
International Journal of Pervasive Computing and Communications
KULOCS: unified locating service for efficient development of location-based
applications
Hiroki Takatsuka Seiki Tokunaga Sachio Saiki Shinsuke Matsumoto Masahide Nakamura

Article information:
To cite this document:
Hiroki Takatsuka Seiki Tokunaga Sachio Saiki Shinsuke Matsumoto Masahide Nakamura ,
(2016),"KULOCS: unified locating service for efficient development of location-based applications",
International Journal of Pervasive Computing and Communications, Vol. 12 Iss 1 pp. 154 - 172
Permanent link to this document:
http://dx.doi.org/10.1108/IJPCC-01-2016-0004

Downloaded on: 10 May 2016, At: 16:39 (PT)
References: this document contains references to 11 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 26 times since 2016*

Users who downloaded this article also downloaded:
(2016),"MOONACS: a mobile on-/offline NFC-based physical access control system",
International Journal of Pervasive Computing and Communications, Vol. 12 Iss 1 pp. 2-22 http://
dx.doi.org/10.1108/IJPCC-01-2016-0012
(2016),"WIF4InL: Web-based integration framework for Indoor location", International Journal
of Pervasive Computing and Communications, Vol. 12 Iss 1 pp. 49-65 http://dx.doi.org/10.1108/
IJPCC-01-2016-0009
(2016),"A method for controlling crowd flow by changing recommender information on navigation
application", International Journal of Pervasive Computing and Communications, Vol. 12 Iss 1 pp.
87-106 http://dx.doi.org/10.1108/IJPCC-01-2016-0007

Access to this document was granted through an Emerald subscription provided by emerald-
srm:511109 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://dx.doi.org/10.1108/IJPCC-01-2016-0004

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

KULOCS: unified locating service
for efficient development of
location-based applications

Hiroki Takatsuka, Seiki Tokunaga, Sachio Saiki,
Shinsuke Matsumoto and Masahide Nakamura

Graduate School of System Informatics, Kobe University, Kobe, Japan

Abstract
Purpose – The purpose of this paper is to develop a facade for seamlessly using locating services and
enabling easy development of an application with indoor and outdoor location information without
being aware of the difference of individual services. To achieve this purpose, in this paper, a unified
locating service, called KULOCS (Kobe-University Unified LOCating Service), which horizontally
integrates the heterogeneous locating services, is proposed.
Design/methodology/approach – By focusing on technology-independent elements [when], [where]
and [who] in location queries, KULOCS integrates data and operations of the existing locating services.
In the data integration, a method where the time representation, the locations and the namespace are
consolidated by the Unix time, the location labels and the alias table, respectively, is proposed. Based on
the possible combinations of the three elements, an application-neutral application programming
interface (API) for the operation integration is derived.
Findings – Using KULOCS, various practical services are enabled. In addition, the experimental
evaluation shows the practical feasibility by comparing cases with or without KULOCS. The result
shows that KULOCS reduces the effort of application development, especially when the number of
locating services becomes large.
Originality/value – KULOCS works as a seamless facade with the underlying locating services, the
users and applications consume location information easily and efficiently, without knowing concrete
services actually locating target objects.

Keywords Web services, Location information, Locating service, Location-aware,
Positioning system

Paper type Research paper

1. Introduction
Smart combination of internet of things (IoT) (Vermesan et al., 2011), positioning
systems and cloud services enables a sophisticated platform to acquire and manage
locations of mobile users and objects. Nowadays, every smartphone is equipped with
global positioning system (GPS). Also, various GPS modules for IoT have appeared on
the market (e.g. OriginGPS and TinyGPS). The latest indoor positioning systems (IPS)
can locate users even inside buildings or underground, where GPS cannot cover. The
enabling technologies of IPS include Wi-Fi (e.g. Skyhook[1]), Bluetooth beacons (Kohne
and Sieck, 2014), radio-frequency identification (RFID) (Ting et al., 2011), pedestrian

This research was partially supported by the Japan Ministry of Education, Science, Sports and
Culture [Grant-in-Aid for Scientific Research (B) (No.26280115, No.15H02701), Young Scientists
(B) (No.26730155) and Challenging Exploratory Research (15K12020)].

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1742-7371.htm

IJPCC
12,1

154

Received 7 September 2015
Revised 6 October 2015
Accepted 1 February 2016

International Journal of Pervasive
Computing and Communications
Vol. 12 No. 1, 2016
pp. 154-172
© Emerald Group Publishing Limited
1742-7371
DOI 10.1108/IJPCC-01-2016-0004

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://dx.doi.org/10.1108/IJPCC-01-2016-0004

dead reckoning (Pratama et al., 2012) and indoor messaging system (IMES) (Manandhar
and Torimoto, 2011). Gathering such indoor/outdoor location information in the cloud
would create a great variety of location-based services and applications.

The location information gathered in the cloud should be provided as a service, so
that client applications can easily consume the locations based on standard Web service
protocols. We call such a cloud service as locating service in this paper. In fact, several
practical services have come in the market recently. They include Swarm[2],
Glympse[3], Google Maps application programming interfaces (APIs)[4], Pathshare[5],
Apple Family Sharing[6] and IndoorAtlas[7]. Although features and operation policies
vary from one service to another, the basic idea is to use the cloud for exchanging or
sharing location information acquired by a certain positioning system. Most services
provide Web-API for application developers.

In general, there is no compatibility among different locating services and API, as
they are individually developed and operated. Each service is tightly coupled with the
underlying positioning system. For example, Glympse assumes using GPS information
collected by smartphones, while IndoorAtlas uses magnetic field to locate the position
inside a building. Thus, Glympse cannot directly use the data of IndoorAtlas and vice
versa. To cover both indoor and outdoor locations, one may want to integrate these two
services. However, the lack of compatibility forces the application developer to use
different API, and to perform expensive data integration within the application.

