
Service Oriented Framework for Mining Software Repository

Shinsuke Matsumoto and Masahide Nakamura
Graduate School of System Informatics, Kobe University, Japan

Email: shinsuke@cs.kobe-u.ac.jp

Abstract—Mining software repository is one of important
topic in empirical software engineering. A wide variety of
mining tools are published on the Web and we can easily
apply individual mining approaches. However, there is no sup-
porting system for sharing the mining techniques, procedures,
knowledge and know-how. This sharing problem also poses
great difficulties for independent validation and experimental
replication from mining researchers. The goal of this paper is
to provide a framework that supports sharing the repository
mining techniques for reducing mining effort and external
validation of analysis results. This paper proposes Service
Oriented Framework for Mining Software Repository (SO-
MSR) which applied Service Oriented Architecture (SOA) to
the repository mining. Following the SO-MSR, we also develop
Metrics Web API which is a prototype system for metrics
measurement. Metrics Web API can measure a variety of
source code metrics without relying on any types of repositories
and programming languages. The proposed system is designed
and implemented as a Web service and demonstrated using
actual software repository.

Keywords-mining software repository; service oriented
framework; version control system; source code metrics; SO-
MSR; Metrics Web API

I. INTRODUCTION

Mining software repository which empirically analyzes a
development history has been widely used for improving
and/or managing a software development process. Generally,
a changing history of software products is stored in revision
control system (RCS) repository. Likewise a bug detections
history is stored in bug tracking system (BTS) reposi-
tory. These historical data stored in software repositories
are analyzed by wide variety of data mining techniques.
The mining result are used for progress management of
development, posterior analysis (e.g., causal analysis of
project failure), and finding a novel knowledge. In soft-
ware engineering research, a lot of mining studies have
been reported[1][2][3][4][5][6][7]. The repository mining
is becoming one of important topic in empirical software
engineering.

One of the challenges of the repository mining is lack
of system or framework to sharing mining techniques and
knowledge. Therefore, we need some efforts and technical
knowledge for conducting the mining. For example, when
conduct a simple mining such as visualizing a change of
SLOC, at least the following three steps are required: 1. Get
a target source code from RCS repository, 2. Measure SLOC,
3. Visualize a graph. Researchers and developers need to use

published tools (or him/herself own scripts) for each steps.
However there is no compatibility and interoperability of
mining tools. Though wide variety of mining tools have been
published on the web, it is difficult to share techniques of
data compatibility and combination of the tools.

The sharing problem also poses great difficulties for
independent validation and experimental replication of the
mining. For instance, a value of SLOC (source lines of
code) that represents a size of software program varies with
the following definitions: blanks and comments, logical or
physical, a single statement written in multiple lines. Open
source software (OSS) repositories are popular data source
for repository mining. Even though researchers analyze same
data source, the results might be different by data prepro-
cessing, procedures and parameters of mining techniques.
Some researchers pointed out[2][3] that measured metric
value varies depending on each mining tool. To tackle the
problem, a framework for sharing the information of How,
which tools and what parameters is used in what steps is
required.

The goal of this paper is to provide a framework that
supports sharing repository mining techniques for reducing
mining effort and external validation of analysis results.
The key idea is applying the service oriented architecture
(SOA) to repository mining. SOA provides loose-coupling
and reusability of software systems by regarding a software
system as a composed of services. The service is a unit
of software functions which developers make accessible
over a network. Wrapping mining tools and techniques by
Web services achieves reusability and interoperability of its
services. Additionally, registering and sharing a sequence of
service API usages as a single service enables an indepen-
dent validation and repetition of the mining procedure.

This paper proposes Service Oriented Framework for Min-
ing Software Repository (SO-MSR) which applied Service
Oriented Architecture (SOA) to repository mining. Following
the SO-MSR, we also develop Metrics Web API which is
a prototype Web service for metrics measurement. Metrics
Web API can measure a variety of source code metrics with-
out relying on any types of repositories and programming
languages.

