
Toward Comprehension of Side Effects in Framework Applications as Feature
Interactions

Izuru Kume

Graduate School of Information Science
Nara Institute of Science and Technology

Ikoma, Nara, Japan
Email: kume@is.naist.jp

Masahide Nakamura

Graduate School of System Informatics
Kobe University

Nada, Kobe, Japan
Email: masa-n@cs.kobe-u.ac.jp

Etsuya Shibayama

Information Technology Center
The University of Tokyo
Bunkyo, Tokyo, Japan

Email: etsuya@ecc.u-tokyo.ac.jp

Abstract—Application frameworks are widely used in order
to increase efficiency and reliability in object-oriented software
development. In this paper we put a focus on side effects
caused by misuse of frameworks. A processes of such a side
effect often includes cross-border method invocations between
an application and its framework, and is difficult to resolve.

This paper proposes an approach to visualizing such a
side effect as a feature interaction between a framework and
its application. This paper shows a case study to apply our
approach to a practical framework application, and discuss its
practical usefulness.

Keywords-application frameworks; feature interactions; side
effects; program comprehension;

I. INTRODUCTION

An application framework is a reusable software product

which provides reusable design and implementation com-

mon to applications of a particular domain [1]. In recent

years, application frameworks are used in various fields of

software projects.

In this paper, we call classes in a framework framework
classes. We also use the term application specific classes to

refer to classes that implement application specific features

within a framework application. We call a method defined in

a framework class a framework method, while a method de-

fined in an application specific class an application method.

A framework specifies hot spots, which represent appli-

cation specific features and are implemented by application

methods. Application methods implementing hot spots are

invoked inside of the framework. This invocation style is

called inversion of control [2]. On the other hand, frame-

works often expose some methods so that applications can

set states of the frameworks. Such state setting methods

tend to introduce deviant code [3], which invokes exposed

framework methods in a wrong way, and causes an erroneous

state. We call such invocation style that an application

method invokes a framework method, re-inversion of control.
This paper puts a focus on deviant effects. A deviant

effect is a side effect which is triggered by re-inversion of

control and brings an erroneous state inside of a framework.

A deviant effect by definition is caused by deviant code

which misuses one or more of exposed framework meth-

ods. Monperrus et al.[3] point out that fixing deviant code

requires program understanding. However, understanding

deviant effects is difficult because of the complexity of

frameworks.

To tackle with this problem, we propose an approach to

visualizing a deviant effect as a kind of feature interaction

[4], [5] between an application and its framework with

support by dynamic analysis. Our visualization concisely

illustrates where and how a feature interaction is triggered.

Such an illustration is expected to be useful for fixing deviant

code which is responsible for the feature interaction.

In the rest of this paper, We explain related work in

section II. We introduce a motivating example of deviant

effect in section III. We explain our approach in section IV,

and discuss the result of applying our method to the deviant

effect example in section V, and conclude our work in

section VI.

II. RELATED WORK

A feature interaction is a situation where two or more

features, each of which works correctly by itself, shows an

unexpected result in their combination [4], [5]. Nakamura

et al. [4] introduces an object-oriented model, called en-
vironment interaction, which describes feature interactions

between services by digital appliances in a home network

system. Their environment interaction represents the en-

vironment in a home network system as the environment
object. A feature interaction occurs when a service sets a

state of an environment object and another service references

the state in its execution.

Side effects in object-oriented programs can be repre-

sented in a similar way to environment interaction. However,

an aid by dynamic analysis is necessary for obtaining

understandable results because of the complexity of practical

object-oriented programs.

Dynamic object flow analysis by Lienhard [6] proposes a

method to visualize dependency among classes and groups

of classes. Lienhard’s method is based on a data flow

2012 19th Asia-Pacific Software Engineering Conference

1530-1362/12 $26.00 © 2012 IEEE

DOI 10.1109/APSEC.2012.128

713

Deleting the node of the 3-ary Association causes an exception.

e1e2

e3

n

����������	�
��
��
�����
������������	�
���������������

�������������� �!"����#����$%��&'� �!"���������()*+

�������������� �!"�������'� �!"���������,--+

���� ����� �������� �����������.��/�
��
������'.��/�
�������-,0+

���� ����� ������
�1���1�����2�
��/�
�.���
������'2�
��/�
�.��������0�+

���� ����� �������3�������������2����� �
�����. �12�
��'���������2����� ������*40+