Figure 1 shows the conventional architecture to integrate the existing locating
services. Let us assume an application, say “where-are-you?” with which a user A tries
to find location of another mobile user B. Suppose also that B is in either indoor or
outdoor space, and is located by a certain locating service. When A executes a query
“Where is B?” the application has to invoke all possible locating services to find B.
Although the query “Where is B?” is essentially simple, the application has to know how
to invoke API and interpret the result for every locating service. This makes the
application complex, low-performing and non-scalable.

Outdoor Locating Services Indoor Locating Services

Service Service Service Service Service Service

API Call

Data

GPS Beacon Wi-Fi

User

Figure 1.
Conventional

architecture to
integrate locating

services

155

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

To cope with the problem, in this paper, we propose a unified locating service, called
KULOCS (Kobe-University Unified LOCating Service). KULOCS horizontally integrates
the existing heterogeneous locating services, and provides an abstraction layer between
the applications and the locating services. To make location queries compatible among
many locating services, we design KULOCS with three technology-independent
elements [when], [where] and [who].

Based on the three elements, KULOCS integrates data and operations of the
heterogeneous locating services. In the data integration, we propose a method where
different representation of time, heterogeneous locations and different namespace of
users are consolidated by Unix time, location labels and alias table, respectively. The
location labels consist of local label and global label, which abstract concrete
coordinates of IPS and GPS, respectively. A KULOCS user queries every location by a
label, whereas KULOCS internally converts the label to a specific representation for
individual locating services.

For the operation integration, we propose KULOCS-API, which integrates
heterogeneous operations by possible combinations of [when], [where] and [who]. The
API is deployed as a Web service, so that applications on various platform can easily
consume KULOCS. For example, the query “Where is B?” of “where-are-you?” is simply
implemented by http://kulocs/where?user=B&time=now. For this, the
application need not know how B is located by which service. Thus, the application can
consume loction quite easily and efficiently.

In this paper, we also design and implement the proposed KULOCS as a Java Web
service. The current version supports the integration of the following locating services:
a GPS-based outdoor locating service and a BLE (Bluetooth Low Energy)-based indoor
locating service. On top of KULOCS implemented, we develop two application services.
The first service is Umbrella Reminder Service, which prompts a user to take an
umbrella when it is raining. This service uses KULOCS to evaluate a location context
“when a user leaves home”, is defined by the position of the user. The other service is
Stay Areas Visualization Service, which displays the history of areas where users have
visited on a given day.

To evaluate practical feasibility, we conduct the experiment, which compares
application development with KULOCS. Specifically, we implement two different
versions of the same application, where one is with KULOCS and another is without.
The two versions are examined from the perspective of the lines of code and
response time. We also conduct the performance evaluation of KULOCS-API, where
different methods to obtain the same information (e.g. “Is user tktk in Kobe
University now?”) are compared. Finally, we investigate other promising services
that KULOCS makes feasible.

The original version of this paper has been published as a conference paper
accepted in the international conference iiWAS2015 (Takatsuka et al., 2015). Based
on comments and discussion we received in the conference, we extensively revise
the paper for this journal paper. The most significant update is the addition of
Section 6, where we discuss pragmatic issues expected when providing KULOCS as
a practical service. They include stakeholders, authentication, security and privacy
issues. We believe that those changes will help readers fully understand the
integrating locating services, and develop similar systems, efficiently.

IJPCC
12,1

156

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://kulocs/where?user=B&time=now

2. KULOCS (Kobe-University Unified LOCating Service)
2.1 Overview
In this section, we explain the basic principles of KULOCS (Kobe-University Unified
LOCating Service). Figure 2 shows the architecture. KULOCS works as a facade of the
heterogeneous locating services. It provides the unified interface (KULOCS-API) for a
user, by which the user can access to different locating services seamlessly, without
being aware of the difference of individual services. Because KULOCS is an abstract
layer that integrates heterogeneous locating services, we have to achieve the following
issues:

• Data Integration: Individual locating services represent location information in
different ways. Hence, KULOCS must exploit unified location data representation
that is independent of any specific service or positioning system.

• Operation Integration: Individual locating services exhibit own operations in
terms of API, which vary from a service to another. KULOCS needs to integrate
them and provide generic API (i.e. KULOCS-API) to a user.

Our key idea to achieve the above integration is to focus the following
technology-independent elements, which are necessary for any service to locate an
object:

• When: Represents the date and time when the target object exists.
• Where: Represents the location where the target object exists.
• Who: Represents the identity of the target object.

Note that other interrogatives like how, what and why are not included because they
tend to be technology-oriented. KULOCS is designed to accept generic queries based on
possible combinations of the above three elements. KULOCS then translates the generic
query to service-specific queries for individual services.

KULOCS (Kobe-university Unified LOCating Service)

Outdoor Locating Services Indoor Locating Services

Service Service ServiceS i Service Service ServiceS

API Call Data

GPS Beacon Wi-Fi

User

Figure 2.
Architecture of

KULOCS

157

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

2.2 Data integration
We here describe how to integrate location data of heterogeneous locating services. To
help to understand, let us consider the following data records.

• L1: {time:2015-06-21T08:50:12�0900, user:tktk, location: {latitude:35.4313,
longitude:135.147, address:“1-1 Rokkodai Nada Kobe Japan”}}

• L2: Takatsuka is now in (3.0, 4.5, 0.5) from entrance of ShopABC.
• L3: Mon Jun 29 15:49:34 CEST 2015, Object123, KobeUniv.Lab.S101

L1 describes a location of user tktk by a geographic coordinate, where we imagine the
data are taken by a GPS-based service. L2 would be obtained by a fine-resolution IPS,
which represents the current position of Takatsuka by 3D offset from a reference point.
L3 describes that Object123 is in room S101 of our laboratory, which may be located by
a certain zone-based IPS. Note that L1, L2 and L3 use different time representations (and
time zones).

