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ABSTRACT

Background: Software product metrics have been widely
used as independent variables for constructing a fault pre-
diction model. However, fault injection depends not only on
characteristics of the products themselves, but also on char-
acteristics of developers involved in the project. Aims: The
goal of this paper is to study the effects of developer fea-
tures on software reliability. Method: This paper proposes
developer metrics such as the number of code churns made
by each developer, the number of commitments made by
each developer and the number of developers for each mod-
ule. By using the eclipse project dataset, we experimentally
analyzed the relationship between the number of faults and
developer metrics. Second, the effective of developer metrics
for performance improvements of fault prediction models
were evaluated. Results: The result revealed that the mod-
ules touched by more developer contained more faults. Com-
pared with conventional fault prediction models, developer
metrics improved the prediction performance.Conclusions:
We conclude that developer metrics are good predictor of
faults and we must consider the human factors for improv-
ing the software reliability.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Product metrics,
Process metrics; D.4.8 [Performance]: Measurements, Mod-
eling and Prediction

General Terms
Measurement, Human Factors, Experimentation,
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1. INTRODUCTION

Over decades, many metrics for software products (i.e., prod-
uct metrics) have been proposed for software quality man-
agement. Typical product metrics include, source lines of
code (SLOC), McCabe’s cyclomatic complexity and object-
oriented metrics [3]. They are widely used for character-
izing some static aspects of source code. It is known that
the SLOC and McCabe’s complexity have a positive corre-
lation with the number of faults in the source code [15, 17].
These metrics are often used for software quality improve-
ment activities such as test effort allocation. More and more
product metrics are proposed in recent years. The change
metrics [16] are calculated from the change history of the
source code. The network structure metrics [27] are derived
from dependencies among modules.

We have investigated many open source projects to see how
and why faults were injected. There, we observed that “soft-
ware reliability depends not only on characteristics of the
products themselves, but also on characteristics of develop-
ers involved in the project’. For example, inexperienced de-
velopers are likely to inject more faults than experts. Or, a
module modified by many developers tends to contain faults,
since different thoughts and coding styles are mixed within
the module. These observations are not necessarily captured
by the SLOC and McCabe’s complexity, which motivated us
to consider “developer metrics” for fault prediction.

Many studies have been reported on relationships between
developer skills and coding speed or debugging efficiency [20,
6]. There is also a system that measures developer’s activ-
ities[12, 26]. On the other hand, there exist criticisms for
“human measurement” [1, 4]. Austin [1] pointed out that
“measuring developers’ activities can lead to developer eval-
uation unintentionally, so the measurement and the analysis
based on the measurement should be avoided”. In recent
huge and complex software development, however, it is also



true that that assuring high reliability with low cost and
short time is strongly required. Therefore, we believe it
essential to understand human factors declining reliability,
based on correct and fair analysis on empirical data.

In this paper, we therefore conduct an empirical study to an-
alyze relationships between faults in source code and some
developer metrics that can be derived from a software repos-
itory. The developer metrics include; NoDRM (m) — the
number of developers revising a module m, and LoCRD(m, d)
— the lines of code revised in a module m that are modified
by a developer d. The empirical analysis is performed based
on the following four hypotheses:

e Hjy: The average number of faults injected per com-
mitment (ANFIC) varies among different individual
developers.

e H;: Providing that Hy is supported, the ANFIC can
be characterized by human factors quantified by some
developers metrics.

e H>: A module modified by many developers tends to
contain more faults.

e Hj3: Developer metrics are good predictor of fault pre-
diction.

In the experiment, we have used three datasets derived from
software repositories of Eclipse Platform Project [5]. The
data sets contain more than 5,000 modules (Java classes).
More than 60 people are participated in the project.

2. PRELIMINARIES
2.1 Software Development Activity

We start with the model of software development assumed in
this paper. A software application consists of packages, each
of which contains modules. In the development, the mod-
ules and the packages are created or updated by multiple
developers. We suppose that a certain software repository
with the version control system (e.g., cvs or svn) is deployed
for the project, so that the multiple developers can create,
delete and update the modules concurrently.

When a developer changes some modules, the developer
commits the changes using the version control system. Thus,
the application is revised and evolved by a sequence of com-
mitments. When an iteration of revisions is finished, the
application is released with a version number. Usually, the
revision continues after the release, in order to develop a
new version of the application.

