
Integrating Heterogeneous Locating Services for
Efficient Development of Location-Based Services

Hiroki Takatsuka, Seiki Tokunaga, Sachio Saiki, Shinsuke Matsumoto, Masahide Nakamura
Graduate School of System Informatics, Kobe University

tktk@ws.cs.kobe-u.ac.jp, tokunaga@ws.cs.kobe-u.ac.jp, sachio@carp.kobe-u.ac.jp,
shinsuke@cs.kobe-u.ac.jp, masa-n@cs.kobe-u.ac.jp

ABSTRACT
This paper proposes a unified locating service, KULOCS,
which horizontally integrates the heterogeneous locating ser-
vices. Focusing on technology-independent elements [when],
[where] and [who] in location queries, KULOCS integrates
data and operations of the existing locating services. In the
data integration, we propose a method where the time rep-
resentation, the locations, the namespace are consolidated
by Unix time, the location labels and the alias table, respec-
tively. Based on possible combinations of the three elements,
we then derive API for the operation integration.
In this paper, we also implement KULOCS as a Java Web

service and integrate two locating services: GPS-based out-
door locating service and BLE-based indoor locating service.
On top of the implementation, we develop application ser-
vices: Umbrella Reminder Service and Stay Areas Visualiza-
tion Service. Experimental evaluation shows the practical
feasibility by comparing cases with or without KULOCS.
Since KULOCS works as a seamless façade to the under-
lying locating services, the users and applications consume
location information easily and efficiently, without knowing
concrete services actually locating target objects.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems; H.3.5
[Online Information Services]: Web-based services; D.2.12
[Interoperability]: Data mapping

General Terms
Design, Experimentation

Keywords
locating service, indoor positioning system, location infor-
mation, Web services, location-aware service

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2015,11-13 December, 2015, Brussels, Belgium.
Copyright 2015 ACM 978-1-4503-3491-4/15/12 ...$15.00.

Smart combination of IoT, positioning systems and cloud
services enables a sophisticated platform to acquire and man-
age locations of mobile users and objects. Nowadays, every
smartphone is equipped with GPS. Also, various GPS mod-
ules for IoT appear on the market (e.g., [7][11]). The lat-
est indoor positioning systems (IPS) can locate users even
inside buildings or underground, where GPS cannot cover.
The enabling technologies of IPS include Wi-Fi [9], Blue-
tooth beacons [15], RFID [20], Pedestrian Dead Reckoning
(PDR) [17], IMES [16]. Gathering such indoor/outdoor lo-
cation information in the cloud would create a great variety
of location-based services and applications.

The location information gathered in the cloud should be
provided as a service, so that client applications can easily
consume the locations based on standard Web service pro-
tocols. We call such a cloud service locating service in this
paper. In fact, several practical services come onto mar-
ket recently. They include Swarm [10], Glympse [3], Google
Maps APIs [4], Pathshare [8], Apple Family Sharing [2] and
IndoorAtlas [5]. Although features and operation policies
vary from one service to another, the basic idea is to use
the cloud for exchanging or sharing location information ac-
quired by a certain positioning system. Most services pro-
vide Web-API for application developers.

In general, there is no compatibility among different locat-
ing services and API, since they are individually developed
and operated. Each service is tightly coupled with the un-
derlying positioning system. For example, Glympse assumes
to use GPS information collected by smartphones, while In-
doorAtlas use a magnetic field to locate the position inside
a building. Thus, Glympse cannot directly use the data
of IndoorAtlas, and vice versa. In order to cover both in-
door and outdoor locations, one may want to integrate these
two services. However, the lack of compatibility forces the
application developer to use different API, and to perform
expensive data integration within the application.

Figure 1 shows the conventional architecture to integrate
the existing locating services. Let us assume an application,
say “where-are-you?”, with which a user A tries to find lo-
cation of another mobile user B. Suppose also that B is in
either indoor or outdoor space, and is located by a certain
locating service. When A executes a query “Where is B?”,
the application has to invoke all possible locating services
to find B. Although the query “Where is B?” is essentially
simple, the application has to know how to invoke API and
interpret the result for every locating service. This makes
the application complex, low-performance, and non-scalable.

