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ABSTRACT
Recently many frameworks are deployed without proper documents to explain their correct usage. In the 
absence of proper documents, application developers often write code to call a framework API in a wrong 
way. Such a wrong API call tends to bring about a failure after its complex chain of infection inside of a 
framework. The complexity and the lack of implementation knowledge about a framework make it difficult for 
application developers to debug this kind of failure. In the preceding study the authors focused on unexpected 
side effects that are caused by wrong API calls and bring about failures, and developed a dynamic analysis 
technique to detect such side effects. In this paper, the authors introduce a case study to find a wrong API 
call using our technique.
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INTRODUCTION

Recently many frameworks are used in soft-
ware development without proper documents 
to explain their correct usage (Shull, Lanubile 
& Basili, 2000). As a result, application devel-
opers often write code to call APIs provided 
by frameworks in wrong ways (Monperrus & 

Mezini, 2013). Several static analysis tech-
niques (Monperrus & Mezini, 2013; Mishne, 
Shoham & Yahav, 2012) are proposed to solve 
this problem, but they don’t cover such wrong 
API calls that maintainers can find them faulty 
only by examining their runtime conditions 
such as the reference structure among involved 
objects, the timing of inversion of controls to 
trigger the API calls, and etc.
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We pursue a method to debug wrong API 
calls as defects. In general, debugging a failure 
requires an examination of source code and its 
execution. Such a task is necessary in finding 
a chain of infection (Zeller 2009). In this task, 
maintainers are required to find erroneous states 
based on their implementation knowledge of 
the system under debugging. For example, they 
should find that some value of a local variable is 
faulty, or a method is invoked at a wrong timing.

Maintainers of a framework application, 
who are application developers and suspect a 
wrong API call, try to trace back the execution 
from a failure to this wrong API call. Because 
such a wrong API call produces an erroneous 
state inside of the framework, they have to 
examine the source code of the framework and 
its runtime states. Usually they are new to the 
implementation details of the framework, and 
thus their task to detect a chain of infection 
inside of the framework is very difficult and 
time consuming.

To cope with this problem, we leverage 
possibly unexpected side effects which seem to 
be hidden from frameworks, and cause failures 
via outdated objects’ state. In our preceding 
study (Kume, Nitta, Nakamura & Shibayama, 
2014), we developed a dynamic analysis 
technique to detect such hidden updates and 
uses of outdated states in a program execution 
trace. In this paper, we introduce a case study 
where we found wrong API calls by detecting 
an unexpected side effect using our technique.

The rest of this paper is as follows: In 
section PRELIMINARY, we introduce basic 
concepts of framework applications, and we 
also explain the difficulty to debug wrong 
framework API calls. In section PROPOSED 
APPROACH, we explain an overview of 
our dynamic analysis technique. In section 
CASE STUDY, we introduce our case study, 
and discuss the usefulness and limitation of 
our technique in section DISCUSSION. Sec-
tion RELATED WORK is for explaining our 
related work, and we state our conclusion in 
CONCLUSION.

PRELIMINARY

Operations, Statements, 
and Dependency

We assume that frameworks and their applica-
tions are implemented in Java language. Java 
objects consist of class instances and arrays. 
Operations on objects are method invocations 
(except for static methods), and accesses to 
their instance variables or array components. 
An operation is expressed as a statement or an 
expression in a statement.

Parameters of a method invocation consist 
of its receiver (if any) and arguments. We call 
instance variables and array components persis-
tent variables. When a persistent variable of an 
object is accessed to assign or get a value, then 
we say that the object is used as a carrier of 
the value, and that the object carries the value.

In addition to ordinary dependency among 
statements (Tip, 1995), we introduce new kinds 
of dependency among operations and state-
ments. A get operation on a persistent variable 
depends on the operation that assigned the 
got value to the persistent variable. A method 
invocation whose receiver is not null executes 
the method body bound at runtime based on the 
receiver class. Thus method receivers work in a 
similar way to operands of conditional branch-
ing statements.

