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Abstract—Learning how to use application frameworks effec-
tively becomes important in their widespread use in software
development. Learning frameworks is often difficult because of
lack of their documentation and their complexity. In order to
help framework learning, we propose a behavioral model, called
feature component model, which abstracts internal behaviors of
framework applications in terms of their behavioral characteris-
tics such as inversion of controls. We apply our behavioral model
to an example misuse of a practical framework developed by a
third party in order to show its practical usefulness.

Keywords—application frameworks; framework learning; fea-
ture model; feature interactions; program comprehension;

I. INTRODUCTION

Learning how to use application frameworks effectively
becomes important because of their widespread use in software
development. Many framework products are deployed without
proper documentation about their correct use. Therefore their
users, application developers, must often learn their correct use
from the program code of example applications [1].

In order for application developers to use a framework
correctly, they must learn how to invoke methods in the

framework’s API, which we call API methods, in order to
implement application specific features as well as the design
of the framework [2]. Usually such method invocations are
tangled and are scattered in an application specific code, and
thus it is difficult to identify which invocations implement a
feature. A static analysis [3] and a dynamic analysis [4] are
proposed in order to solve this problem.

These existing approaches suit well if maintainers don’t
have to understand what invoked methods do inside of their
framework applications. However, in real software mainte-
nance tasks, such a kind of program comprehension is often
required even if a correct way of API method invocations are
known [3], [2]. A new approach is necessary for understanding
internal behaviors of framework applications. A proper abstrac-
tion is the key to success, we believe.

This paper proposes a behavioral model, called feature
component model, which abstracts complex internal behavior
in executing a particular feature. A feature component model
represents behavioral dependencies among method invocations

in terms of method parameters, which are method receivers
and arguments, and runtime states accessed via objects.

In this paper we introduce a software maintenance case
which we have resolved a side effect caused by a misuse of a
practical framework developed by a third party. In our previous
study[5] we have shown that the side effect can be thought

as a feature interaction. A feature interaction is a situation
that features each of which works correctly by itself cause an
unexpected result by their combination [6], [7].

In the previous study, we were required to examine the
source code of the framework application in order to resolve
the side effect. Our feature component model originally aims
at supporting such source code examination for framework
applications. We will evaluate our approach by applying it to
the source code examination task.

The rest of this paper is organized as follows: We first
explain concepts and terms of framework applications in
section II. Next we explain the example of framework misuse
that results in the side effect in section III. In section IV
we introduce our feature model and apply it to the misuse
example. We evaluate our model in section V. We explain
related work in section VI, and discuss our future work in
section VII. Finally, we conclude in section VIII.

II. PRELIMINARIES

An application framework is a software product which
provides a reusable design and an implementation for appli-
cations in a particular domain [8]. An application built on a
framework consists of the classes in the framework and the
classes added to implement application specific features. We

call the former classes framework classes and the latter appli-
cation specific classes. We call the methods implemented in

framework classes framework methods, and those implemented

in application specific classes application specific methods.

A framework is thought to “provide domain-specific con-
cepts in a particular domain, which are generic units of
functionality” [2]. Framework classes that represent concepts

of an application domain by API methods are called the core
classes [10]. Core classes include so called hot spots from
which framework concepts are extended by inheritance.

In general, a feature is defined as “a realized functional

requirement of a system”[9]. A feature of a framework applica-
tion is defined as an observable behavior which is implemented
by extending framework concepts and by invoking framework
API methods.
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Deleting the node of the 3-ary Association causes an exception.
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Fig. 1. Exception at Deleting N-Ary UML Association

Application specific methods which override the methods
of hot spots are lexically referenced as the overridden methods
and are invoked in framework methods. Pree[11] named such
invoking framework methods template methods and referenced

methods hook methods. This invocation style is a part of so

called inversion of control [12], an execution style specific to
framework applications.