To integrate these heterogeneous location data, we consider the elements [when],
[where] and [who]. As for [when], it is easy to introduce the common representation with
the Unix timestamp, which is the number of seconds elapsed from January 1, 1970 at
UTC. KULOCS deals with any time information by the Unix time.

As for [where], there are many ways and different granularity levels to represent a
location. The GPS coordinate looks for generic representation that can describe exact
locations. However, it is too detailed for a user to specify it as a parameter of location
queries. Also, the GPS coordinate is not useful for indoor locations, which are often
relative coordinates from the reference point.

To compromise different granularity levels and various use cases, we propose to
represent every location by a location label. A location label is a unique string that is
bound for a location information. Just for convenience, we introduce two kinds of labels:
local label and global label. The local label is a string, written in position@building,
to be used to represent an indoor location. In the string, building represents the ID of
a building, and position represents the name of the position in the building. For
example, a local label casher@ShopABC is used to refer to the location in L2. On the
other hand, the global label is a string without @, to be used to represent an outdoor
location. For example, we can bind a global label kobe_univ to the location in L1.

Thus, KULOCS represents every location by a location label. It internally maintains
binding between a label and actual location information with the location table shown in
Table I. We assume that the location labels are registered in the table by users in a
crowd-sourcing fashion, and shared among the users.

Finally, as for [who], because every locating service has a different namespace for
users and objects, KULOCS has an alias table, which consolidates different IDs for the
same user (or object) into a single unique ID. For example, let us recall L1, L2 and L3, and

Table I.
Location table of
KULOCS

Location label (PK) Service Actual location information

kobe_univ gps01 {latitude:35.4313, longitude:135.147, address:”1-1
Rokkodai Nada Kobe Japan”}

casher@ShopABC ips01 ShopABC, (3.0, 4.5, 0.5)
S101@kobe_univ ips02 KobeUniv.Lab.S101

IJPCC
12,1

158

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

suppose that all of tktk in L1, Takatsuka in L2 and Object123 in L3 refer to the same
person “hiroki”. Then, the alias table contains an element: {“id”:“hiroki”,
“alias”:{“L1”:“tktk”,“L2”:“Takatsuka”, “L3”:“Object123”}. With
this information, KULOCS converts the representative name hiroki into a real user ID
when querying each of locating services. The integration of IDs can be also implemented
with common identity services (e.g. OpenID[8]). However, it is beyond this paper’s scope.

Based on the above design principle, KULOCS unifies L1, L2 and L3 as shown in
Table II. Through KULOCS, the location data from any locating service are unified into
the abstract location data with [when], [where] and [who].

2.3 Operation integration
We then propose KULOCS-API, which integrates heterogeneous operations of the
existing locating services. Basically, KULOCS-API is an interface for querying KULOCS
about a location of a mobile user (or object). The way of the query must be
technology-neutral and independent of any specific locating services. Therefore, we
again focus on the elements of [when], [where] and [who].

According to the possible combinations of the three elements, we derived six
methods for KULOCS-API, as shown in Table III. For example, where(time, id) is
for asking [where] based on knowntime (i.e. [when]) andID (i.e. [who]). Thus, a user can
invoke where(NOW, B) to know “Where is B (now)?”. To achieve programmable
interoperability, we publish KULOCS-API as a Web service, and deploy it in a cloud. For
example, the method invocation where(NOW, B) can be performed in REST format
http://kulocs/where?time=NOW&id=B.

Once the method of KULOCS-API is invoked, KULOCS internally converts the
method invocation into an appropriate API call for each locating service (Figure 2). For
the purpose of the method conversion, KULOCS manages the service database. Figure 3
shows the model diagram of KULOCS which indicates relations of three entities, data
schemes and examples.

The service database has three entities: service, api and param. The service entity
manages master information of all the underlying locating services. The information
includes a name, an endpoint of the service, a type of the return value. In Figure 3, we can

Table II.
Data integration of

L1, L2 and L3

Data ID When/time Where/location Who/ID

L1 1434869412 kobe_univ hiroki
L2 1435592713 casher@ShopABC hiroki
L3 1435585774 S101@kobe_univ hiroki

Table III.
List of methods in

KULOCS-API

Method Description

when(location, id) Returns the latest time when the object is in the location
where(time, id) Returns the location where the object exists in the time
who(time, location) Returns all objects that exist at the location in the time
whenwhere(id) Returns a list of [time, location] where the given object exists
whenwho(location) Returns a list of [time, id] that exist in the given location
wherewho(time) Returns a list of [location, id] are located within the given time

159

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://kulocs/where?time=NOW&id=B

see that there are two locating services (LOCS4Geolocation, iBeaconLocator) registered.
For each service, the api entity manages the mapping from the six methods of
KULOCS-API to actual API in the service. In Figure 3, we can see that the where()
method is mapped into getLocation() for gps01 (i.e. LOCS4Geolocation). The param
entity manages the mapping and order of parameters within every method of
KULOCS-API and the ones within the actual API call. For example, we can see, in
Figure 3, that time and ID parameters of where(time, id) method are respectively
passed to time and user parameters of getLocation(user, time) of gps01. Thus,
the method can be converted.