2011 Joint Conference of the 21st International Workshop on Software Measurement and the 6th International Conference

on Software Process and Product Measurement

978-0-7695-4565-3/11 $26.00 © 2011 IEEE

DOI 10.1109/IWSM-MENSURA.2011.28

13

II. PRELIMINARIES

A. Software Development Repository

Software development repository is an online storage
which contains products and development histories recorded
by revision control system (RCS) and bug tracking system
(BTS). Current version system (CVS) and Subversion are
traditionally used as a RCS system. Recently, some dis-
tributed RCS (e.g., Git, Bazaar and Mercurial) have been
published. As a BTS, Bugzilla and Redmine are well-
known. Furthermore, email history is considered as one
of the development repository which contains a history of
communication and collaboration between developers. Each
of the repositories has different data storing structure and
format.

SourceForge1, a well-known web-based software devel-
opment management system, provides wide variety of de-
velopment repositories for OSS development projects. An
OSS project developed in SourceForge opens not only its
product (e.g., source code) but also its development process
(e.g., change of source code, communication history between
developers and bug fixing process). Therefore, many re-
searchers have been conduct mining studies using repository
data stored in SourceForge.

B. Repository Mining

Repository mining is an approach to managing and im-
proving software development process by analyzing devel-
opment repository with applying data mining techniques.
The purpose of the mining is to share experience, in-
tuition, know-how and finding novel knowledge in soft-
ware development. Then each mining result is described as
formal knowledge. Traditionally, there are various mining
techniques, such as measuring a software metrics[4][5],
statistical analysis using the software metrics[6], feature
prediction[7], association mining[8] and so on. Nowadays
human-oriented analyses have been studied which analyzes a
developer’s communication and collaboration[9] and source
code ownerships[10].

C. Challenges in Repository Mining

There are some challenges in repository mining for shar-
ing the mining techniques.

P1: Lack of standardized access methods to the
repositories

Although variety kinds of RCS and BTS have been
developed, each repository requires different client tools and
different mining approaches. For example, CVS repository
and Subversion repository have different version numbering
rules and different file units, although both repositories con-
tain history of source code development. As shown in Figure
1, log formats have quite different. Different calculation
logic or tool is required when measuring a log-based metric

1http://SourceForge.net/

(a) CVS log format

(b) Subversion log format

Figure 1. Difference of commit log format between CVS and Subversion

(i.e., change metrics[11]). Thus, researchers and developers
need to understand about details of each repository even if
they apply a same mining technique to different repositories.

P2: Lack of interoperability among mining tools

There is no data compatibility and interoperability among
published mining tools. When a user measures a metric using
tool A and applies a statistical analysis using tool B, he/she
need to ensure data conversion between tool A and B. In
general, analyzing between source code metrics stored in
RCS repository and bug fixing process stored in BTS has
been studied in reliability researches. Data compatibility and
interoperability must be supported to analyze across multiple
repositories.

P3: Lack of a system for sharing mining techniques
and procedures

We can easily apply individual mining techniques (e.g.,
measuring metrics, statistical analysis, clone detection and
so on) without expert knowledge because a lot of mining
tools have been published on the Web. However there is
no supporting system to sharing mining procedures and
techniques of the tool combinations. Currently, individual
researchers and developers uniquely have their own tech-
niques and know-how without any sharing.

From a research perspective, this sharing problem also
poses great difficulties for independent validation and exper-
imental replication of the mining. Some researchers pointed
out[2][3] that measuring results varies depending on each
mining tool. To provide the validation and reputation sharing
the information of “How, which tools and what parameters
is used in what steps.” is required. However, writing the de-
tailed analysis conditions in limited paper space is unrealistic
approach.