In building an application on a practical framework, ap-
plication developers must implement method invocations of
core classes correctly. Such invocations from the application
specific part to the framework is necessary for various reasons
including initializing some concepts, setting up of inversion
of controls, or notification of state change on some objects
under management of the framework, etc. In this paper, we call

such invocations re-inversion of controls. Existing approaches
[4], [3], [1] aims at learning how to implement re-inversion
of controls from the source code of sample application in
the absence of proper documentation. Our approach, on the
other hand, aims at what such re-inversion of controls do in
executing a feature.

III. EXAMPLE OF FRAMEWORK MISUSE

GEF(Graph Editing Framework)1 is a practical framework
for graph editors. GEF is deployed as an open source Java
program with an example application, which is a UML diagram
editor. GEF implements graph nodes and edges as general
graph elements as well as their related concepts such as
deletion of a graph node. The example application implements
nodes and edges of UML n-ary Associations by extending the
graph nodes and edges, respectively, as well as their related
features such as deletion of a UML n-ary Association.

Figure 2 shows the architecture of this example application.
Two hot spot classes FigNode and FigEdge are shown with

1http://gef.tigris.org/

Application specific Classes

Framework Classes

Fig. 2. Architecture of Framework Application

the pseudo code of their methods at the upper side of this
figure. At the lower side of this figure, two application spe-

cific classes AssocNode and AssocEdge 2, which inherits
FigNode and FigEdge respectively, are shown. Framework
classes FigNode and FigEdge represents nodes and edges
of a general graph structure, respectively. Their application
specific subclasses AssocNode and AssocEdge implements
nodes and edges of n-ary UML Associations, respectively.

Methods named dispose() of FigNode and FigEdge
implement concepts to delete a graph node and a graph edge
respectively. Any application must invoke dispose() on the
deleted element, if it tries to delete a graph node or a graph
edge. Such invocation is necessary for the deleted element to
disappear visually.

In the example application, the application specific classes
AssocNode and AssocEdge override dispose() of their
superclasses in order to implement deletion feature specific to
UML Association nodes and edges. The overriding methods in-
voke their overridden dispose() by super.dispose()
for the rule mentioned above. At runtime the overriding
dispose() methods, which are referenced lexically by some
template methods, are invoked as their hook methods. The in-
voked hook methods then invoke the overridden dispose().
As a result, deleting a n-ary UML Association node triggers an
inversion of control and its succeeding re-inversion of control
with respect to dispose().

This application throws an exception when deleting a 3-
ary UML Association. Figure 1 shows a user operation that
triggers the exception throwing. Here, three UML Classes are
connected by a 3-ary UML Association with one node (n) and

2Their real names are too long and are abbreviated for the simplicity of our

explanation.
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three edges. An exception is thrown when the node is selected
and DELETE key is pressed. The error message in figure 1
tells that there is an attempt to get an item from an empty list,
which suggests a side effect on the list object.

In our previous study [5], we proposed a dynamic anal-
ysis method to represent the above side effect as a feature
interaction between n-ary UML Association node deletion and
general graph edge deletion. However, when we resolved the
feature interaction, we had to examine the source code not
only of the example application but also its framework GEF.
In general, it is desirable for maintainers not to examine the
implementation details of frameworks. Therefore, we pursue
an approach that enables maintainers to understand internal
behaviors of invoked methods and their effects on others
without examining the implementation details of a framework.

IV. FEATURE COMPONENT MODEL

We propose a behavioral model called feature component
model that abstracts dependency among method invocations in
inversion/re-inversion of controls in terms of method param-
eters of invocations and runtime states changed by invoked
methods. Given a behavior of an inversion/re-inversion of
control, say C our feature component model aims at help
maintainers understand which inversion/re-inversion of con-
trols make C behave so.

As for our example in section III, we expect that its feature
component model shows which re-inversion of control triggers
the side effects according to a runtime state accessed through
an object passed as a method parameter. Maintainers should
obtain this observation without examining the implementation
details of the GEF framework.