A value carrier itself may have been carried 
by another object, which is the carrier of the car-
rier of the value. We may further get the carrier 
of the carrier of the carrier of the value. For a 
carried value, we can thus obtain a sequence of 
references of persistent variables which have 
brought the value. We call such a sequence a 
reference path to the value or its carrier.

Application Frameworks

We categorize classes and methods in a frame-
work application. We call classes (methods) 
contained in a framework framework classes 
(framework methods). We call those classes 
(methods) other than framework classes ap-
plication-specific classes (application-specific 
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methods) (Kume, Nakamura & Shibayama, 
2012). Application-specific classes implement 
application-specific features. We also use terms 
hot spots, template methods, and hook methods, 
which are introduced in (Pree, 1994) in order 
to discuss framework architectures. We call a 
framework method that represents a hot spot a 
hot spot method, and its class a hot spot class.

Application developers implement applica-
tion-specific classes that inherit hot spot classes 
and override their hot spot methods. Application 
developers should understand (1) which hot spot 
classes to inherit, (2) at which timing overriding 
methods are invoked, and (3) when and how to 
invoke framework methods which implement 
the framework APIs (Heydarnoori, Czarnecki, 
Binder & Bartolomei, 2012).

Examples of framework API calls are 
found in dependency injection (Fowler, 2004) 
such as GUI initialization. We name hot spot 
classes and those framework classes that imple-
ment framework APIs exposed framework 
classes. Hot spot methods and API methods are 
named exposed framework methods. Exposed 
framework classes model basic entities in the 
application domain of a framework, and their 
methods represent the features of the entities.

An exposed class is an application-specific 
class, an exposed framework class, or a Java 
library class. An exposed method is a method 
of an exposed class and is visible in applica-
tion-specific classes. Application developers 
usually understand the entities represented by 
exposed framework classes, and the features 
implemented by their methods.

API methods are necessary for an appli-
cation-specific part to setup a correct state 
inside of a framework which results in a correct 
effect in later execution. The correspondence 
between setup calls and their results is hidden 
inside of the framework. Understanding such 
correspondence requires the implementation 
knowledge of the framework. Therefore, it is 
difficult for application developers, who usu-
ally lack such knowledge, to find a wrong API 
call by examining the execution inside of the 
framework.

PROPOSED APPROACH

Assumptions

Our approach aims at supporting application 
developers who try to debug a wrong API 
call in a framework application. We assume 
that application developers don’t have proper 
documents that explain correct ways to call 
framework APIs. We assume such a case that 
a wrong API call results in an unexpected side 
effect, and this side effect causes a failure. In 
other words, the chain of infection triggered 
by the wrong API call involves the unexpected 
side effect.

The application developers understand 
the application domain entities and their rep-
resentation by exposed framework classes. 
They understand relationships among exposed 
framework classes and their instances in terms 
of the domain concepts. They can explain the 
usages of parameters of exposed methods in 
terms of the domain concepts.

For example, they can explain the internal 
process accomplished by an exposed method 
like this: “This framework method removes a 
graph edge, which is the method receiver, from 
the current diagram.” They also understand 
the class relationships in terms of the domain 
concepts. Thus they can explain the meaning 
of reference paths like this: “A graph edge con-
nects this node with another.”

Basic Idea

The basic idea of our approach is to find wrong 
API calls by detecting their unexpected side 
effects which cause failures. (Figure 1) Our 
approach enables application developers to 
avoid a time consuming task to track the chain 
of infection from a failure back to a wrong 
API call. In general, framework applications 
have many side effects at runtime. Therefore, 
we must support application developers to 
find unexpected side effects that lead them to 
wrong API calls.

