Yahav, 2012; Wasylkowski, Zeller
& Lindig, 2007) are based on static analysis of
method invocations or operations on objects.

Monperrus and Mezini (Monperrus &
Mezini, 2013) propose a static analysis of co-
occurrence of invoked methods. Wasylkowski
and et al. (Wasylkowski, Zeller & Lindig, 2007)
propose a method to extract object usage pat-
terns. These approaches suit such cases that
any correct code obeys an implicit pattern of
co-occurrence of method invocations, or a set of
implicit temporal properties on an object usage.

Such mining approaches will be successful
if their analysis targets are method invocations
in a single method (Monperrus & Mezini, 2013),
or based on the usages of “the same abstract
object” in a method (Wasylkowski, Zeller&
Lindig, 2007). These limitations are neces-
sary to draw a line between correct behaviors
and deviant behaviors. If we need a mining
method for different purposes, such as finding
a pattern of API calls to implement a feature,
we can adopt less limited approaches such as
temporal specification mining by Mishne and
et al. (Mishne, Shoham & Yahav, 2012).

As for the example in CASE STUDY
section, we had to examine the structure of the
method invocation tree as well as the complex
reference structure among the node and its edges
that are operated in the methods invoked there.
From the viewpoint of framework usage, it
depends on the timing of inversion of controls

whether the removal of sibling edges becomes
a deviant behavior or not. As a result, resolving
this example required program comprehension
with respect to a complex structure of method
invocations and object references. Such a kind
of comprehension is too complex and semantic
dependent for existing mining methods.

We can regard a deviant behavior as a chain
of infection caused by its deviant code, and pur-
sue a supporting method to debug it. In general,
finding a chain of infection is a time consuming
task, and existing debuggers and debugging
techniques (Lencevicius, 2000; Lencevicius,
Hölzle & Singh, 2003; Zhang, Gupta & Gupta,
2006) assume maintainers’ knowledge about
the program code under debugging. However,
a deviant behavior contains an infection process
inside of the framework of the application under
debugging. Because application developers
are usually new to the implementation of their
frameworks, existing approaches that depends
on maintainers’ implementation knowledge
don’t seem very promising.

Framework applications normally use side
effects inside of their frameworks in order for
application specific features to work correctly.
However, when side effects are involved in a
chain of infection, it is a time consuming task
to examine these side effects by existing debug-
ging tools. Existing debugging tools cannot
trace back directly to the methods which have
already been popped from the stack, although
causes of many errors are found there (Lienhard,
Gîrba & Nierstrasz, 2008).

Omniscient debugger (Pothier, Tanter &
Piquer, 2007) and backward-in-time debugger
(Lienhard, Gîrba & Nierstrasz, 2008) are studied
in order to cope with this problem. They are very
promising if maintainers understand implemen-
tation details of the system under debugging.
However, as for debugging deviant behaviors
in framework applications, we also face the
problem that maintainers don’t understand
implementation details of their frameworks.

Our previous work (Kume, Nakamura &
Shibayama, 2012; Kume, Nitta, Nakamura
& Shibayama, 2014) aims at an abstraction
method that supports maintainers to understand

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

the behaviors inside of a framework without
examining its implementation details. Deviant
behaviors in framework applications can be
thought as feature interactions between frame-
works and their application-specific parts. Thus
we expect that we can apply existing method in
this area (Nakamura, Igaki, & Matumoto, 2005;
Leung, 2007) to resolve our problem.

Behavioral abstraction and visualization
are keys to success in finding and understand-
ing deviant behaviors without examining
implementation details. Dynamic Object Flow
Analysis (Lienhard, 2008; Lienhar, Greevy &
Nierstrasz, 2007; Lienhard, Gîrba, & Nierstrasz,
2008) makes it possible to analyze aliasing,
which are references to an object at runtime.
This method well suits dependency analysis for
regression testing, for example. However, its
visualization seems not so successful showing
the essential difficulty to deal with the complex-
ity of aliasing history to even a single object.

Dynamic Object Process Graph (Quante,
2008; Quante & Koschke, 2008) aims at analyz-
ing a particular object from the viewpoint of
its operations. Although this method focuses on
a single object, it well captures the abstracted
dynamics of its state changes. Such an abstrac-
tion style will be useful when we extend our
method so that it can deal with dynamics among
multiple objects.

Whyline (Ko & Myer, 2009) is another
successful example of visualization for debug.
Whyline is implemented as a sophisticated
debugging tool which enables maintainers to
easily examine why a statement was executed
(or why a statement was not executed). The tool
has a well-designed GUI by which maintainers
relate their questions about infection directly to
visible outputs of the system under debugging.
The cognitive study under the GUI design is
very suggestive when we revise the GUI design
of our prototype tool.