Figure 4 shows a sequence diagram, where the user executes where(NOW, B) of
KULOCS-API. In this scenario, KULOCS first finds a service gps01 from the service DB,
and then identifies getLocation() API and its parameters’ user and time. Next,
KULOCS looks up the alias table to convert the ID of “B” into the local name “tktk”
within gps01. Next, it invokes getLocation() of LOCS4Geolocation service with tktk
and the current time, to locate tktk. Finally, the obtained location information is

service serviceId, serviceName, endpoint, returnType, description

serviceId, method, API, return, description

serviceId, method, param, realParam, pOrder, description

gps01, LOCS4Geolocation, http://locs4geo/service/, json, …
ips01, iBeaconLocator, http://ibeacon-locator/, xml, …

gps01, when, getTime, time, …
gps01, where, getLocation, location, ….

:
ips01, where, api/position, position, …

gps01, when, location, address, 2, …
gps01, when, id, user, 1, …
gps01, where, time, time, 2, …
gps01, where, id, user, 1, …

:

api

paramFigure 3.
Model diagram of
KULOCS service
database

service api param alias LOCS4GE
O

KULOCS-
API

where(NOW, B) getService()
gps01,

http://locs4geo/,
json

getApi (gps01,where)

getLocation, location

getParams(gps01, where)

id->user@arg1, time->time@arg2

getUser(B, gps01)

tktk

getLocation(tktk, 2015-06-30T12:34:56)

location: {latitude: 35.4313, longitude:135.147, address:"1-1 Rokkodai Nada Kobe Japan"}

kobe_univ

KULOCS Service DB
location

KULOCS Data Binding External Service

toLabel(gps01, {latitude:35.43, …})

kobe_univ

Figure 4.
Sequence diagram of
KULOCS-API, in
which where(NOW,
B) is executed

IJPCC
12,1

160

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

converted into a location label with the location table. Finally, the label kobe_univ is
returned to the user, as the answer of where(NOW, B). Similarly, KULOCS can invoke
any other locating service for where(NOW, B). However, the sequence is omitted due
to limited space.

3. System design and implementation
3.1 Detailed design
To implement KULOCS, we conduct an object-oriented design. Figure 5 shows the class
diagram. We explain the detail of each class as follows.

KULOCSController. KULOCSController class works as a facade of all the
underlying classes. It defines the six methods of KULOCS-API. Each method internally
accesses the related databases and services as explained in Section 2.3, and returns an
object of the corresponding result class. For instance, the where() method is executed
as shown in Figure 4, and the result is returned by an object of Where. As mentioned in
Section 2.3, KULOCSController is published as a Web service. Thus, every method
can be executed by Web service protocols (REST and SOAP), so that client applications
can use KULOCS from various kinds of platforms.

ThreeWs. ThreeWs class is an abstract class of the six result classes. It contains
common information used in KULOCS-API, including parameters of a given query,
error message and execution time. More specifically:

• message: an error message of API execution;
• timeQuery: a time parameter of the query;
• locationQuery: a location parameter of the query;
• idQuery: ID parameter of the query; and
• executionTime: an execution time of the API.

- message:String
- timeQuery:String
- locationQuery:String
- idQuery:String
- executionTime:Date

ThreeWs

+ ThreeWs()

- time:Date
- existence:boolean

When

+ When()

- localLabel:String
- globalLabel:String

Where

+ Where()

- objectidList:List<String>

Who

+ Who()

- objectList:
List<WhenWhereItem>

WhenWhere

+ WhenWhere()

- objectList:
List<WhenWhoItem>

WhenWho

+ WhenWho()

- existence:boolean
- time:Date
- objectid:String

WhenWhoItem

+ WhenWhoObject()

- objectList:
List<WhereWhoItem>

WhereWho

+ WhereWho()

- localLabel:String
- globalLabel:String
- objectid:String

WhereWhoItem

+ WhereWhoObject()

+ when()
+ where()
+ who()
+ whenWhere()
+ whenWho()
+ whereWho()

KULOCSController

1

*

1

*

- existence:boolean
- time:Date
- localLabel:String
- globalLabel:String

WhenWhereItem

+ WhenWhereObject()

1

*

KULOCS

Figure 5.
Class diagram of

KULOCS

161

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

When. When class is the result class of when(location, id). As the answer of the
query, the class contains the latest time (time), specifying when the object is in the given
location. Also, it has existence, indicating whether the given object is there now.
Clients of KULOCS-API typically ask if the target object is currently in the given
location. The existence attribute helps such clients to save the effort for parsing
time. In the current version, existence takes the true value if time is within 1 minute
from now.

• time: the latest time when the object is in the location; and
• existence: a flag indicating the object is currently there.

Where. Where class is the result class of where(time, id). As the answer of the
query, the class contains the location where the object exist(ed) in the given time. The
returned location is represented by localLabel or globalLabel.

• localLabel: an indoor location where the object exists in given time; and
• globalLabel: an outdoor location where the object exists in given time.

Who. Who class is the result class of who(time, location). As the answer of the
query, the class contains the list (objectidList) of IDs of all objects who exist(ed) in
the given time in the designated location.

• objectidList: a List of IDs of all objects which exist(ed) in the given time and
in the given location.

WhenWhere. WhenWhere class is the result class of whenwhere(id). As the answer of
the query, the class contains a list (objectList) of WhenWhereItem, representing a
history of when and where the given object has been.

WhenWho. WhenWho class is the result class of whenwho(location). As the
answer of the query, the class contains a list (objectList) of WhenWhoItem,
representing a history that when and who has existed in the given location.

WhereWho. WhereWho class is the result class of wherewho(time). As the
answer of the query, the class contains a list (objectList) of WhereWhoItem,
representing a snapshot of the entire locating services of where and who exist(ed) in
the given time.