For this support, we use a dynamic analysis 
tool developed in our preceding study (Kume, 
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Nitta, Nakamura & Shibayama, 2014). Given 
a trace of a failed execution, our tool detects 
side effects which cause a failure and match 
a behavioral pattern to suggest their unex-
pectedness. Our tool also detects behavioral 
‘bad smells’. Such bad smells are related to 
detected side effects, and suggest that some 
of them are really unexpected. Detected side 
effects and bad smells are called symptoms in 
our preceding study (Kume, Nitta, Nakamura 
& Shibayama, 2014).

Symptoms

A symptom is a collection of executed state-
ments and operations on objects that satisfy a 
particular condition. We defined three condi-
tions for matching candidates of unexpected 
side effects and two kinds of bad smells. The 
candidates are called cross-boundary side ef-

fects, and the bad smells outdated states and 
aliasings.

A cross-boundary side effect consists of 
an assignment operation on a value carrier, 
a method invocation, a reference path to the 
carrier, and statements to form a data flow. We 
illustrate an example of cross-boundary side 
effect in the left side of Figure 2. Here, the 
candidate side effect is brought by an assign-
ment operation on a carrier obj. The assignment 
operation is executed under an application-
specific method, which has been invoked in a 
framework method.

Under the application-specific method, the 
carrier is accessed via a reference path from one 
of the method parameters. After this method 
returns to the framework method, the assigned 
value or another value which depends on the 
assigned value is used there.

Figure 1. Method overview
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From a lexical viewpoint, the access to obj 
and therefore the assignment operations on one 
of its persistent variables are ‘hidden’ from the 
framework method. If the framework develop-
ers didn’t assume such a side effect, then it is 
an unexpected one made by this application-
specific method1.

An outdated state symptom represents a 
kind of interference by a side effect at condi-
tional branching. It is defined as the dependency 
of a conditional branching statement both on 
an old and a new value of the same persistent 
variable. An outdated state combined with a 
cross-boundary side effect should be suspi-
cious because the side effect makes a wrong 

branching based on the unexpectedly updated 
state. (Figure 2)

An aliasing symptom represents the exis-
tence of more than one reference paths to the 
same value carrier. The reference path in an 
aliasing may tell application developers some 
anomaly using application developers’ domain 
knowledge.

Judgment of API Calls

For a detected cross-boundary side effect, ap-
plication developers can examine the invocation 
chain under which the side effect is executed. 
They should judge if there is an API call which 
introduces a mismatch between the intention of 

Figure 2. Symptoms that suggest an unexpected side effect
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a template method and actual behavior of its 
hook methods.

A template method intends that its hook 
methods take some roles in its whole task. The 
actual behavior of each of the hook methods 
must match its intended role. Application de-
velopers need to check if their actual behaviors 
match their intended roles. This judgment re-
quires a technique to understand a framework’s 
internal behavior without its implementation 
knowledge.

We believe that reference paths among 
instances of exposed classes give application 
developers enough information for their judg-
ment. Exposed classes of value carriers in a 
reference path combined with their mutual refer-
ence structure will help application developers 
understand as which a framework regards the 
obtained object. Such information about value 
carriers and hook method parameters enables 
application developers to understand the in-
tended roles of side effects and invoked hook 
methods. We have shown such a case study 
in our preceding study (Kume, Nakamura, & 
Shibayama, 2012).

Implementation

Our analysis tool generates an execution trace 
of a framework application under debugging 
with its byte code under instrumentation using 
BCEL2. A generated trace contains executed 
statements and operations as well as depen-
dency among them similar to that of Wang & 
Roychoudhury (2004). In addition, the trace 
categorizes classes and methods as we explained 
in section PRELIMINARY.

Obtaining execution traces of Java Col-
lection Framework classes may be possible. 
However, our tool does not do it for the original 
JDK classes. Instead, our tool substitutes the 
original JDK library classes with correspond-
ing Open JDK classes before instrumentation. 
It is for avoiding a possible violation of the 
license terms.