2.2 Hypotheses

Several studies have been reported on individual difference
in coding speed [20] and debugging efficiency [6]. Analogous
to these, we believe that there must exist individual differ-
ence in injecting faults. To validate the belief empirically,
the hypothesis Hyp is presented.

Ho: The average number of faults injected per commitment
(ANFIC) varies among different individual developers.

The metric ANFIC is supposed to characterize likelihood
that a developer injects faults in the product. A commit-
ment for the version management system is often used in
analysis of software evolution [9] and developer activities
[10], since it well captures a unit of cohesive activities of a
developer creating or modifying software products. Count-
ing the average number of faults injected per a commitment
can be an indicator of the fault injection of a developer.

If Ho holds, our interest is then to check if the ANFIC can
be predicted by some developer metrics recorded within or
derived from development activities.

Hi: Providing that Hy is supported, ANFIC can be charac-
terized by human factors quantified by some developers met-
TiCs.

Generally, it is hard during the development to obtain the
exact value of ANFIC. If this hypothesis is supported, AN-
FIC can be estimated by alternative metrics that are easier
to measure.

The next hypothesis was derived from our observation that
modules revised by many developers often contained differ-
ent design thoughts and coding styles By contrast, a module
created by a single developer tends to contain little faults,
because the module is maintained by the developer only.

Hy: A module modified by many developers tends to contain
more faults.

Some researchers have empirically shown that source code
metrics such as SLOC and McCabe’s cyclomatic complexity
have a positive correlation with the number of faults [13,
18]. This fact is often used for the fault prediction, where
a prediction model is constructed from large datasets mea-
sured in the previous projects [11, 18]. However, there are
little reports that explicitly take developer metrics for the
fault prediction. The final hypothesis below is to validate
that introducing developer metrics can add more confidence
to the existing fault prediction model.

Hgs: Developer metrics are good predictor of fault prediction.

3. PROPOSED DEVELOPER METRICS

3.1 Overview

In this paper, we use the term “developer metrics” to refer
to any metrics characterizing software development activi-
ties performed by developers. Although a variety of metrics
can be considered, in this paper we especially focus on the
following two types of developers metrics:

(Type 1) Developer metrics characterizing developer’s ac-
tivities.

(Type 2) Developer metrics characterizing modules revised
by developers.

We use (Type 1) metrics to validate Hypotheses Ho and Hjy,
since the hypotheses focus on the individual developers. On
the other hand, (Type 2) metrics are used for Hypotheses
Hy and Hs as they are interested in individual modules.



3.2 (Type 1) Characterizing Developer’s Ac-
tivity

To validate hypotheses Ho and Hi, we propose (Type 1)

metrics in this section. The metrics aim to characterize ac-

tivities of individual developer in the software development.

Definition 1. Personal Commit Sequence
Let d be a developer, and App, be v-th release version of
an application. Let seq = [c1,c¢2,...,cn] be a sequence of
commitments to develop App,. A personal commit sequence
of d for App, is defined by:

PCseq(d, Appv) = [coli: Cg: e Ci]

where PCseq(d, Appy) is obtained from seq by choosing only
the commitments c¢;’s relevant with d.

PCseq(d, Appy) is a projection of the sequence of commit-
ments by all users onto a certain developer d, which is a
primary attribute to characterize d’s development activities.
Using this, we define the following four metrics, NoC, NoLR,
NoUMR, NoUPR, each of which characterizes certain activ-
ities of a developer d.

Definition 2. Number of Commitments
Let PCseq(d, Appy) = [cf, 4, ..., c2] be d’s personal commit
sequence. Then the number of commitments by d for App.,
denoted by NoC'(d, App.), is defined by:

NoC(d, Appy) = n

Definition 3. Number of Lines Revised
Let PCseq(d, App,) = [¢f,c4,...,c] be d’s personal commit
sequence. For each 2, let line(c?) represent the number of
lines revised by d in the commitment c¢&. Then the total

number of lines revised by d for App, is defined by:
NoLR(d, App,) = % line(c})

Definition 4. Number of Unique Modules Revised
Let PCseq(d, App,) = [cf,c4,...,c] be d’s personal commit
sequence. For each ¢, let Mod(cl) be a set of modules re-
vised by d in the commitment ¢&. Then the number of unique
modules revised by d for App, is defined by:

NoUM R(d, App,) = | U; Mod(c?)]