3.2 Implementation
Based on the detailed design, we have implemented KULCOS. The total system
comprised around 4,000 lines of code, and the development effort was three
man-months. Technologies used for the implementation are as follows:

• Language: Java 1.7.0_85;
• Web server: Apache tomcat 7.0.39;
• Web service framework: Jersey 2.5.1;
• Backend database: MySQL 5.1.36; and
• Server spec: CentOS 6.4, dual-core CPU 2GHz, 4GB memory.

To show the practical feasibility of KULOCS, we have also implemented two locating
services: BLE Locating Service and GPS Locating Service.

IJPCC
12,1

162

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

Bluetooth Low Energy Locating Service. BLE (Kohne and Sieck, 2014) is a short-range
wireless communication technology, which can be used to detect the proximity of mobile
objects. By deploying multiple BLE devices (called beacons) within indoor space, it is
possible to implement an IPS based on the proximity. Our research group has been
developing such a BLE-based IPS using BLE-equipped tablets (as mobile clients) and
BLE hardware modules (as beacons). By wrapping the above IPS, we have developed a
locating service, which we call BLE Locating Service in this paper. The technologies
used for implementing the service are as follows:

• Mobile client: Google Nexus 7 (Android 5.0.2);
• Data collector: Android native application;
• BLE beacons: Aplix MyBeacon MB004 at-SR[9];
• Language: Java 1.7.0_85;
• Web server: Apache tomcat 7.0.39;
• Web service framework: Jersey 2.5.1;
• Response format: XML;
• Backend database: mySQL 5.1.36; and
• Server spec: CentOS 6.4, dual-core CPU 2GHz, 4GB memory.

The BLE Locating Service is integrated with KULOCS as one of the locating services.
GPS Locating Service. We have also implemented another locating service for

outdoor space, using GPS sensors of a smart phone. We call this service GPS Locating
Service in this paper. In the service, each mobile client (in outdoor space) periodically
uploads the current location obtained by GPS to the server. The server provides the
location data for authorized client applications via Web-API. The GPS Locating Service
has been implemented with the following technologies:

• Mobile client: SHARP AQUOS PHONE SERIE SHL22 (Android 4.2.2);
• Data collector: Android native application;
• Language: Java 1.7.0_85;
• Web server: Apache tomcat 7.0.39;
• Web service framework: Jersey 2.5.1;
• Response format: JSON;
• Backend database: MongoDB 2.4.5; and
• Server spec: CentOS 6.4, dual-core CPU 2GHz, 4GB memory.

Compared to the BLE Locating Service, we intentionally used different technologies for
response format and the backend database. This is to illustrate how KULOCS can
accommodate the heterogeneity. The GPS Locating Service is also integrated with
KULOCS as one of the locating services.

4. Developing application services with KULOCS
On top of KULOCS implemented in the previous section, we have developed two practical
application services: Umbrella Reminder Service and Stay Areas Visualization Service.

163

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

4.1 Umbrella Reminder Service
The Umbrella Reminder Service prompts a user, who is leaving home, to take an
umbrella when it is raining. In this service, KULOCS is used to evaluate the location
context (Abowd et al., 1991) that “a user is about to leave home”. The context is defined
by the fact that a user gets close to an entrance of a house, which is easily detected by
KULOCS-API, e.g. who(NOW, ENTRANCE@MYHOUSE) .

To bind some actions to the location context, we used RuCAS (Takatsuka et al., 2014),
which was developed in our previous work. RuCAS is a framework that creates
context-aware services using Web services. In RuCAS, every context-aware service is
defined as an ECA (Event–Condition–Action) rule such that “when an event occurs, if a
condition is satisfied, do designated actions”.

Thus, the Umbrella Reminder Service has been implemented with RuCAS and
KULOCS as follows:

• Event: A user is going to leave home (actually our laboratory). The context is
defined as a situation that somebody is at the entrance, detected by KULOCS.

• Condition: It is raining outside. The context is defined as a fact that a weather
forecast Web service indicates that it is rainy today.

• Action: Trigger a speech reminder “Do you have an umbrella?” using a
Text-to-Speech Web service.

Figure 6 shows a screenshot of the user interface of RuCAS, which displays the page of
a detailed ECA rule. The list in the left side of the page shows registered contexts and
actions for select. The pane in the right side represents a created ECA rule, Umbrella
Reminder Service.

Thus, the Umbrella Reminder Service implements a scenario that: when a user leave
home, if the weather of today is rainy, the system speaks to alert “Do you have an
umbrella?”.

Figure 6.
Screenshot of
Umbrella Reminder
Service

IJPCC
12,1

164

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0004&iName=master.img-023.jpg&w=343&h=174

4.2 Stay Areas Visualization Service
The Stay Areas Visualization Service is a Web service that displays the history of areas,
where selected users have visited on the specified day. It is implemented by
whenwhere() of KULOCS-API, JavaScript, HTML and CSS. Figure 7 shows a
screenshot of the service. The vertical axis indicates the hours and the horizontal axis
indicates the users. We can see in the screenshot that on July 31, 2015, the user tktk went
to his desk of his laboratory at 8:00 a.m. and worked until 12:00 p.m. Then, tktk went a
meal in the cafeteria at 12:00 p.m. and worked until 7:00 p.m. After eating dinner, tktk
went home. Similarly, another user horihori went to the izakaya, where he works
part-time, from 6:00 pm, and the user takatori worked until late after the dinner.

Note that the service can display the log of various locations seamlessly, regardless
that the locations are inside or outside. This is the great advantage of KULOCS that can
horizontally integrate heterogeneous locating services.

5. Experimental evaluation
5.1 Application development with or without KULOCS
To demonstrate the practical effectiveness, we conducted an experiment, where we
investigate two cases of application development. The one is with KULOCS, and the
other is with the conventional manual integration of locating services. Intuitively, the
experiment is to see the difference between Figures 1 and 2.