For maintainers to obtain such a kind of observation
using a feature component models, we assume that concepts

and features have been located by existing feature location
techniques (e.g. [2], [13]). In our example, we assume that
maintainers understand the concepts and features implemented
by FigNode, FigEdge, AssocNode and AssocEdge as
we explained in section III.

A. Features and Feature Components

As we have seen in our example in section III, application
specific methods are often required to invoke API methods of
its framework. Such invocations are usually executed under
some inversion of controls. As a result, we often see nested
inversion/re-inversion of controls in a framework application
at runtime.

As for our example, figure 3 shows nested inversion/re-
inversion of controls in the process of attempting to delete the
3-ary UML Association node in figure 1. This figure shows
under the method invocation tree (1) an exception throwing
statement and (2) an update statement to make a list empty by
assignment of 0 to instance variable size. These statements
are surrounded by dotted yellow lines and assigned their
unique ID numbers (0 and 8).

Each of the invoked methods is assigned an alphabet
and a unique ID number. Alphabets F, A, and J represent
a framework method, an application specific method, and a
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Fig. 3. Invocation Context of Exception Throwing

Java library method3 respectively. Method invocation trees
in an inversion of control and a re-inversion of control are
surrounded by dotted lines in red and blue respectively.

We call a method that implements a feature or its concept,
and that is invoked at an inversion/re-inversion of control
feature method. Methods in an invocation tree are clustered
according to their belongings. Each invocation cluster, which is

called feature component has a feature method or a Java library
method at its top. Thus a method invocation tree is abstracted
as an invocation tree of runtime feature components, which
depicts inversion/re-inversion of controls in an execution.

In general, a runtime feature component contains many
statements such as conditional branch instructions and excep-
tion throwing statements. It also contains method invocation
trees under its feature method. Note that figure 3 contains the
exception throwing statement inside of the Java library class
ArrayList but not the conditional branch instruction which
decides to throw the exception.

All values referenced in a method execution are (1) created
inside of the method, (2) passed from another methods as
receivers, arguments , (3) obtained from objects as their
instance values, array components or return value of method
invocations on them, or (4) calculated or derived (e.g. via Java

3In order to avoid possible license problem, the bytecode of ArrayList

is replaced by that of another class with a different package name. Its

implementation is very similar to ArrayList. We obtained the substitute

class from Open JDK.
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tt instanceof operation) using other values4.

We call the above categorized values internal values,

method parameters, carried values, and derived values, respec-
tively. For a given derived value, we can reach a set of internal
values, method parameters, and carried values by going back
on its derivation process. A carried value can be obtained via
a class instance or an array, which we call carrier.

Carriers themselves are obtained as internal values, as
method parameters, or even as carried values. As a result, all
referenced objects are internal values or method parameters,
otherwise are obtained via these values. For a referenced
value, the method parameters from which the value is obtained
are called representative parameters. Note that an
object value has only one representative parameter.

B. Dependency Abstraction

A feature component model introduces three abstraction
levels of an execution of a framework application. First,
method invocations in a runtime feature component are ab-
stracted out. Second, statements in a runtime feature compo-
nents are abstracted out except for exception throwing, assign-
ment statements of instance variables and array components,
and conditional branches. Third, values referenced in a run-
time feature component are represented by their representative
parameters. Internal values are simply abstracted out.

As for instance variables and array components accessed
in a runtime feature component. their owners (class instances
and arrays) may be represented by their representative param-
eters. The same abstraction is applied to receivers of method
invocations with return values. According to this abstraction
about object values, assignment and reference statements are
represented as internal state updates via their representative,
and value obtainment from internal state via representative
parameters, respectively.

A feature component model represents a dependency rela-
tionship among runtime feature components. This dependency
can be derived from lower level dependency among statements
and values referenced by these statements. This lower level
dependency has an aspect similar to data/control dependency

[14] and aliases to objects [17].