���� ����� �������3����$1
5�����. �12�
���
�	�'$1
5�����. �12�
��������(�+

���� ����� �������3����$1
�������6� �� 1�
'$1
�������**+�

(before deletion) (after deletion)

Figure 1. Exception at Deleting Association Node

analysis which deals with various kinds of object references

including object referenced by instance variables. However,

her data flow analysis does not deal with (1) object refer-

ences as method receivers, (2) actions on instance variables

to assign and reference primitive values, and (3) control

dependencies. Such kinds of information are necessary for

analysis of side effects.

Wang et al. [7] proposed a practical means of generat-

ing compact program traces for dynamic slicing including

data dependency via assignments and references of instance

variables. Our approach assumes interactive trace analysis,

which require richer kinds of information in program traces

than theirs. We have developed a Java byte code instrumenta-

tion tool [8] which generates program traces with necessary

kinds of information for our purpose.

III. MOTIVATING EXAMPLE

In the following we introduce a side effect example found

in a framework application 1 built on a practical framework

GEF 2developed by a third party.

The framework and the application are written in Java.

The application implements simple features to edit UML

class diagrams. Figure 1 shows an exception thrown at

deleting a 3-ary UML association.

The association consists of a node (n) and three edges

(e1, e2, and e3). The association should be deleted by

deleting its node (n), but actually we encounter an erroneous

situation shown in figure 1. Note the error message in

figure 1. This message suggests a deviant effect on an

ArrayList instance, where an exception is thrown by an

1http://gefdemo.tigris.org/
2http://gef.tigris.org/

Application specific Classes

Framework Classes

Figure 2. Class Diagram of Example Application

attempt to get an item from this instance which has already

been empty.

Figure 2 shows a class diagram of this application.

Framework classes FigNode and FigEdge represent

graph nodes and graph edges, respectively. Application

specific classes 3 AssocNode and AssocEdge implement

nodes and edges of UML n-ary associations by extending

FigNode and FigEdge, respectively.

The framework specifies dispose() as a hot spot which

represents a disposal process of a graph element. Each

of the above framework classes implements dispose()
to perform an internal disposal process. The application

specific classes override dispose() to implement appli-

cation specific disposal features. The overriding applica-

tion methods invoke the overridden framework methods by

super.dispose() in order to execute the framework

disposal procedures. (See the pseudo code in figure 2.) As

a result, a disposal process of an association node or an

association edge includes nested inversion/re-inversion of

controls.

IV. UNDERSTANDING DEVIANT EFFECTS AS FEATURE

INTERACTIONS

Maintainers need a support in detecting an application

method which unexpectedly triggers a deviant effect result-

ing in a feature interaction. Such detection is the first step

to detecting the deviant code which is responsible for the

deviant effect, we believe. For this purpose, our approach

aims at helping maintainers guess the trigger of a deviant

effect, and at concisely visualizing the internal behavior of

the guessed method in terms of object references.

We assume that maintainers understand behaviors of

exposed framework methods in an abstract fashion.

In our deviant effect case, we know that method

FigNode.dispose() disposes a graph node and its

3We abbreviate the original class names for simplicity.

714

�������	
��	
�
�
�
���	��

���������
����	

��

�

�������	
�
�
�
���	��

���	
�
�
�
���	��

��
�����

�

������
�
���������!
��
�
���������!
��

�
�
���	��

���

�

"�#�����

�$�

��!�"%%��$�

����
�%&�%
��

�

��'�����!$�

�"%%��$�

����
�%&�%
��

�

"�(���"%%��)
!
�"%%�)
!
�
���
�%&�%
��

�

���*�����!$�

�"%%�$�

����

�
�
��

�

���������!)
!
�"%%��)
!
�
���

�
�
��

�

���������!$�

�"%%�$�

�����
	�+
��!)
!
��

�

,������"���-.�%��"���-.�%��/�����
	�+
��

�

,��#���"���-.�%��"���-.�%��/������%�0
	�+
��

�

�1��"���-.�%��/����%�2
�344 *�����.��
�##�

5

5

5

5

5

5

,�6���"���-.�%��"���-.�%��/����!
���

�

,�7���"���-.�%��"���-.�%��/����0��!
�8
�9��

�

�*���8��:���

;<=�<�>�=�
%);�
&���������.��
�'#7

5

5

5

5

5

[application]

[framework]

Assignment to instance variable [size]
causes throwing an exception.