Our tool starts an analysis process for an 
uncaught exception. It detects symptoms on 
which the exception depends. It depicts how 

the exception statement depends on each of the 
detected symptoms. For this purpose, our tool 
abstracts the invocation chain under which the 
exception is thrown. The abstraction is based 
on an exposed method in the invocation chain. 
The exposed method is the ‘nearest’ one in 
the sense that no other exposed methods are 
executed under it.

The invocation chain is abstracted in 
terms of (1) the control flow which invokes 
the exposed method, (2) the parameters of the 
method, and (3) the control flow which executes 
the exception throwing statement.

A symptom is related to a particular value 
carrier which plays an important role in its 
behavior. As for a cross-boundary side effect, 
it is the object which is accessed from a method 
parameter and has its persistent variable as-
signed a value. For an outdated state symptom, 
it is the carrier of an old and a new value. For 
an aliasing symptom, it is the value carrier 
accessed via the multiple reference paths. Our 
tool summarizes classes of such value carriers 
of depicted symptoms. In addition, our tool 
outputs reference paths to these carriers in 
detected symptoms.

Our tool assigns a unique ID number to each 
of executed operations and referenced objects. 
Application developers can use these ID num-
bers in order to make correspondence between 
user inputs and invoked event handlers. Thus 
they can relate visualization results to runtime 
objects3 by examining these output results.

CASE STUDY

Example Application

We have debugged a wrong API call in a 
simple UML editor4 built on GEF5, a practical 
open source framework for graph editors. The 
framework and this UML editor were developed 
by a third party. The GEF version used in this 
experiment had been outdated already, and a 
newer and bug fixed version has been released. 
GEF itself is built on Swing, and Swing events 
are passed to an application specific part through 
GEF’s event handlers.
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Figure 3 shows the architecture of this 
application. Some of the class names and a 
part of class hierarchy are abbreviated in order 
to simplify our explanation. Two framework 
classes FigNode and FigEdge represent general 
graph nodes and their edges, respectively. They 
are GEF’s hot spot classes. They implement a 
hot spot method dispose() which is invoked in 
a template method in response to a user’s op-
eration to delete a graph node or a graph edge.

Application specific classes AssocNode 
and AssocEdge represent nodes and edges of 
UML n-ary associations, respectively. They 

inherit FigNode and FigEdge respectively, and 
override dispose(). The overriding methods are 
actually invoked inside of GEF at runtime. These 
methods are used to give chances for instances of 
application specific classes to perform their own 
deletion procedures. The pseudo code in figure 
3 contains invocations of overridden dispose() 
(expressed by super.dispose()). These are API 
calls to request the framework to graphically 
remove UML model elements from a diagram.

Figure 4 shows a failure example in editing 
a UML diagram. This failure can be reproduc-
ible by the following user operations. First, 

Figure 3. Example application
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create three UML Classes and connect them 
with a ternary UML Association. Then select 
the node of the association, and press DEL key. 
At the key press, an error message is shown, 
and the association is not deleted completely as 
is shown in Figure 4. From the error message, 
we can see that an exception is thrown because 
this program tries to obtain an element from 
an empty list, which is an ArrayList instance.

Detected Symptoms

Figure 5 shows the visualization result generated 
by our tool6 that depicts the dependency among 
detected symptoms, the invocation ArrayList.
get(int index), and the exception statement. Each 
of detected symptoms is denoted by a tag name 

and a unique ID number. Figure 6 summarizes 
classes of carriers of these symptoms.

HiddenUpdate tag represents cross-bound-
ary side effects. OutdatedState and Aliasing tags 
represent outdated state symptoms and aliasing 
symptoms, respectively. Figure 5 shows that the 
tool can detect only one cross-boundary side 
effect (HiddenUpdate#1787).

The control flow inside of method get(int 
index) depends on this side effect. We saw that 
its carrier is an instance of ArrayList from the 
table in Figure 6. By examining the reference 
paths involved in symptoms, we also saw that 
this ArrayList instance is also the carrier of 
OutdatedState#1759 and Aliasing#1784.