C. Example Feature Model

Figure 4 shows diagrams5 that illustrate the runtime feature
components under F[5] in figure 3, and the dependency
among the runtime feature components in different levels of
details. Here, object n is passed to F[5], the root of the
whole invocation, as its only parameter. It is the instance of
AssocNode, whose deletion results in the exception throwing
in the example of section III.

The upper diagram shows the effect of application spe-
cific feature component A[9] which makes the exception
thrown. Actually A[9] invokes framework feature component

4For the simplicity of our discussion, we don’t deal with class variable

values.
5At this stage, we made these diagrams manually with the aid of a trace

analysis tool we have developed[5].
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Fig. 4. Example Feature Model

F[10-12], which makes an internal state transition from S0
to S1. Invocation of Java library method J[6-7] obtains a
value from the new state S1 via n. The state change was
caused by runtime feature component F[10-12] invoked
by A[9]. As a result, the application specific method A[9]
makes the side effects in the internal state via the invocation
of F[10-12].

The lower diagram in figure 4 and the diagram in fig-
ure 5 illustrate the inside details of A[9] and F[10-12],
respectively. The former diagram shows that A[9] does some
internal state update from S0 to S01 via n. Then it decides
to invoke F[10-12] based on the result of its own update,
which is obtained via n. The diagram in figure 5 shows that
F[10-12] decides internal state update from S01 to S1
based on the current state S01, which has been set by A[9].

The dependency derivation among runtime feature compo-
nents are supported by the rich data types of program traces
generated our trace analysis tool[5]. A generated trace records
not only method invocations but also their statements. It also
records all number values and objects with their appearances in
the recorded statements as well as their appearances as method
parameters or return values. Therefore, our tool covers not only
aliases to objects [17] but also references to number values.
A trace records the relationship among an statement and the
conditional branch that executes it if any.

522514514
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Fig. 5. Inside F[10-12]

Given a value (either a number value or an object) refer-
enced by a conditional branch, our tool can show the reference
record from its creation to the current reference. From the
reference record of the value, we can detect all statements that
participate in the process to bring the value to the conditional
branch. In other words, we can obtain a sequence of statements
that makes the decision by the conditional branch. We call
such statements the decision makers of the conditional
branch.

A dependency relationship among runtime feature com-
ponents is derived from the conditional branches and their
decision makers, while the conditional branches are grouped
and most of their decision makers are abstracted out.

At the construction of a feature component model, main-
tainers are required to select one or more feature method in-
vocations as the subject of the model construction. By default,
the method parameters of the selected top-level invocations are
specified as the representative parameters of the constructed
model.

V. EVALUATION

Our feature component model well abstracts complex ex-
ecution of framework applications in terms of feature compo-
nents and their dependency relationship. We will evaluate the
case study of our approach explained in section IV-C from the
viewpoints of its simplicity and usefulness.

As we saw in figure 4 and figure 5 the complex invo-
cation structure under F[5] (figure 3) are well simplified
as three two framework runtime feature components (F[5]
and F[10-12]), one application specific runtime feature
component (A[9]), and an invocation tree of Java library
method J[6-7].

The whole invocation tree of F[5] contains so many
actions and complex control structure. In addition to them,
number values and objects are references. These objects are
themselves work as carriers and/or carried values, resulting in
too complex control/data dependency. The feature component
model contains only one object (the AssocNode instance n)
and a number value 1, which appear as the method parameters
of F[5]. Only three grouped conditional branches and two
abstracted forms of state updates are contained.

The simplicity about the dependency among runtime fea-
ture components is partially due to the selection of the actions

and value references which participate in the exception throw-
ing (denoted as [0]). Grouping of conditional branches and
value representation by representative parameters contribute
crucially to the simplicity.