Currently symptoms are hard-coded in our
prototype tool. In future, we will re-design our
tool so that maintainers can define their own
symptoms. For this purpose, we need to intro-
duce a pattern description language to extend
symptom analysis. Languages for query or pat-

tern matching on traces (Goldsmith, O’Callahan
& Aiken, 2005; Martin, Livshits & Lam, 2005)
are promising for specifying behavioral patterns
for symptom detection.

CONCLUSION

In this paper, we proposed a dynamic analysis
technique that supports debugging of a failure,
which was brought about by an unexpected side
effect caused by a wrong framework API call.
Our technique is applicable for such a case that
existing static analysis methods are not appli-
cable. Our technique aims at freeing application
developers from time consuming tasks to track
back unexpected side effects along a chain of
infection inside of a framework. We showed
an experimental result to apply our technique
to a task of debugging a deviant behavior in a
practical framework application, and discussed
its usefulness and limitation.

ACKNOWLEDGMENT

We are deeply grateful for useful discussions
with Professor Norihiro Hagita. This work was
partially supported by MEXT/JSPS KAKENHI
[Grant-in-Aid for Challenging Exploratory
Research (No.23650016), Scientific Research
(C) (No.24500079), and Scientific Research
(B) (No.23300009)].

REFERENCES

Engler, D., Chen, D. Y., Hallem, S., Chou, A., &
Chelf, B. (2001). Bugs as deviant behavior: a gen-
eral approach to inferring errors in systems code.
In the eighteenth ACM symposium on Operat-
ing systems principles (SOSP 2001) (pp. 57-72).
Chateau Lake Louise, Banff, Canada: ACM Press.
doi:10.1145/502039.502041

Fowler, M. (2004). Inversion of control containers
and the dependency injection pattern. Martin Fowler,
Retrieved October 10, 2011, from http://www.mar-
tinfowler.com/articles/injection.html

http://dx.doi.org/10.1145/502039.502041
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 26-40, July-September 2015 39

Goldsmith, S., O’Callahan, R., & Aiken, A. (2005).
Relational Queries over Program Traces. In ACM
OOPSLA 2005 (pp. 385–402). San Diego, California,
USA: ACM Press.

Heydarnoori, A., Czarnecki, K., Binder, W., &
Bartolomei, T. T. (2012). Two studies of framework-
usage templates extracted from dynamic traces.
IEEE Transactions on Software Engineering, 38(6),
1464–1487. doi:10.1109/TSE.2011.77

Ko, A., & Myer, B. (2009). Finding Causes of Pro-
gram Output with the Java Whyline. In The 27th ACM
Conference of Human Factors in Computing Systems
(SIGCHI 2009) (pp. 1569–1578). Atlanta, Georgia,
USA: ACM Press. doi:10.1145/1518701.1518942

Kume, I., Nakamura, M., & Shibayama, E. (2012).
Toward comprehension of side effects in framework
applications as feature interactions. In The 19th
IEEE Asia-Pacific Software Engineering Conference
(APSEC 2012) (pp. 713-716). Hong Kong: IEEE.
doi:10.1109/APSEC.2012.128

Kume, I., Nitta, N., Nakamura, M., & Shibayama,
E. (2014). A dynamic analysis technique to extract
symptoms that suggest side effects in framework
applications. In The 29th ACM Symposium On Ap-
plied Computing (pp. 1176-1178). Gyeongju: ACM
Press. doi:10.1145/2554850.2555123

Lencevicius, R. (2000). Advanced Debugging Meth-
ods. Dordrecht, the Netherlands: Kluwer Academic
Publishers. doi:10.1007/978-1-4419-8774-7

Lencevicius, R., Hölzle, U., & Singh, A. K. (2003).
Dynamic query-based debugging of object-oriented
programs. Automated Software Engineering, 10(1),
39–74. doi:10.1023/A:1021816917888

Leung, W. F. (2007). Program entanglement, feature
interaction and the feature language extensions.
Computer Networks. The International Journal of
Computer and Telecommunications Networking,
51(2), 480–495.

Lienhard, A. (2008). Dynamic Object Flow Analysis.
Lulu.com.

Lienhard, A., Gîrba, T., & Nierstrasz, O. (2008).
Practical Object-Oriented Back-in-Time Debugger.
In J. Vitek (Ed), The 22nd European Conference on
Object-Oriented Programming (ECOOP 2008):
LNCS 5142 (pp. 592-615). Paphos, Cyprus: Springer.