Definition 5. Number of Unique Packages Revised
Let PCseq(d, App,) = [cf, ¢4, ..., c] be d’s personal commit
sequence. For each ¢, let Pkg(c‘ij) be a set of packages re-
vised by d in the commitment ¢&. Then the number of unique

packages revised by d for App, is defined by:
NoUPR(d, App,) = | U Pkg(c)|

All of the above metrics are derived from d’s personal com-
mit sequence, which reflects how d works in the development.
First, NoC(d, App.) represents how often d revised the ap-
plication, which may characterize d’s enthusiasm to the de-
velopment. However, frequent commitments don’t necessar-
ily come to the large development effort. So NoLR(d, App.)

captures the effort in term of lines that are actually con-
tributed by d. Next, NoUMR(d, App,) can measure the
scope of responsibility (or interest) maintained by d. Fi-
nally, NoUPR(d, App,) also captures the scope of responsi-
bility with coarser granularity.

Now, we give a definition of ANFIC which is our primary
concern in hypotheses Hy and H;.

Definition 6. Average Number of Faults Injected
By Commit
Let PCseq(d, App,) = [c},¢2,...,c2] be d’s personal commit
sequence. For each ¢, let bug(c?) be the number of faults in-
jected by d in the commitment c¢¢. Then the average number
of faults injected per commit by d for App, is defined by:

ANFIC(d, App,) = % (bug(c))/n

As ANFIC(d, App.) represents the likelihood of fault injec-
tion by d, it is useful for estimating defective modules. How-
ever, it is quite difficult (or almost impossible) during the
development to calculate exact value of ANFIC(d, App,),
since bug(c?) cannot be obtained instantly. Therefore, we
try to estimate ANFIC(d, App,) by NoC, NoLR, NoUMR,
NoUPR. Thus, the validation of hypotheses Hy and H; is
performed indirectly using the four metrics.

3.3 (Type 2) Characterizing Modules by De-

velopers
To validate the hypotheses H, and Hs, we define (Type 2)
metrics in this section. While (Type 1) characterizes the
developers, (Type 2) measures the modules with attributes
of developers. In this paper, we propose the following two
metrics.

Definition 7. Number of Developers Revising Mod-
ule
Let d be a developer, m be a module, App, be v-th version
of the application. Then, the number of developers revis-
ing module m of Appy, denoted by NoDRM (m, Appy), is
defined as the number of developers who revised m.

Definition 8. Lines of Code Revised by a Devel-
oper
Let PCseq(d, App,) = [c},¢2,...,c2] be d’s personal commit
sequence. Let loc(m, %) be the lines of code of m revised by
d in the commitment ¢t. Then, the lines of code in m of
App, revised by d is defined by:

LoCRD(m,d, App,) = i loc(m,c?)

NoDRM (m, App,) represents how many developers revised
a module. Therefore, it can be directly used for validating
the hypothesis Ho. Using this together with LoCRD(m,d,
App,), we try to validate the hypothesis Hs.

3.4 Example
We show an example of the proposed metrics using Figure 1.
Figure 1 (a) depicts a software development process, where



(a) Developer ‘s modifications

.2

1 \ developer %
4

ds %\ m module

commitment —
ds3 l

(b) (Type 1) Characterizing developer’s activity

modified =
M2 line

NoC NoLR NoUMR
dy 3 6 2
da 1 2 1
ds 1 3 1

(c) (Type 2) Characterizing Modules by Developers
NoDRM LoCRD (d;) LoCRD (dz) LoCRD (ds)

mi 1 5 0 0
Mo 3 1 2 3

Figure 1: An example of developer metrics.

three developers di, d2 and d3 have modified two modules
m1 and m2. Gray boxes in the module represent a line mod-
ified by a developer, and an arrow represents a commitment
for the modified lines. Figure 1 (b) shows examples of (Type
1) metrics derived from Figure 1 (a). For each d; of devel-
oper, we can count NoC, NoLR, NoUMR, etc. Figure 1 (c)
shows examples of (Type 2) metrics. For each module, we
can count NoDRM and LoCRD of each developer.