14

CVS

Statistical
Analysis
Service

RCS Service

Metrics
Service

Web-based
mining service

front-end

checkout()

log()

update()

getSloc()

getCycComplexity()

Subversion

getAddedLines()

getAverage()

getCorrelation()

t.test()

Mining service inventory

uses

other mining
services

uses

..

reads

Sequence of mining services

Combination of mining services

registers references

uses

repository

service

service APIdirectly uses services
using SOAP/REST protocol

BTS Service

getBugList()

Bugzilla Redmine

reads

getBugPriority()

getBugFixedDate()

RCS (Revison Control System)
repositories

BTS (Bug Tracking System)
repositories

…

Figure 2. Architecture of SO-MSR (Service Oriented framework for Mining Software Repository)

III. FRAMEWORK FOR MINING SOFTWARE REPOSITORY

A. Requirements

In this paper, we consider that the framework for sharing
the mining techniques needs to fulfill the following require-
ments.

RQ1: Supporting repository-independent access
method

To solve the problem P1, the framework need to provide
repository-independent access method. For example, when
accessing to a RCS repository, the following common RCS
commands should be standardized: checkout() which
obtains stored source codes, update() which updates to
new version, log() which obtains a commit log. Addition-
ally, common information written in RCS log message such
as revision number, commit developer, date and number of
edited lines (shown in Figure 1) also should be represented
as same data format.

RQ2: Supporting abstract mining techniques
To tackle the problem P2, the framework need to abstract

and encapsulate mining techniques, data format and data
processing logic in the system. This approach makes users to
conduct a mining by meaningful method calls. For example,
getSloc(http://path_to_repository) and get
CyclomaticComplexity(http://path_to_repo
sitory) should achieve that user can measure each metric
without regard to repository access procedure, measurement
logic and data compatibility.

RQ3: Sharing mining procedures

For the problem P3, a mechanism for sharing mining tech-
niques, procedures and used parameters are required. This
mechanism fulfills independent validation and experimental
replication in the mining research area. Furthermore, mining
efforts might be reduced by the knowledge sharing system.

RQ4: Support machine-processable interface
Supporting every mining techniques by system is actually

impossible. In some case, a user may conduct a mining
by partially using the proposed system and partially using
his/her own script. To support this usage, the system should
be accessed by machine-processable interface such as XML-
based protocol. The machine-processable interface achieves
program invocation from a variety of programs or systems.

RQ5: Reusing existing mining tools
A mount of mining tools have been proposed and used by

some researchers. By reusing the existing tools, the proposed
system assures reliability for mining results.

B. Key Idea

We propose a Service Oriented Framework for Mining
Software Repository (SO-MSR) based on Service Oriented
Architecture (SOA) to meet the above requirements RQ1 to
RQ5. The SOA is an approach to build a flexible information
system. SOA considers a software system as integrated
services. The service is a unit of software functions and
has a coarse granularity than object and module. Each
service can invoke from the internet using standardized
XML-based protocol such as SOAP/REST. Constructing a

15

software system from a set of services allows flexibility and
reusability.

Generally, SOA based system is implemented as a
Web service. Web service provides interoperable machine-
processable interface using web-based protocols. Wide va-
riety and number of Web services have been published on
the web. We can use these services such as weather report,
daily news, schedule management and language translation
through the internet.

Wrapping each repository-depended accessing method
to a service enables standardized repository-independent
access. This approach solves requirement RQ1. Likewise,
encapsulating each repository-depended data format and data
process in a service solves requirement RQ2. To solve
requirement RQ3, we provide an inventory service which
registers and shares a mining procedure (e.g., procedure
and combination of mining service invocation). Requirement
RQ4 is solved by supporting XML-based and machine-
processable protocol.

C. Architecture

The architecture of SO-MSR is shown in Figure 2. Cylin-
der means a repository, gray-colored box means a service
and white-colored box means service API.

This architecture wraps accessing method for CVS
and Subversion repository as RCS Service which has
common RCS methods (i.e., checkout(), update() and
log(). Similarly, accessing procedure to BTS reposito-
ries are wrapped as BTS Service. Mining services
use these repository accessing services. This figure illus-
trates two mining services which are Metrics Service
and Statistical Analysis Service. User can call
mining services through a Web application front-end and can
directly call the services using SOAP/REST protocol. Ser-
vice inventory, located in the right-upper, supports sharing
a sequence and combination of service invocations. Refer-
ring the registered service invocations enables independent
validation, mining replication and customizing the mining
procedure.