Figure 4. Failure example
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Judgment of API Calls

The detected cross-boundary side effect and 
the exception throwing statement are executed 
under the same event handler. The event handler 
is invoked by Swing in response to the press of 
DEL key. Figure 7 depicts the least invocation 
tree to contain the side effect and the exception 
throwing statement. The assignment operation 
is denoted with ID [8], while the exception 
statement with ID [0]. Capital letters before 
ID numbers are to designate method categories 
explained in section PRELIMINARY. A, F, and 
J represent an application-specific method, a 
framework method, and a Java library method, 
respectively.

Note that A[4] and A[9] make API calls 
super.dispose(). A[4] overrides the hot spot 
method FigNode.dispose(), and A[9] overrides 
FigEdge.dispose(). We checked if their behav-
iors match the intentions of their invokers, which 
are F[3] and F[5] respectively. By making cor-
respondence between our operations on UML 

model elements in Figure 4 and invoked event 
handlers which create them, we could find that 
the model elements are used as parameters of 
the methods in Figure 7. In Figure 7, we use 
the names of the method parameters (n, e1, e3) 
that are shown in Figure 4.

By examining the reference paths among 
the method parameters, we could recognize the 
following process. First, framework method 
F[5] obtains an edge e1 from the given node n, 
and tries to dispose the edge. In A[9] the edge 
e1 obtains its sibling edge e3 from node n and 
remove it by an API call F[10]. The detected 
cross-boundary side effect represents the ef-
fect of this removal operation on the ArrayList 
instance.

It is obvious that this side effect is un-
expected for F[5] because it tries to invoke 
get(int index) on this object after method A[9] 
returns. Therefore, we find a mismatch between 
the intention of F[5] and the behavior of A[9].

Correction of this mismatch was a bit 
complicated. Method A[9] has a rationale to 

Figure 5. Detected symptoms
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remove sibling edges. Such a removal is nec-
essary when a ternary association becomes a 
binary association by removing an edge. Such 
a change is accompanied by the change of its 
shape. A[9] works well for such user operations. 
Finally we revised A[4] so that it removes all 
edges of the given node before invoking F[5].

DISCUSSION

As we found in the previous section, the call 
of API method F[10] in A[9] brings about an 
unexpected side effect if the following two 
conditions are satisfied: (1) A[9] is invoked in 
F[5], and (2) the FigEdge object is an instance 
of AssocEdge. Therefore, this mismatch re-
quired us to examine the inversion of control 
(invocation of A[9] by F[5]) and the dynamic 
binding by AssocEdge. Static analysis methods 
don’t suit this kind of examination in general.

It is also difficult to find the defect, the 
wrong API call in A[4], by using an existing 
debugger because our lack of the implementa-
tion knowledge of GEF. Our tool saved our 
effort to find the unexpected side effect from the 
failure. We only had to examine the invocation 
chain under which the list object became empty, 
and understood the meaning of the invocation 
chain in terms of the involved objects, which 
are the node and its edges.

The application under debugging has more 
than 100,000 lines of code, and its invocation 
structure is too complex to manually examine 
step by step using an existing debugger. The 
invocation tree in Figure 7 might seem to be a 
little complex, although many invoked methods 
under the root event handler are omitted. Many 
of these omitted invocations should have been 
included there if we had adopted some classical 
slicing technique in Tip (1995).

From our experimental result, we can point 
out several factors that made our approach ap-
plicable in practice. First, the application runs 
in a event driven style, therefore we could easily 
correspond object creations to users’ operations 
by examining the event handlers. Second, the 
classes of the parameter objects in Figure 7 
represent basic entities of the graph structure 
except for the ArrayList instance, which made us 
easily understand their roles in the framework.

As for another factor, we point out the clar-
ity of the specification of the exposed framework 
methods in Figure 7. We also point out that the 
reference paths which we examined contain only 
instances of exposed classes7. Therefore, we 
could easily understand the structural relation-
ship among the method parameters.