The feature component model of our example illustrates
the dependency among the feature components at a glance.
More precisely to say, it illustrates which values and internal
states the feature components relies on for their decision at
runtime. It also illustrates who made them their decision via
the referenced values and states. In this way, maintainers can
grasp ’Who makes the decision?’ at a glance.

Let’s examine the internal behavior of J[6-7] which
decides to throw the exception. As for this decision, a number
value 1 and a state S1 is referenced. The former is created
internally in F[5] 6 and passed to J[6-7] as an invocation
argument. This internal creation is decided by F[5] itself.
Therefore, if we trust the GEF, we should trust the argument
value.

As for the state S1, it is set by framework feature com-
ponent F[10-12] directly. However, as we can see from the
lower diagram in figure 4 and another in figure 5, the decision
was made by application specific feature component A[9] via
its state change from S0 to S01. The decision by F[10-12]
is solely due to this state change, and thus A[9] is responsible
for the state change by F[10-12].

The above observation makes a good suggestion about
where maintainers should start their source code examination.
Clearly, they should start at A[9], method dispose() of
AssocNode which override the framework method defined
in FigNode. As we explain precisely in our previous work
[5], it is actually a useful starting point for efficient resolution
of a framework misuse that causes the side effect.

Although our case study belongs to a framework misuse
problem [5], the most important point for its solution is the
support for program understanding about the internal behav-
ior of the framework application. Such a kind of program
understanding about internal behaviors hidden under method
invocations is beyond the scope of existing approaches [2], [4],
[3] which put their focus on analysis on method invocations
with related to re-inversion of controls.

VI. RELATED WORK

Tyler and Soundarajan propose a test method to check
the timing of inversion of control, which is abstracted out in
the code of frameworks[15]. Heydarnoori et al. [4] propose
a dynamic analysis approach to construct a ’template’ of
framework method invocations to implement a framework
concept. They evaluate their approach by the usefulness of
constructed templates in program understanding [2].

Monperrus et al. [3] propose a combination of static analy-
sis and statistics in order to cope with the ’missing method call’
problem, a kind of framework misuse where method invocation
necessary for correct re-inversion of control is missed. Their
method deal with only method invocations from an application
specific part to its framework only. They noted the importance

6Note that its internal creation is abstracted out.
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of program understanding in a maintenance task which is
beyond the scope of their approach.

Apart from framework applications, dependency in object-
oriented programs is a main subject of many dynamic analysis
approaches [16], [17], [18]. The analysis target of the approach
by Salah and Mancoridis [16] is the dependency derived from
object creation and reference. Dynamic object flow analysis
by Lienhard and et al. [17] extend the dependency including
object references as method parameters and instance variable
values. The approach by Wang and Roychoudhury [18] uses
data dependency to divide a long trace into phases.

A feature interaction is a situation that a combination
of features, each of which works correctly, results in an
unexpected result. Feature interactions are originally studied
in the area of telecommunication or Web applications systems
[6], [7]. The side effect example in section III can be thought
as a feature interaction between a feature of node deletion and
an extended feature of edge deletion [6], [7].

VII. FUTURE WORK

At this stage, the process of dependency abstraction of a
feature component model includes a partially manual task. We
have not implemented visualization of a constructed model
as diagrams. Maintainers’ interaction in model construction is
necessary for selecting method invocation trees under analysis,
representative parameters, and etc. We implement the lacking
functions on the trace analysis tool we have developed [5].
At the same time, we will develop a general method to use
the tool for efficiently constructing models which are easy to
understand, and provide useful information for maintainers.

VIII. CONCLUSION

In this paper we proposed a behavioral model, called

feature component model, that aims at supporting framework
users. Our feature component model simplifies a complex

execution of a framework application in terms of feature
components, which are abstraction of inversion/re-inversion
of controls, and their mutual dependency. We demonstrated
the usefulness of our approach by applying it to a case study
of resolving a side effect, which normally requires time and
effort.
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