[framework]

(unexpected invocation)

Figure 3. Invocation Tree

edges attached to the node, for example. We also assume

a supporting tool for interactive program trace analysis. In

this paper, we rely on a prototype tool built on our byte code

instrumentation library [8]. Our prototype tool enables query

on actions in a program trace, and dependency analysis

among actions.

We introduce two kinds of visualization of a deviant

effect. The first kind of visualization illustrates a method

invocation tree participating in a deviant effect so that main-

tainers can find unexpected re-inversion of control which

triggers the deviant effect. The second kind of visualization

concisely illustrates how methods in the re-inversion triggers

this deviant effect as a feature interaction. Figure 3 and

figure 4 illustrate an invocation tree of the deviant effect

example in section III, and the triggering process of a

resulting feature interaction, respectively.

A shared object, which plays a similar role to environment

object in an environment interaction [4], becomes the key to

our visualization. We call such a shared object in a deviant

effect, the coupling point of this deviant effect. Maintainers

are responsible for specifying the coupling point of a deviant

effect. Maintainers should also specify an action which

shows an erroneous state brought by this deviant effect. In

our example, the ArrayList instance is specified as the

coupling point, and the exception throwing action is also

specified.

The invocation tree in figure 3 is derived from the cou-

pling point and the exception throwing action. The coupling

point, which is the ArrayList instance, is denoted by

#CP in this tree. The exception throwing action is assigned

F[5] : FigNode[n].dispose() J[6]: ArrayList[#CP].get ()

A[9]: AssocEdge [e1].dispose()

F[11]: FigEdge[e3].delete()

n

e1n#CP

e3n#CP #CP

(state set)

(state reference)

AssocNode n;
AssocEdge e1, e3;
ArrayList #CP; // Coupling Point.

[feature interaction]

Framework

Application

Specific Part

A[9]

F[5]
Framework

Application

Specific Part

Figure 4. Feature Interaction

a unique ID [0]. By dependency analysis, we obtain action

[8] which set a state of the coupling point, which causes the

exception. The tree is obtained as the minimum invocation

tree under which actions 0 and 8 are executed.

Each invocation expression has a signature with a unique

ID number such as A[9]. It also has the name of the class

that defines the method, the method receiver with its class

name, and the method name. Signatures A, F, and J denote

an application method, a framework method, and a Java

library method, respectively. These signatures are necessary

to grasp inversion/re-inversion of controls in an invocation

tree.

Action [8] denotes assignment of size, which is an

instance variable of the ArrayList instance. The assigned

value 0 indicates that the ArrayList instance becomes

empty, which brings the exception throwing action [0]. In

this way, this figure illustrates the cause and the result of

the deviant effect in the invocation tree. This cause-result

relationship between actions [8] and [0] can be obtained

by dependency analysis in the program trace.

Then, let’s examine the re-inversion of control under

which the above assignment action is executed. The as-

sociation node (node) and its edges (e1 and e3) in

figure 1 appear as method receivers. Note that method

FigEdge.delete() (F[11]) is invoked on e3, which is

a sibling of e1, under AssocEdge.dispose() invoked

on edge e1 (A[9]). We did not expect that disposal of

e1 is accompanied by deletion of e3. We can guess that

application method A[9] might trigger the deviant effect.

Figure 4 puts focuses on the suspicious re-inversion of

control, and the invocation context where the exception

is thrown. It illustrates cross-border method invocations

between the application specific part and the framework,

and cross border sequences of object reference via instance

variables which bring the coupling point for setting and ref-

715

erencing its state. This result is derived from the specifying

method invocations F[5], A[9] and the coupling point by

a partially manual visualization process.

This figure concisely illustrates at its upper side that

application method invocation A[9] is the trigger of the

deviant effect, whose result manifests itself in framework

method F[5]. We can see that method F[5] fails because

it invokes A[9]. Method invocation F[11] and J[6] are

shown to indicate where the state of the coupling point has

been set and the resulting exception is thrown, respectively.