Figure 7.
Screenshot of Stay

Areas Visualization
Service

165

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-01-2016-0004&iName=master.img-024.jpg&w=299&h=268

In the experiment, we implement two versions of a Web application, either of which
returns the current location of a given user. The implementation language used for the
both versions is Node.js. The one version is implemented with the developed KULOCS,
whereas the other version directly uses the API of the BLE Locating Service and the GPS
Locating Service (see Section 3.2).

Table IV shows the lines of code and the response time of the applications. The
response time is the average time of ten executions. The two versions were executed in
the same condition that:

• the user queries the location of a user tktk [e.g. where(now, tktk)] of
KULOCS-API; and

• tktk is in kobe_univ and is located by the GPS Locating Service.

We can see in Table IV that using KULOCS reduces about 34 per cent of the code from
the conventional application. One may think that it is not a drastic reduction. This is,
however, justified by the fact that there were only two locating services in the
experiment (i.e. the BLE Locating Service and the GPS Locating Service). Thus, the
conventional integration did not become much complicated. If the number of locating
services becomes larger, the developer has to integrate heterogeneous API and data
format by himself, which requires more time and effort. In that case, the benefit of
KULOCS becomes much more significant.

In Table IV, we can see that KULOCS imposes small performance overhead
compared to the conventional application. However, according to the investigation, we
found that most of the response time is spent in the underlying locating services, and
that the overhead is so small that it cannot be a serious issue of the application execution.
Thus, we can see that by using KULOCS, a developer can implement location-based
applications efficiently without a performance problem.

5.2 Performance evaluation of KULOCS-API
As shown in Table III, KULOCS-API consists of six different methods. These six methods
can be used for different purposes. However, in some use cases, one can implement the same
feature with different methods. For instance, suppose that a developer wants to check a
context “tktk is in Kobe University now” in the application. Then, the developer can use any
of the six methods to implement it, which yields a design choice. Now our interest here is
which method should be chosen for the better implementation.

Table V compares the six methods, where each method is used to evaluate “tktk is in
Kobe University now”. The second column represents parameters necessary for each
method to locate tktk at Kobe University. The third column represents the total response
time for executing the corresponding method. The fourth and fifth columns represent
the response time spent in KULOCS and the locating services, respectively. Each value
of the response time is the average value for ten measurements.

Table IV.
Comparison of two
versions with
KULOCS and with
the conventional
integration

Used service Lines of code Response time (ms)

Individual locating services 53 273.9
KULOCS 35 289.2

IJPCC
12,1

166

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

In Table V, we can see that there is not much difference in response time among
when(), where() and who(), as well as among whenwhere(), whenwho() and
wherewho(). However, there is a big performance gap between the two groups. One
reason of the gap is that whenwhere() and wherewho() scan all the locating
services to extract the history of location data, which is quite time-consuming.
Moreover, whenwhere(), (whenwho() and wherewho() as well return a list of
objects, which imposes expensive data parsing on KULOCS.

Thus, when a developer has a design choice, the best way is to try to use when(),
where() or who() as much as possible. In the case of checking “tktk is in Kobe
University now”, using when() [or where()] is the good choice in the perspectives of
performance and intuition.

5.3 Applicability to practical services
To show further potential of KULOCS, here we try to develop ideas of other practical
services enabled by KULOCS:

• Time card service: This service provides a capability of a time card, which
automatically manages how long a user has been staying at a certain place. The
service can be implemented with when() of KULOCS-API. Typical use cases
include the attendance management of a company, car parking and unified
management of rental space by the hour (e.g. karaoke rooms).

• Seamless tracking service: This service displays user’s current location on a map
(e.g. Google Map) seamlessly, regardless of the location being indoor or outdoor.
This service can be implemented with where() of KULOCS-API. A user no
longer needs to switch among different maps for different locating services.

• Attendance checking service: This service allows a user to check who and how
many people are attending in a certain place. The service can be implemented with
who() of KULOCS-API. Typical use cases include counting participants in an
event and checking attendance in a college class.

• Guestbook service: This service automatically generates a guestbook recording of
who came when at a certain place. The service can be implemented with
whenwho() of KULOCS-API. Typical use cases include counting visitors to a
touristic place (e.g. shrine and temple) and checking guests in a ceremony (e.g.
wedding).

• Travel companion reviewing service: This service allows a user to recall who the
user traveled with. The service can be implemented with wherewho() of

Table V.
Response time of

KULOCS-API

API Parameters
Total

RT (ms)
RT of

KULOCS (ms)
RT of

LS (ms)

when() location�kobe_univ&id�tktk 34.5 10.4 24.1
where() time�now&id�tktk 24.4 11.6 12.8
who() time�now&location�kobe_univ 45.4 31.1 14.3
whenwhere() id�tktk 198.5 117.2 81.3
whenwho() location�kobe univ 201.7 11.0 190.7
wherewho() time�now 179.2 91.1 88.1

167

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

KULOCS-API. Reviewing the travel log with the companion information may
motivate the user to do better future travels. For instance, a user may think: “I
found that I did not travel much with my family recently. So I will spare more time
with my family for the next holiday”.

6. Discussion
6.1 Related work
Ficco et al. (2014) proposed a hybrid location system, which combines wireless
fingerprinting technologies for indoor positioning together with GPS-based positioning
for outdoor localization. As a user moves to different places, the system autonomously
switches to the best available positioning method supported by the mobile device and
the surrounding environment. This study mainly focuses on the switching mechanism
in the mobile clients. However, it does not cover how to integrate the existing locating
services and location data. Thus, the significant difference is that they try to integrate
different positioning systems within the client side, which heavily relies on the
capability of the mobile device. On the other hand, we try to integrate them within the
server side, which does not rely on any capability of clients.