4. DESIGNING EXPERIMENT

4.1 Outline of Experiment

The objective of the experiment is to empirically validate the
four hypothesis with datasets taken from a practical project.
The experiment is performed by the following five steps.

Step 1 (Gathering Developer Information)
Mining the source code repository, we first collect in-
formation of developers from the change history of
source code taken by the version control system.

Step 2 (Gathering Fault Information)
From the developer information and the bug tracking
system, we collect information of all faults injected and
corrected during the development.

Step 3 (Measuring Proposed Developer Metrics)
Using the developer information, we measure the pro-
posed developers metrics.

Step 4 (Measuring Conventional Metrics)
To evaluate the effectiveness of the proposed metrics,
we also measure the conventional static metrics [3] and
change metric [16] from the source code repository.

Step 5 (Validating Hypotheses)
Using the fault information and all metrics, we validate
the hypotheses by statistical analysis.

4.2 Step 1 (Gathering Developer Information)
We collected developer information from modification histo-
ries of a source code repository. In the modification history,
who and why commit which lines of a module for all com-
mit sequence (seq) were written. We create some scripts
that parse the modification history for collecting developer
information.

4.3 Step 2 (Gathering Fault Information)

From the bug tracking system, we collect information of all
faults injected and corrected using SZZ algorithm[23]. The
SZZ algorithm specifies when and who inject a fault to which
module. Specifically, at first, the SZZ algorithm character-
izes which lines in a module were modified when a fault was
corrected within the module by bug modification histories of
a bug tracking system. Next, which developer finally modi-
fied the lines was identified. Lastly, SZZ algorithm assumes
the fault was injected by the developer.

4.4 Step 3 (Measuring Developer Metrics)
Using the developer information, we measure the proposed
developers metrics. Each of collected developer metrics were
defined in Section 3.

4.5 Step 4 (Measuring Conventional Metrics)
To evaluate the effectiveness of the proposed metrics, we
also measure the conventional static metrics [3] and change
metric [16] from the source code repository. These metrics
were shown in Table 1. As static metrics, 15 well-known
metrics were collected using Eclipse Metrics Plugin'. The
change metrics contains seven metrics which collected from
the change history of source code.

Table 1: Conventional metrics used in validating H»

and Hs.

Name Definition
Static TLOC Total lines of code.
metrics | MLOC Method lines of code.
PAR # of parameters
NOF ## of attributes
NOM # of methods
NORM # of overridden methods
NSC ## of children
NSF ## of static attributes
NSM # of static methods
NBD Nested block depth
VG Cyclomatic complexity
DIT Depth of inheritance tree
LCOM Lack of cohesion
WMC Weighted methods per class
SIX Specialization index
Change | Codechurn Sum of modified lines
metrics (added lines + deleted lines)
LOCAdded total added lines
LOCDeleted total deleted lines
Revisions # of revisions
Age age of a file in weeks
BugFixes # of bug-fixing
Refactorings # of refactoring

4.6 Step S (Validating Hypotheses)

Using the fault information and all metrics, we validate the
four hypotheses by following approach.

"http://eclipse-metrics.sourceforge.net
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Figure 2: An example of ROC curve and its AUC
value.

4.6.1 Validating Hypothesis Ho

We confirm a variety of ANFIC with only focus on some
developers who has similar ANFIC in all three versions. If
developer d committed a few times, ANFIC(d) sensitivity
changes by small number of faults injected by d. To avoid
misleading a validating Ho by the sensitivity changing, we
focus on the developers who has stable ANFIC values.

4.6.2 Validating Hypothesis H1

When hypothesis Hg is supported, we analyze the relation-
ship between ANFIC and some developer activities. For
the validating, we test single correlation coefficients between
ANFIC and four (Type 1) developer metrics shown in sec-
tion 3.2. In addition to four developer metrics, we use previ-
ous version of ANFIC (ANFIC(App,—1) because ANFIC
(Appy—1) may already known at current version’s develop-
ment.

4.6.3 Validating Hypothesis H2

We can analyze the effectiveness of each metric for number
of faults by comparing standard partial coefficients which
calculated by constructing a regression model. In this pa-
per, we construct a regression model that using a number
of faults as a dependent variable. Independent variables for
the model construction include the NoDRM and two con-
ventional line-oriented metrics (e.g., SLOC and Codechurn).
By constructing the regression model with two types of line
metrics, we can validate H» based on fault density. Fault
density which means the number of faults normalized by
SLOC is widely used as reliability criteria in general devel-
opment process.