Lienhard, A., Greevy, O., & Nierstrasz, O. (2007).
Tracking Objects to Detect Feature Dependencies.
In 2007 IEEE 15th International Conference on
Program Comprehension (ICPC) (pp. 59-68). Banff,
AB, Canada: IEEE. doi:10.1109/ICPC.2007.38

Martin, M., Livshits, B., & Lam, M. S. (2005). Finding
Application Errors and Security Flaws using PQL: A
Program Query Language. In ACM OOPSLA 2005
(pp. 365–383). San Diego, California, USA: ACM
Press. doi:10.1145/1094811.1094840

Mishne, A., Shoham, S., & Yahav, E. (2012).
Typestate-based semantic code search over
partial programs. In ACM OOPSLA 2012 (pp.
997–1916). Tucson, Arizona, USA: ACM Press.
doi:10.1145/2384616.2384689

Monperrus, M., Bruch, M., & Mezini, M. (2010).
Detecting missing method calls in object-oriented
software. In T. D’Hondt (Ed), The 24th European Con-
ference on Object-Oriented Programming (ECOOP
2010): LNCS 6183 (pp. 2–25). Maribor, Slovenia:
Springer. doi:10.1007/978-3-642-14107-2_2

Monperrus, M., & Mezini, M. (2013). Detecting
missing method calls as violations of the majority
rule. ACM Transactions on Software Engineering
and Methodology, 22(1). 7:1-7:25.

Nakamura, M., Igaki, H., & Matumoto, K. (2005).
Feature Interactions in Inegrated Services of Net-
worked Home Appliances. In S. Reiff-Marganiec
& M. Ryan (Eds.), Feature Interactions in Telecom-
munications and Software Systems VIII (ICFI’05)
(pp. 236–251). Leicester, UK: IOS Press.

Pothier, G., Tanter, É., & Piquer, J. (2007). Scalable
Omniscient Debugging. In ACM OOPSLA 2007 (pp.
535–552). Nashville, Tennessee, USA: ACM Press.

Pree, W. (1994). Design Patterns for Object-Oriented
Software Development. Boston, Massachusetts, USA:
Addison-Wesley.

Quante, J. (2008). Do Dynamic Object Process
Graphs Support Program Understanding? – A Con-
trolled Experiment. In 2008 IEEE 16th International
Conference on Program Comprehension (ICPC 2008)
(pp. 73-82). Amsterdam, The Netherlands: IEEE.

Quante, J., & Koschke, R. (2008). Dynamic object
process graphs. Journal of Systems and Software,
81(4), 481–501. doi:10.1016/j.jss.2007.06.005

Shull, F., Lanubile, F., & Basili, V. R. (2000). Investi-
gating reading techniques for object-oriented frame-
work learning. IEEE Transactions on Software Engi-
neering, 26(11), 1101–1118. doi:10.1109/32.881720

Tip, F. (1995). A survey of program slicing techniques.
Journal of Programming Languages, 3, 121–189.

Wang, T., & Roychoudhury, A. (2004). Using com-
pressed bytecode traces for slicing java programs. In
The 26th IEEE International Conference on Software
Engineering (pp. 512–521). Scotland, UK: IEEE.

http://dx.doi.org/10.1109/TSE.2011.77
http://dx.doi.org/10.1145/1518701.1518942
http://dx.doi.org/10.1109/APSEC.2012.128
http://dx.doi.org/10.1145/2554850.2555123
http://dx.doi.org/10.1007/978-1-4419-8774-7
http://dx.doi.org/10.1023/A:1021816917888
http://dx.doi.org/10.1109/ICPC.2007.38
http://dx.doi.org/10.1145/1094811.1094840
http://dx.doi.org/10.1145/2384616.2384689
http://dx.doi.org/10.1007/978-3-642-14107-2_2
http://dx.doi.org/10.1016/j.jss.2007.06.005
http://dx.doi.org/10.1109/32.881720

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of Software Innovation, 3(3), 26-40, July-September 2015

Wasylkowski, A., Zeller, A., & Lindig, C. (2007).
Detecting Object Usage Anomalies. In The 6th Joint
Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC/
FSE 2007) (pp. 35-44). Dubrovnik, Croatia: ACM
Press. doi:10.1145/1287624.1287632

Zeller, A. (2009). Why Programs Fail, Second Edi-
tion: A Guide to Systematic Debugging. Burlington,
Massachusetts, USA: Morgan Kaufmann.

Zhang, X., Gupta, N., & Gupta, R. (2006). Pruning
dynamic slices with confidence. In The 27th ACM
Conference on Programming language design and
implementation (PLDI 2006). (pp. 169–180). Ottawa,
Canada: ACM Press. doi:10.1145/1133255.1134002

ENDNOTES
1	 Remember that application developers are

often different from framework developers.
2	 http://commons.apache.org/proper/com-

mons-bcel/
3	 Java Whyline (Ko & Myer, 2009) imple-

ments this feature with its well-designed User
Interface.

4	 http://gefdemo.tigris.org/
5	 http://gef.tigris.org/
6	 We add annotations surrounded by red lines

by hand for an explanation.
7	 An array class which component type is

Object is included in these classes. We can
easily guess it is used to implement ArrayList.

http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1145/1133255.1134002
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
http://gefdemo.tigris.org/
http://gef.tigris.org/