IV. METRICS WEB API

A. Overview

In this paper, we develop a prototype system for soft-
ware metrics measurement system based on SO-MSR. The
metrics measurement is one of famous approach in the
repository mining. Metrics Web API, described in this sec-
tion, is a Web service for source code metrics measurement
which corresponds to Metrics Service in Figure 2.
Metrics Web API can measure a variety of source code
metrics without relying on any types of repositories and
programming languages.

+ getAddedLines()
+ getCodeChurn()
+ getAuthorList()
+ getSloc()
+ getCyclomaticComplexity()
+ ls()
+ find()

MetricsFacade

+ registerRepository()
+ removeRepository
+ getRepository()

RepositoryInstanceManager

- repositories

+ registerRepository()
+ removeRepository
+ getRepository()

RepositoryInstanceManager

- repositories

+ checkout()
+ update()
+ getLog()
+ getDiff()
+ getRevisionList()

Repository

- staticMetricsCalculator
- dynamicMetricsCalculator

+ checkout()
+ update()
+ getLog()
+ getDiff()
+ getRevisionList()

Repository

- staticMetricsCalculator
- dynamicMetricsCalculator

Diff

- revn
- revm
- addedLines
- deletedLines

Log

- revision
- comitter
- date
- message

+ getAddedLines()
+ getCodeChurn()
+ getAuthorList()

DynamicMetricsCalculator

+ getSloc()
+ getCyclomaticComplexity()

StaticMetricsCalculator
SVNRepository

CVSRepository

SVNkitSVNkit

MASUMASU

MetricsService

1

1

1

1

0..*0..*

1

0..*

usesuses

usesuses

MasuWrapper

usesuses

usesuses

usesuses

Figure 3. UML class diagram of Metrics Web API

B. Design

Figure 3 shows a UML class diagram of Metrics Web API
(only the essential classes and methods are shown).

A MetricsService, located in the top, is a
service-layered class which has all service APIs.
API calls from service users are invoked through
this class. A MetricsFacade aggregates all mining
operations such as metrics calculation and file operation.
Common RCS repository operations are abstracted
in Repository. Each repository specific logics are
encapsulated in CVSRepository and SVNRepository
which extend the Repository. Some Repository
are managed by repositoryInstanceManager.
Additionally, Repository has two metrics measurement
classes, DynamicMetricsCalculator and
StaticMetricsCalculator. The two metrics
measurement classes respectively measures history-based
metrics (we call dynamic metrics) and snapshot metrics
(we call static metrics).

C. Implementation

Based on the UML class diagram, we have developed
Metrics Web API. Development language was Java. The
total SLOC and the total number of classes were 4,245
and 19 respectively. As shown in Figure 3, the proposed
system reuses SVNKit[12] as a Subversion client and reuses
MASU[13] (Metrics assessment plugin platform for soft-
ware unit of multiple programming languages) as a C&K
metrics calculator. MASU can calculate some metrics from

16

multiple programming languages because MASU constructs
language-independent data when applying source code anal-
ysis. Measuring logic for other metrics such as line-based
metrics and dynamic metrics are developed using our orig-
inal programs.

Currently implemented APIs for metrics measurement
and file operation are shown in Table I. Square brackets
written in “Parameters” row mean optional parameters.
When a user measures a metric, he/she must use API
registerRepository() which registers his/her reposi-
tory to Metrics Web API. User ID and password are required
as the API parameters because registerRepository()
logins to the repository at the same time. The response
of the registerRepository() is a registered ID. For
supporting multiple users, Metrics Web API assumes that
some repositories are registered in the system. Therefore a
user must specify his/her target repository ID when calling
metrics measurement APIs. APIs for metrics measurement
are shown in the table. For example, when a user mea-
sure SLOC metric, the user only have to call two APIs
(i.e., registerRepository() and getSloc()). The
proposed system implemented file operation APIs such
as ls() which lists files or directories in current direc-
tory, find() which finds specified files or directories,
getJavaFileList() which lists source codes written
in Java.