At the lower side of figure 4, sequences of instance

variable references to obtain the coupling point (#CP) are

shown in an abstract fashion. The reference actions in A[9]
and F[5] are surrounded by rounded rectangles. We can see

that in method A[9] edge e1 obtains e3 through its node

(n) to invokes FigEdge.delete(). It shows how A[9]
triggers the feature interaction. We must examine the source

code why this method does it.

By examining the source code, it is known that method

AssocEdge.dispose() removes sibling edges of its

receiver when just two siblings are left by disposal of its

receiver. It is for replacing the current presentation of an

n-ary association to that of a binary association. In the case

of section III, the replacement occurred at the disposal of

e1
Note that method AssocEdge.dispose() works well

as long as it is not invoked in FigNode.dispose().

Therefore, we decided not to change the implementa-

tion of AssocEdge.dispose() but that of A[5]
ModelNodeFig.dispose() which invokes F[5]. We

changed the implementation so that all edges are deleted

before invocation of F[5]. This new implementation pre-

vents the problematic combination of F[5] and A[9], and

thus works well.

V. DISCUSSION

The illustration in figure 4 concisely shows that

AssocNode.dispose() triggers the feature interaction

by invoking delete() on e3 which has been obtained

through e1 and n. In other words, this illustration explains

’where and how’ the feature interaction has been formed. We

had to examine the source code for further understanding:

(1) why AssocNode.dispose() did it, and (2) where

the deviant code, which is responsible for this feature

interaction, is implemented. For understanding such details

without source code examination, we need to enhance our

behavioral model of invoked methods and our supporting

dynamic analysis technique.

At this time, we need a partially manual process in

visualizing a deviant effect due to a limitation of the current

implementation. Our prototype tool also lacks implemen-

tation for maintainers to select objects and methods in

section IV interactively. In future we will implement GUIs

to examine a program trace interactively, and to create a

diagram to visualize its result automatically.

VI. CONCLUSION

In this paper we proposed an approach to visualizing a

kind of side effect in a framework application, which we

call a deviant effect, as a feature interaction. We applied

our approach to a deviant effect in a practical framework

application, and found where and how the feature interaction

had been formed. This information helped us decide witch

part in the source code should be corrected.

We are now on the way to establishing a tool support

to interactively visualize deviant effects as feature interac-

tions. We will evaluate the feasibility and usefulness of our

approach by applying it to other deviant effect examples.

ACKNOWLEDGMENTS

We are deeply grateful for useful discussions with Naoya

Nitta, Masahiro Nakajima, and Professor Norihiro Hagita.

This work was partially supported by MEXT/JSPS KAK-

ENHI [Grant-in-Aid for Challenging Exploratory Research

(No.23650016), Scientific Research (C) (No.24500079), Sci-

entific Research (B) (No.23300009)], and Kansai Research

Foundation for technology promotion.

REFERENCES

[1] R. E. Johnson and B. Foote, “Designing reusable classes,”

Journal of Object-Oriented Programming, June/July 1988.

[2] S. Sparks, K. Benner, and C. Faris, “Managing object-oriented

framework reuse,” IEEE Computer, vol. 29, no. 9, pp. 52–61,

1996.

[3] M. Monperrus, M. Bruch, and M. Mezini, “Detecting missing

method calls in object-oriented software,” in ECOOP, 2010,

pp. 2–25.

[4] M. Nakamura, H. Igaki, and K. ichi Matumoto, “Feature inter-

actions in inegrated services of networked home appliances,”

in Feature Interactions in Telecommunications and Software
Systems, 2005, pp. 236–251.

[5] M. Wilson, M. Kolberg, and E. H. Magill, “Considering side

effects in service interactions in home automation - an online
approach,” in ICFI, 2007, pp. 172–187.

[6] A. Lienhard, Dynamic Object Flow Analysis. Lulu.com, 2008.

[7] T. Wang and A. Roychoudhury, “Using compressed bytecode

traces for slicing java programs,” in International Conference
on Software Engineering. IEEE, 2004, pp. 512–521.

[8] I. Kume and E. Shibayama, “Feature interactions in object-

oriented effect systems from a viewpoint of program compre-

hension,” in International Conference on Feature Interactions,
2009.

716