As for the limitation of our approach, we 
must admit that it is not applicable to so called 
missing method calls problem (Monperrus, 

Figure 6. Carrier classes of detected symptoms
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Bruch & Mezini, 2010), a problem that appli-
cation-specific methods often forget necessary 
API calls to their frameworks.

Our analysis tool should implement a 
sophisticated user interface to provide an ab-
stract view of reference paths. In our case, our 
tool summarized the classes of the symptom 
subjects, all of which belong to Java Collection 
Framework as we can see in Figure 7. We could 

not understand their roles in the application 
until we related them with instances of exposed 
framework classes.

We could not avoid the examination of 
the framework code, although we spent few 
efforts for this task. We had to read the code of 
dispose() of FigNode in order to ensure that it 
throws the exception when it tries to obtain the 
second edge of the nod. We couldn’t understand 

Figure 7. Invocation context
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the meaning of such a ‘failed attempt’ without 
examining the source code.

RELATED WORK

A wrong API call results in a kind of deviant 
behavior (Engler, Chen, Hallem, Chou & Chelf, 
2001). A deviant behavior is brought by an 
implementation without the knowledge about 
“correctness rules the system must obey” (En-
gler, Chen, Hallem, Chou & Chelf, 2001). Such 
a wrong call in a framework application is called 
deviant code (Monperrus, Bruch & Mezini, 
2010). Existing approaches of deviant code 
detection (Monperrus & Mezini, 2013; Mishne, 
Shoham & Yahav, 2012; Wasylkowski, Zeller 
& Lindig, 2007) are based on static analysis of 
method invocations or operations on objects.

Monperrus and Mezini (Monperrus & 
Mezini, 2013) propose a static analysis of co-
occurrence of invoked methods. Wasylkowski 
and et al. (Wasylkowski, Zeller & Lindig, 2007) 
propose a method to extract object usage pat-
terns. These approaches suit such cases that 
any correct code obeys an implicit pattern of 
co-occurrence of method invocations, or a set of 
implicit temporal properties on an object usage.

Such mining approaches will be successful 
if their analysis targets are method invocations 
in a single method (Monperrus & Mezini, 2013), 
or based on the usages of “the same abstract 
object” in a method (Wasylkowski, Zeller& 
Lindig, 2007). These limitations are neces-
sary to draw a line between correct behaviors 
and deviant behaviors. If we need a mining 
method for different purposes, such as finding 
a pattern of API calls to implement a feature, 
we can adopt less limited approaches such as 
temporal specification mining by Mishne and 
et al. (Mishne, Shoham & Yahav, 2012).

As for the example in CASE STUDY 
section, we had to examine the structure of the 
method invocation tree as well as the complex 
reference structure among the node and its edges 
that are operated in the methods invoked there. 
From the viewpoint of framework usage, it 
depends on the timing of inversion of controls 

whether the removal of sibling edges becomes 
a deviant behavior or not. As a result, resolving 
this example required program comprehension 
with respect to a complex structure of method 
invocations and object references. Such a kind 
of comprehension is too complex and semantic 
dependent for existing mining methods.

We can regard a deviant behavior as a chain 
of infection caused by its deviant code, and pur-
sue a supporting method to debug it. In general, 
finding a chain of infection is a time consuming 
task, and existing debuggers and debugging 
techniques (Lencevicius, 2000; Lencevicius, 
Hölzle & Singh, 2003; Zhang, Gupta & Gupta, 
2006) assume maintainers’ knowledge about 
the program code under debugging. However, 
a deviant behavior contains an infection process 
inside of the framework of the application under 
debugging. Because application developers 
are usually new to the implementation of their 
frameworks, existing approaches that depends 
on maintainers’ implementation knowledge 
don’t seem very promising.

Framework applications normally use side 
effects inside of their frameworks in order for 
application specific features to work correctly. 
However, when side effects are involved in a 
chain of infection, it is a time consuming task 
to examine these side effects by existing debug-
ging tools. Existing debugging tools cannot 
trace back directly to the methods which have 
already been popped from the stack, although 
causes of many errors are found there (Lienhard, 
Gîrba & Nierstrasz, 2008).