D. Case Study of Metrics Web API Usage

We demonstrate a case study of repository mining using
the Metrics Web API. In this case study, we developed a
program which captures a change of SLOC of a source code
and visualize growth of the code. The program invokes two
Web services, Metrics Web API and Google Chart API2.
Google Chart API can create variety of graph images such
line chart, pie chart, scatter chart and so on by calling simple
http request.

Figure 4 shows a developed source code. Development
language is Perl. To invoke these Web services, we used
SOAP::Lite module and Google::Chart module respectively.
The development takes about 20 minutes and the total SLOC
is 39 (including blanks and comments). This code consists
of two phases, the data obtain phase which uses Metrics Web
API and the visualize phase which uses Google Chart API.
The 7th and 8th line generate SOAP::Lite object to preparing
the Metrics Web API invocation. The 16th and 30th line
actually invoke the service APIs which are correspond to
repository login and SLOC obtaining. Although the type of
target repository is Subversion and the target source code is
Java, the developed Perl code can conduct repository mining
by only invoking abstracted APIs without relying on the
repository type and the programming language.

2http://code.google.com/intl/en/apis/chart/

Data obtaining phase

Visualizing phase

API invocation steps

Service instantiation step

Figure 4. Perl code for visualizing growth of source code using Metrics
Web API and Google Chart API

V. CURRENT STATUS AND FUTURE WORKS

Currently, Metrics Web API supports only Subversion
repository. We have to support other RCS repositories such
as CVS and Git. Generally, repository mining based on
source code metrics are studied with bug detection informa-
tion stored in BTS repository. To provide a practical system
for analyst who conducts a repository mining, a service for
accessing BTS repositories is required.

Separating the metrics service and RCS service is also
our future work. As shown in Figure 3, Metrics Web API
internally has not only metric calculation logic but also
processing logic for RCS repository. However, in terms of
service oriented framework, RCS service must separate from
Metrics Web API as shown in Figure 2. This approach
enables reusing the RCS services from other mining services
such as clone detection service.

Developing a service client is also necessary for improv-
ing the service usability. As shown in Figure 4, Web service
API can directly invoked from program using SOAP/REST
protocol. However, to improve the usability of Web services,
we must provide a service client such as interactive CUI
client and/or GUI Web application client. These service
clients might significantly reduce mining efforts and assist
a developer’s self analysis of his/her own work.

17

Table I
SUMMARY OF IMPELEMENTED APIS

Category Sub categ. API name Parameters Responses
Service registerRepository repository url, uid, pass Registered id
management deleteRegisteredRepository id —

getRegisteredRepositoryList — Registered repository list
Static Line- getSloc id, file [, date] Physical SLOC
metrics based getLogicalSloc id, file [, date] Logical SLOC
measurement getCommentSloc id, file [, date] Comment SLOC

getBlankSloc id, file [, date] Blank SLOC
McCabe getCyclomaticComplexity id, file [, date] Cyclomatic complexity
C&K getWmc id, file [, date] Weighted methods per class

getNoc id, file [, date] Number of childrens
getCbo id, file [, date] Coupling between object classes
getDit id, file [, date] Depth of inheritance tree
getRfc id, file [, date] Response for a class
getLcom id, file [, date] lack of cohesion in methods

Dynamic Line- getAddedLines id, file [, term] # of added lines
metrics based getDeletedLines id, file [, term] # of deleted lines
measurement getCodeChurn id, file [, term] # of code churn (added + deleted)

Commit getRefactoringList id, file [, term] List of refactorings
mssage- getBugfixList id, file [, term] List of bug fixes
based getNRefactorings id, file [, term] # of refactorings

getNBugfixes id, file [, term] # of bugfixes
Author getAuthorList id, file [, term] List of authors

getNAuthors id, file [, term] # of authors
Others getRevisionList id, file [, term] List of revision

getNRevisions id, file [, term] # of revisions
getAge id, file [, term] Age (days)