Ahn and Nah (2010) proposed a Web service framework based on service-oriented
architecture, called LOCA (LOcation-based Context-Aware Web services) framework.
LOCA discovers available Web services based on client location information and
preference. Thus, a client can dynamically find, integrate and consume Web service
available in the current location. The difference from our approach is that LOCA
provides a location-based service discovery, while KULOCS provides a location query
portal for any location-based services. In this sense, LOCA can integrate KULOCS to
manage wider locations efficiently.

Christensen et al. (2015) proposed Searchlight Graph (SLG) and Searchlight
Continuous Query Processing Framework (CQPF). SLG is a directed graph representing
the topology of multiple locations (indoor and outdoor), where each location is
associated with mobile objects. Using CQPF with an SQL-like language, a user can
query the past, current or future location of a mobile object within the SLG. Their
approach of representing location as a point on the graph is similar to our thought of
using a location label in KULOCS. Compared to KULOCS, Searchlight allows more
detailed location queries with topology information (range, area, etc.). However, the
topology is limited within the SLG, and interoperability among different locating
services is not well considered. On the other hand, KULOCS does not currently support
any topology, as it is abstracted during the data integration. We consider it a tradeoff
between a framework compromising different location models and a framework
imposing special constraints for the location model. Indeed, it is interesting to consider
how to manage topological information within KULOCS, which will be left for our future
work.

6.2 Stakeholders around KULOCS
When putting KULOCS into practice, we have to clarify roles and positions of the
surrounding stakeholders. We here consider three types of stakeholders: provider,
developer and end-user. Figure 8 shows relationships among the three stakeholders and
KULOCS applications/services.

IJPCC
12,1

168

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

The provider is a stakeholder who actually provides KULOCS. Basically, KULOCS is
provided as a singleton service deployed on a cloud. The operation and maintenance of
KULOCS is the main role of the provider. In addition, the provider is responsible to
integrate the existing locating services. For every given locating service, the provider
connects the service to KULOCS by the proposed data and the operation integration
methods. More specifically, the provider registers new entries in the service DB, as well
as creates data binding definition of the new service. The provider may implement an
adapter, which converts a response format of Web-API into a format of KULOCS, if
necessary.

The developer is a stakeholder who implements location-based applications and
services using KULOCS. Thus, the developer is the direct user of KULOCS. Using
KULOCS-API, the developer can implement location-based application efficiently,
without knowing the details of individual locating services. Thus, the main goal of
KULOCS is to support the developers.

The end-user is a stakeholder who uses the location-based applications developed by
the developers. For each application, we basically assume that each location label is
registered by the developer of the application, and is shared with the end-users.
However, depending on the application, the developer should provide a location
registration feature, with which the end-users by themselves can register and share own
location labels.

To support efficient management of location labels, we are currently developing a
service, which provides API to help register of the location labels. To maintain the
uniqueness of the location label, we encourage using the location label as a primary key
in the location database. By doing so, KULOCS can easily reject a duplicated location
label during the location registration.

6.3 Authenticating existing locating services
KULOCS integrates the existing locating services, some of which may require user’s
login to access the location information. Therefore, we need to consider how to
authenticate these services. To cope with the challenge, we consider using OAuth
2.0[10], which provides an authentication method for Web services and resources.

KULOCS (Kobe-university Unified LOCating Service)

API Call Data

End-User

App.

Developer

Develop

Use

Locating Services

Provider

Integrate

App.

Figure 8.
Relationship among
KULOCS, provider,

users, developers and
applications

169

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

Figure 9 shows a sequence diagram of OAuth 2.0 with a location-based application
using KULOCS. In the sequence, the application first requests to execute KULOCS-API
(without an access token). Then, KULOCS redirects the request to an authentication
server of the existing locating service. The authentication server requires a user of the
application to login to authorize the resource access. After the successful authorization,
the authentication server redirects the application with an access token. Again, the
application executes the KULOCS-API with the access token. Using the token, KULOCS
executes the API of the locating service to access the location information. The resource
server of the locating service checks if the access token is valid, and returns the
requested location information to KULOCS. The information is converted via KULOCS
data integration, and finally returned to the application.

Thus, OAuth 2.0 can be used to authenticate the existing services, simply and
effectively.

6.4 Security and privacy issues
The security and privacy issues are also a challenging topic. KULOCS and the
location-based applications (e.g. the ones proposed in Section 5.3) make full use of
location information gathered from users. The location information of a user is personal
information, which might be abused by other users (e.g. theft, stalking). Therefore, for
every location-based application, it is important to carefully consider operation policies,
which strictly define how and by whom the location information is used for what.

Indeed, this is not a specific issue with KULOCS only, but also is seen in many other
social networking service (SNS)- and location-based services. Because KULOCS works
as an abstraction layer of the underlying locating services, the operation policies of
KULOCS must be derived from the operation policies of the underlying services.

Redirect to Auth. Server

Location-Based
Application

Execute API

Load login page

KULOCS Authentication
Server

Resource
Server

Deliver login page

Enter login details and authorize access
User authorization

Redirect to app. with access token

Execute API with token
Get location info. with access token

Check access token
Valid

Location info.
Location info.

Use location info.

Figure 9.
Sequence diagram of
OAuth 2.0 with
location-based
application using
KULOCS

IJPCC
12,1

170

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

Preferably, KULOCS should be able to provide API that facilitates user opt-in, by which
a user declares the scope and range of the location information to be published.
Considering reasonable policies for security and privacy will be left for our future work.

7. Conclusion
In this paper, we have proposed a unified locating service, called KULOCS. To integrate
the existing heterogeneous locating services, KULOCS was designed to achieve data
integration and operation integration. Based on technology-neutral elements [when],
[where] and [who], we proposed a method of the data integration with Unix time, the
location label and the alias table. For the operation integration, we propose
KULOCS-API, with the six methods derived from the combination of the three elements.