4.6.4 Validating Hypothesis H3

We evaluate the prediction performance of seven combina-
tions of three types of metrics (i.e., developer metrics, static
metrics and change metrics). As model constriction meth-
ods, we used three well-known discriminant models which
are linear regression model (LDA), logistic regression model
(LRA) and classification tree (CT). Each of prediction mod-
els is constructed by metrics datasets of v-th version, and
evaluated by metrics datasets of (v + 1)-th version.

As a evaluation criteria, we use AUC (Area Under the Curve)
value of ROC (Receiver Operating Characteristics) curve ac-
cording to prediction framework proposed by Lessmann et

Table 2: Summary of datasets.

ver.3.00 ver.3.10 ver.3.20
Branch tag R3-0 R3-1 R3_2
Created date 25-Jun-04  28-Jun-05 30-Jun-06
Total developers 69 66 72
Total modules 8,313 9,663 11,525
# of modified modules 7,080 9,428 8,950
# of faulty modules 2,986 3,302 2,506
# of commitments 61,366 53,302 45,441
# of bugs 6,351 7,667 4,772
% of bugs/commitments 10.7% 17.4% 14.5%
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Figure 3: Histogram of ANFIC.

al. [14]. ROC curve shows the relationship of false posi-
tive rate (x-axis) and true positive rate (y-axis). The AUC
value of ROC is a widely used measure of performance of for
prediction models.An example of AUC-ROC shows in Fig-
ure 2. The AUC-ROC value normalized into [0-1], and the
value takes about 0.5 when evaluating a random prediction
model.

5. CASE STUDY
5.1 Eclipse Platform Project

As a case study, we used datasets from Eclipse Platform
Project [5] since it is large and practical enough. Also, the
project is well managed by a version control system and
a bug tracking system, which allowed us to gather reliable
empirical data. In the experiment, we investigated three
versions (ver.3.00, ver.3.10 and ver.3.20) of Eclipse 3.

5.2 Dataset Summary

The summary of the collected datasets through step 1 to
step 4 explained in Section 4 is shown in Table 2. In the
experiment, we consider that a single Java class corresponds
to a self-contained module.

5.3 Validation of Hypothesis Ho

Ho: Awverage the Number of Faults Injectioned by per Com-
mitment (ANFIC) varies among different individual devel-
opers.

A histogram of ANFIC for all 108 developers in all versions
are shown in Figure 3. The average ANFIC for whole mod-
ules is 17.4%. Half of developers distributed in 0% to 20%.
Meanwhile, 17% developers had over 30% of ANFIC, and
two developers had 50%. This result indicates there exist
individual differences of ANFIC.
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Next, we describe about the result of analyzing ANFIC for
individual developers. Figure 4 shows ANFIC for each de-
veloper and each version. This figure was extracted only 39
developers who committed at least once for all three ver-
sions. The dashed line depicts the average ANFIC (17.4%).
The sort criteria is ascending order of variation coefficient of
three version’s ANFIC. This means the left side developers
has similar values for three versions. Note that the names of
developers were assigned by sort ordering for unidentifying
individuals.

Table 3: Single correlation coefficients between
ANFIC(App,) and (Type 1) developer metrics.
ver.3.00 wver.3.10 ver.3.20
NoC -0.07 -0.19 -0.18
NoLR -0.05 0.09 -0.14
NoUMR 0.00 -0.14 -0.22
NoUPR 0.35% -0.06 -0.08
ANFIC(Appy_1) | —— 0.47%  0.32%

*; significantly correlated pairs (P < 0.05)

We can show low ANFIC developers (d1 ACds ACd7ACd10ACd12) Table 4: Standard partial regression coefficients of

and high ANFIC developers (d13—14ACd17) from Figure 4.
Although, di» and di4 committed more than 1,000 times in
all three versions, their ANFIC had five times different (AN-
FIC of di2 was 0.07 and dis4 was 0.38). By Friedman test,
these differences has significant differences (P<0.01). So, we
conclude the Hp is supported.