Metrics getDynamicMetricsSummary id Summary of dynamic metrics for all codes
summary getStaticMetricsSummary id Summary of static metrics for all codes
File ls id, path File list (equals ls command)
operation lsr id, path File list (equals $ls --recursive)

find id, file File list (equals find command)
getJavaFileList id, path File list (equals $find . -name “*.java”)
getCFileList id, path File list (equals $find . -name “*.c”)

VI. CONCLUSION

This paper proposes a framework SO-MSR for shar-
ing mining software repository techniques based on SOA.
Following the SO-MSR, we have also developed Metrics
Web API which is a prototype Web service for metrics
measurement. Metrics Web API has following features.

• Platform-independent access.
• Machine-processable interface.
• Repository accessing APIs are independent from repos-

itory type.
• Metrics calculation APIs are independent from pro-

gramming language.
• User can conduct mining without regard to internal

logic and data conversion.

We have some future works for providing a practical sys-
tem because Metrics Web API is at experimental stage. The
future works include supporting a variety of repositories and
developing a service client. Additionally, we are planning an
experimental evaluation of Metrics Web API to verify the
system usability and validity of the framework.

ACKNOWLEDGMENT

This research was partially supported by the Japan Min-
istry of Education, Science, Sports, and Culture [Grant-
in-Aid for Scientific Research (B) (No.23300009), Young
Scientists (B) (No.21700077), Research Activity Start-up
(No.22800042)], and Hyogo Science and Technology As-
sociation.

REFERENCES

[1] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An investi-
gation into the functional form of the size-defect relationship
for software modules,” IEEE Transaction on Software Engi-
neering, vol. 35, no. 2, pp. 293–304, 2009.

[2] L. H. Etzkorn, S. E. Gholston, J. L. Fortune, C. E. Stein,
D. Utley, P. A. Farrington, and G. W. Cox, “A comparison
of cohesion metrics for object-oriented systems,” Information
and Software Technology, vol. 46, no. 10, pp. 677–687, 2004.

[3] R. Lincke, J. Lundberg, and W. Lowe, “Comparison software
metrics tools,” in Proc. Int’l Symposium on Software Testing
and Analysis, 2008, pp. 131–141.

18

[4] S. G. Crawford, A. A. McIntosh, and D. Pregibon, “An
analysis of static metrics and faults in C software,” Journal
of System Software, vol. 5, no. 1, pp. 37–48, 1985.

[5] T. Zimmermann and N. Nagappan, “Predicting defects us-
ing network analysis on dependency graphs,” in Proc. Int’l
Conference on Software Engineering (ICSE ’08), 2008, pp.
531–540.

[6] P. Bourque and V. Cote, “An experiment in software sizing
with structured analysis metrics,” Journal of System Software,
vol. 15, no. 2, pp. 159–172, 1991.

[7] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation
of object-oriented metrics on open source software for fault
prediction,” IEEE Transactions on Software Engineering,
vol. 31, pp. 897–910, 2005.

[8] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in Proc.
Int’l Conference on Software Engineering (ICSE ’04), 2004,
pp. 563–572.

[9] A. Meneely and L. Williams, “Socio-technical developer
networks: Should we trust our measurements?” in Proc. Int’l
Conference on Software Engineering (ICSE ’11), 2011, pp.
281–290.

[10] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and
mozilla,” ACM Transaction on Software Engineering Method-
ology, vol. 11, pp. 309–346, 2002.

[11] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Proc. Int’l Conference on Software
Engineering (ICSE ’08), 2008, pp. 181–190.

[12] SVNKit, http://svnkit.com.

[13] T. Miyake, Y. Higo, S. Kusumoto, and K. Inoue, “Masu:
A metrics measurement framework for multiple programing
language,” Journal of IEICE, vol. J92-D, pp. 1518–1531,
2009 (in Japanese).

19