We have also implemented KULOCS and underlying locating services (BLE Locating
Service and GPS Locating Service). On top of the implementation, we developed two
application services to demonstrate the practical feasibility. In the experimental
evaluation, we conducted application development with and without KULOCS. The
result shows that KULOCS reduces the effort of application development, especially
when the number of locating services becomes large. We also discussed the performance
of KULOCS-API and the applicability to more practical services.

Finally, we summarize our future work. A challenging topic is to consider how to
cope with the security and privacy issues when integrating multiple locating services.
We are also interested in how to preserve topological information in the data integration
of KULOCS.

Notes
1. Available at: www.skyhookwireless.com/.

2. Available at: www.swarmapp.com/.

3. Available at: www.glympse.com/.

4. Available at: https://developers.google.com/maps/.

5. Available at: https://pathsha.re/.

6. Available at: twww.apple.com/ios/whats-new/family-sharing/.

7. Available at: www.indooratlas.com/.

8. Available at: http://openid.net/specs/openid-connect-core-1_0.html.

9. Available at: www.aplix.co.jp/?page_id�10721.

10. Available at: http://oauth.net/2/.

References
Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M. and Steggles, P. (1991), “Towards a

better understanding of context and context-awareness”, Handheld and Ubiquitous
Computing, Springer, New York, NY, pp. 304-307.

Ahn, C. and Nah, Y. (2010), “Design of location-based web service framework for context-aware
applications in ubiquitous environments”, 2010 IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing, IEEE, Newport Beach, CA,
pp. 426-433.

171

Unified
locating
service

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://www.skyhookwireless.com/
http://www.swarmapp.com/
http://www.glympse.com/
https://developers.google.com/maps/
https://pathsha.re/
http://twww.apple.com/ios/whats-new/family-sharing/
http://www.indooratlas.com/
http://openid.net/specs/openid-connect-core-1_0.html
http://www.aplix.co.jp/?page_id=10721
http://oauth.net/2/
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSUTC.2010.26
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSUTC.2010.26

Christensen, K.F., Christiansen, L., Pedersen, T.B. and Pihl, J. (2015), “Searchlight: context-aware
predictive Continuous Querying of moving objects in symbolic space”, IEEE 31st
International Conference on Data Engineering (ICDE), IEEE, Seoul, pp. 687-698.

Ficco, M., Palmieri, F. and Castiglione, A. (2014), “Hybrid indoor and outdoor location services for
new generation mobile terminals”, Personal and Ubiquitous Computing, Vol. 18 No. 2,
pp. 271-285.

Kohne, M. and Sieck, J. (2014), “Location-based services with iBeacon technology”, 2nd
International Conference on Artificial Intelligence, Modelling and Simulation, IEEE,
Madrid, pp. 315-321.

Manandhar, D. and Torimoto, H. (2011), “Opening up indoors: Japan’s indoor messaging system,
IMES”, available at: http://gpsworld.com/wirelessindoor-positioningopening-up-indoors-
11603/ (accessed: 19 January 2016).

Pratama, A.R. and Hidayat, R. (2012), “Smartphone-based pedestrian dead reckoning as an indoor
positioning system”, International Conference on System Engineering and Technology,
IEEE, Bandung, pp. 1-6.

Takatsuka, H., Saiki, S., Matsumoto, S. and Nakamura, M. (2014), “Design and implementation of
rule-based framework for context-aware services with web services”, The 16th
International Conference on Information Integration and Web-based Applications &
Services, ACM, Hanoi, pp. 233-242.

Takatsuka, H., Tokunaga, S., Saiki, S., Matsumoto, S. and Nakamura, M. (2015), “Integrating
heterogeneous locating services for efficient development of location-based services”, The
17th International Conference on Information Integration and Web-based Applications &
Services, ACM, Belgium, pp. 430-439.

Ting, S., Kwok, S.K., Tsang, A.H. and Ho, G.T. (2011), “The study on using passive RFID tags for
indoor positioning”, International Journal of Engineering Business Management, Vol. 3
No. 1, pp. 9-15.

Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., Jubert, I.S.,
Mazura, M., Harrison, M. and Eisenhauer, M. (2011), “Internet of things strategic research
roadmap”, Internet of Things: Global Technological and Societal Trends, available at: www.
internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf
(accessed 19 January 2016).

Corresponding author
Hiroki Takatsuka can be contacted at: tktk@ws.cs.kobe-u.ac.jp

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJPCC
12,1

172

D
ow

nl
oa

de
d

by
 K

O
B

E
 U

N
IV

E
R

SI
T

Y
, P

ro
fe

ss
or

 M
as

ah
id

e
N

ak
am

ur
a

A
t 1

6:
39

 1
0

M
ay

 2
01

6
(P

T
)

http://gpsworld.com/wirelessindoor-positioningopening-up-indoors-11603/
http://gpsworld.com/wirelessindoor-positioningopening-up-indoors-11603/
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf
mailto:tktk@ws.cs.kobe-u.ac.jp
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2837185.2837229
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2837185.2837229
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2837185.2837229
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICDE.2015.7113325
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICDE.2015.7113325
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICSEngT.2012.6339316
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICSEngT.2012.6339316
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00779-013-0644-4&isi=000330628100003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684310
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FAIMS.2014.58
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684310
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684310
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FAIMS.2014.58

	KULOCS: unified locating service for efficient development of location-based applications
	1. Introduction
	2. KULOCS (Kobe-University Unified LOCating Service)
	3. System design and implementation
	4. Developing application services with KULOCS
	5. Experimental evaluation
	6. Discussion
	7. Conclusion
	References