5.4 Validation of Hypothesis H1

Hi: Providing that Hy is supported, the ANFIC can be char-
acterized by human factors quantified by some developers
metrics.

Table 3 shows single correlation coefficients between AN-
FIC and five developer features. The “*” indicates signif-
icantly correlated pairs (P<0.05). The single coefficient
of ANFIC(Appy—1) in ver.3.00 could not calculate because
ver.3.00 is the first released version in ver.3 series.

ANFIC(App,—1) had positively significant correlations with
ANFIC(Appy). In other words, a developer who injected
many faults in previous version tends to inject many faults
in next version. On the other hand, other developer’s ac-
tivity metrics had no significant correlations. These result
indicates ANFIC(App,) can not characterized by metrics
calculated by developer activities in current version, but can
only characterized from ANFIC(App,—1). Therefore, we
conclude hypothesis H; was supported.

5.5 Validation of Hypothesis H2

Hy: A module modified by many developers tends to contain
more faults.

linear regression models.

ver.3.00 ver.3.10 ver.3.20
NoDRM 0.101 0.164 0.124
SLOC 0.279 0.091 0.141
Codechurn 0.276 0.537 0.383

5.5.1 Result by regression model

Table 4 shows standard coefficients of three metrics for each
version. The result shows codechurn was mostly related
with faults in all versions, and NoDRM little contributed
for the regression model. Especially, in ver.3.10, coefficient
of NoDRM was higher than SLOC. This means the number
of developers was strongly related with increase in faults
than SLOC in ver.3.10. Therefore, we conclude hypothesis
Hs is supported.

5.5.2 Focus on Modules

Although hypothesis H, was supported in section 5.5.1, we
explored number of faults for every number of developers in
more detail. Figure 5 indicates percentages of faulty mod-
ules which include at least one more fault, for every number
of developers. Figure 5 shows over than 70% of modules
modified by more than six developers were contain faults.
Moreover, boxplots of number of faults for each modules are
shown in Figure 6.About 80% of modules modified by one
to five developers contain less than three faults. Meanwhile
modules modified by over six developers contains at least 4.2
faults in average. The result of ver.3.10 and ver.3.20 were
same as ver.3.00.
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5.6 Validation of Hypothesis H3

Hs: Developer metrics are good predictor of fault prediction.

The result of ROC-AUC values from fault prediction exper-
iments for seven metrics combination by using three types
of metrics are shown in Table 5. The “0” indicates the case
of using the metrics type. The bottom line shows the case
of using all of metrics which described in Table 1. The “**”
and “*” represent the best performance combination and the
second best combination compared with other combinations
respectively. Average rank of each metrics combinations are
shown in the rightmost column.

When constructed (and predicted) by only single type of
metrics, a prediction model constructed by only change met-
rics has the best prediction performance (row 1), developer
metrics is the second (row 3), and static metrics is the low-
est (row 2). Compared with whether prediction model was
constructed with developer metrics or not: average rank of
static metrics improves from 6.7 (row 1) to 3.3 (row 5),
change metrics improves from 3.5 (row 2) to 2.0 (row 6),
static and change metrics improves from 3.5 (row 4) to 2.0
(row 7). Because prediction performance was improved by
adding developer metrics, we conclude the H» is supported.

6. DISCUSSION

This paper analyzed the relationship between developer met-
rics and fault injection for understand human factors for
software development. However personnel evaluation based
on the developer metrics and on the analyzing results are in-
adequacy approaches. Some researchers pointed out that the

measuring about individuals especially knowledge worker
must be avoided [1, 4] because individual measurements
(i-e., productivity) cannot correctly reflect individual per-
formance.

For example, di4 in Figure 4 had higher ANFIC than av-
erages in all three versions. However, there is a possibility
that modules touched by di4 were complex and complicated.
In addition, di4 committed over 1,000 times in all three ver-
sions. Raymond [19] pointed out that developers should re-
lease the software rapidly without regard to faults for tested
by much of beta-testers. From this perspective, di4 made
great contribution for Eclipse project.

The contributions of this paper is not to personnel evalua-
tion but to understand following human factors for software
development based on correct and fair analysis on empirical
data.

e ANFIC varies among individual developers as with
coding speed and debugging efficiency

e ANFIC positively correlated with ANFIC in previous
version.

e The number of developers positively correlated with
the number of faults as with SLOC and McCabe’s com-
plexity.

e Developer metrics are good predictor of fault predic-
tion.