Omniscient debugger (Pothier, Tanter & 
Piquer, 2007) and backward-in-time debugger 
(Lienhard, Gîrba & Nierstrasz, 2008) are studied 
in order to cope with this problem. They are very 
promising if maintainers understand implemen-
tation details of the system under debugging. 
However, as for debugging deviant behaviors 
in framework applications, we also face the 
problem that maintainers don’t understand 
implementation details of their frameworks.

Our previous work (Kume, Nakamura & 
Shibayama, 2012; Kume, Nitta, Nakamura 
& Shibayama, 2014) aims at an abstraction 
method that supports maintainers to understand 
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the behaviors inside of a framework without 
examining its implementation details. Deviant 
behaviors in framework applications can be 
thought as feature interactions between frame-
works and their application-specific parts. Thus 
we expect that we can apply existing method in 
this area (Nakamura, Igaki, & Matumoto, 2005; 
Leung, 2007) to resolve our problem.

Behavioral abstraction and visualization 
are keys to success in finding and understand-
ing deviant behaviors without examining 
implementation details. Dynamic Object Flow 
Analysis (Lienhard, 2008; Lienhar, Greevy & 
Nierstrasz, 2007; Lienhard, Gîrba, & Nierstrasz, 
2008) makes it possible to analyze aliasing, 
which are references to an object at runtime. 
This method well suits dependency analysis for 
regression testing, for example. However, its 
visualization seems not so successful showing 
the essential difficulty to deal with the complex-
ity of aliasing history to even a single object.

Dynamic Object Process Graph (Quante, 
2008; Quante & Koschke, 2008) aims at analyz-
ing a particular object from the viewpoint of 
its operations. Although this method focuses on 
a single object, it well captures the abstracted 
dynamics of its state changes. Such an abstrac-
tion style will be useful when we extend our 
method so that it can deal with dynamics among 
multiple objects.

Whyline (Ko & Myer, 2009) is another 
successful example of visualization for debug. 
Whyline is implemented as a sophisticated 
debugging tool which enables maintainers to 
easily examine why a statement was executed 
(or why a statement was not executed). The tool 
has a well-designed GUI by which maintainers 
relate their questions about infection directly to 
visible outputs of the system under debugging. 
The cognitive study under the GUI design is 
very suggestive when we revise the GUI design 
of our prototype tool.

Currently symptoms are hard-coded in our 
prototype tool. In future, we will re-design our 
tool so that maintainers can define their own 
symptoms. For this purpose, we need to intro-
duce a pattern description language to extend 
symptom analysis. Languages for query or pat-

tern matching on traces (Goldsmith, O’Callahan 
& Aiken, 2005; Martin, Livshits & Lam, 2005) 
are promising for specifying behavioral patterns 
for symptom detection.

CONCLUSION

In this paper, we proposed a dynamic analysis 
technique that supports debugging of a failure, 
which was brought about by an unexpected side 
effect caused by a wrong framework API call. 
Our technique is applicable for such a case that 
existing static analysis methods are not appli-
cable. Our technique aims at freeing application 
developers from time consuming tasks to track 
back unexpected side effects along a chain of 
infection inside of a framework. We showed 
an experimental result to apply our technique 
to a task of debugging a deviant behavior in a 
practical framework application, and discussed 
its usefulness and limitation.
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ENDNOTES
1	 Remember that application developers are 

often different from framework developers.
2	  http://commons.apache.org/proper/com-

mons-bcel/
3	  Java Whyline (Ko & Myer, 2009) imple-

ments this feature with its well-designed User 
Interface.

4	  http://gefdemo.tigris.org/
5	  http://gef.tigris.org/
6	  We add annotations surrounded by red lines 

by hand for an explanation.
7	  An array class which component type is 

Object is included in these classes. We can 
easily guess it is used to implement ArrayList.
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