We suggest following reliability assessment activities based
on these results.

e Allocate more testing efforts for modules which mod-
ified by high ANFIC developers in previous version.
Note that ANFIC must be carefully used by only qual-
ity assurance teams which independent from developer
teams.

e Reconsider developer assignments and/or allocate the
testing efforts for the modules for modules which mod-
ified by many developers.

e When conducting a fault prediction, developer metrics
should be added as predictors as with change metrics
and static metrics.

7. RELATED WORK

Many studies have been reported on relationship between
software product metrics and software reliability [2, 7, 8,
13, 18, 21, 24]. Gaffney [8] reported larger modules tend
to contain more faults. Koru et al. [13] studied although
larger modules contain more faults, smaller modules had
higher fault density. These analysis were based on software
product features, however there are a little studies focus on
developers.

Schroter et al. [22] investigated empirical study based on
developer’s activities. This study described a data mining
method from a bug tracking system (BTS). The result shows



Table 5: Result of fault-prone module detection (AUC of ROC curve).

constructed by ver.3.00 constructed by ver.3.10

metrics predict ver.3.10 predict ver.3.20 average
# | static change developer | LDA LRA CT LDA LRA CT rank
1 o 0.732 0.739 0.697 0.720 0.722 0.650 6.7
2 o 0.818 0.838 0.738 0.893**  0.894* 0.771 3.5
3 o 0.832 0.846 0.657 0.815 0.833 0.660 5.2
4 o o 0.825 0.849 0.653 0.818 0.842 0.713 4.8
5 o] o] 0.820 0.834 0.738 0.888* 0.894**%  0.771 3.3
6 o o 0.861*%*  0.876** 0.767** | 0.883 0.887 0.774%* 2.0
7 o] o o] 0.853* 0.872* 0.767**% | 0.887 0.890 0.774%* 2.0

LDA: linear regression, LRA: logistic regression, CT": classification tree
**: the best combination, *: the second best combination

number of pre-released failures and number of post-released
failures for each developers varies among individuals as Hyp
in this paper. Additionally they reported there is no signifi-
cant relationship between number of failures and number of
files changed as Hi. While the results used a single version
data, we analyzed using three versions data and studying
the relationship with not only number of changed modules,
but also with lines modified and changed packages.

Some researchers have been studied about fault prediction.
Moser et al. [16] proposed change metrics calculated by
source code change histories and conducted fault prediction
experiments using the change metrics. The change metrics
used in this paper are based on the research. Although the
change metrics proposed by Moser et al. contains number of
developers, it is not clear that a module modified by many
developers tends to contain more faults (Hz) because the
number of developers and all of other 17 change metrics
(e.g., modified modules, number of commitments) were used
a single set of metrics as “change metrics” in the experiments.
Moreover whether developer metrics are good predictor or
not (Hs) is also unknown.

There is an empirical study [25] that uses developer features
for constructing a fault prediction model. This research
studies relationship between number of developers and faults
as Hz. Weyuker et al. reports that the number of develop-
ers has no significant relationship with faults by reason that
fault injection depends on other causes. However, the result
derived from the observation that prediction performances
were not improved since adding developer metrics as pre-
dictors. This explanation is a non-straightforward way for
understanding hypothesis Hy because performance of predic-
tion model depends on other product metrics. On the other
hand, in this paper, we calculated single partial coefficients
with considering the effect of other metrics. Furthermore,
experiment of hypothesis Hs used multiple versions data and
multiple combinations of three type of metrics.

8. CONCLUSION

This paper conducted an empirical study to analyze rela-
tionships between faults in source code and some developer
metrics that can be derived from a software repository. The
result from Eclipse Platform Project datasets shows that
fault injection rate varies among different developers and the
modules touched by more developer contained more faults.
Furthermore, compared with conventional fault prediction
models, developer metrics improved the prediction perfor-
mance.

However, the effect of human factors strongly depends on
each of its development environments. We need more em-
pirical experiments using other project datasets for ensuring
validity of the results. Although this paper shows signifi-
cant positive correlation between faults and developers, un-
derstanding the causal relationship between developers and
fault injection is our future work.
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