To cope with the problem, in this paper, we propose a uni-

Outdoor Locating Services Indoor Locating Services

Service Service Service Service Service Service

API Call

Data

GPS Beacon Wi-Fi

User

Figure 1: Conventional architecture to integrate lo-
cating services

fied locating service, called KULOCS (Kobe-university Uni-
fied LOCating Service). KULOCS horizontally integrates
the existing heterogeneous locating services, and provides an
abstraction layer between the applications and the locating
services. To make location queries compatible among many
locating services, we design KULOCS with three technology-
independent elements [when], [where] and [who].
Based on the three elements, KULOCS integrates data

and operations of the heterogeneous locating services. In
the data integration, we propose a method that different
representation of time, heterogeneous locations and different
namespace of users are consolidated by Unix time, location
labels and alias table, respectively. The location labels con-
sist of local label and global label, which abstract concrete
coordinates of IPS and GPS, respectively. A user of KU-
LOCS queries every location by a label, whereas KULOCS
internally converts the label to specific representation for
individual locating services.
For the operation integration, we propose KULOCS-API,

which integrates heterogeneous operations by possible com-
binations of [when], [where] and [who]. The API is de-
ployed as Web service, so that applications on various plat-
form can easily consume KULOCS. For example, the query
“Where is B?” of “where-are-you?” is simply implemented
by http://kulocs/where?user=B&time=now. For this, the
application needs not to know how B is located by which
service. Thus, the application can consume location infor-
mation quite easily and efficiently.
In this paper, we also design and implement the proposed

KULOCS as a Java Web service. The current version sup-
ports to integrate the following locating services: a GPS-
based outdoor locating service, and a BLE(Bluetooth Low
Energy)-based indoor locating service. On top of KULOCS
implemented, we develop two application services. The first
service is Umbrella Reminder Service, which prompts a user
to take an umbrella when it is raining. This service uses
KULOCS to evaluate a location context that “when a user
leaves home”, defined by the position of the user. The other
service is Stay Areas Visualization Service, which displays
the history of areas where users have visited on a given day.
To evaluate practical feasibility, we conduct the experi-

ment that compares application development with KULOCS.
Specifically, we implement two different versions of the same
application, where one is with KULOCS and another is with-

KULOCS (Kobe-university Unified LOCating Service)

Outdoor Locating Services Indoor Locating Services

Service Service Service Service Service Service

API Call Data

GPS Beacon Wi-Fi

User

Figure 2: Architecture of KULOCS

out. The two versions are examined from the perspective
of the lines of code and response time. We also conduct
the performance evaluation of KULOCS-API, where differ-
ent methods to obtain the same information (e.g. “Is user
tktk in Kobe University now?”) are compared. Finally, we
investigate other promising services that KULOCS makes
feasible.

The original concept of KULOCS has been published in
[19]. Changes were made on this conference paper, most sig-
nificantly the addition of design and implementation of KU-
LOCS, the application services, and the experimental eval-
uation (Sections 3, 4 and 5). We believe that those changes
will help readers fully understand the integrating locating
services, and develop similar systems, efficiently.

2. KULOCS (KOBE-UNIVERSITY UNIFIED
LOCATING SERVICE)

2.1 Overview
In this section, we explain basic principles of KULOCS

(Kobe-university Unified LOCating Service). Figure 2 shows
the architecture. KULOCS works as a façade of the hetero-
geneous locating services. It provides the unified interface
(KULOCS-API) for a user, by which the user can access to
different locating services seamlessly, without being aware
of the difference of individual services. Since KULOCS is
an abstract layer that integrates heterogeneous locating ser-
vices, we have to achieve the following issues:

• Data Integration: Individual locating services rep-
resent location information in different ways. Hence,
KULOCS must exploit unified location data represen-
tation that is independent of any specific service or
positioning system.

• Operation Integration: Individual locating services
exhibit own operations in terms of API, which vary
from a service to another. KULOCS needs to integrate
them and provide generic API (i.e., KULOCS-API) to
a user.

Our key idea to achieve the above integration is to focus
the following technology-independent elements, which are
necessary for any service to locate an object:

Table 1: Location table of KULOCS
Location Label (PK) Service Actual Location Information
kobe_univ gps01 {latitude: 35.4313, longitude:135.147, address:"1-

1 Rokkodai Nada Kobe Japan"}

casher@ShopABC ips01 ShopABC, (3.0, 4.5, 0.5)
S101@kobe_univ ips02 KobeUniv.Lab.S101

Table 2: Data integration of L1, L2 and L3

Data ID When/Time Where/Location Who/ID
L1 1434869412 kobe_univ hiroki

L2 1435592713 casher@ShopABC hiroki

L3 1435585774 S101@kobe_univ hiroki

Table 3: List of methods in KULOCS-API
Method Description
when(location, id) Returns the latest time when the object is in the location.
where(time, id) Returns the location where the object exists in the time.
who(time, location) Returns all objects who exist in the location in the time.
whenwhere(id) Returns a list of [time, location] where the given object exists.
whenwho(location) Returns a list of [time, id] that exist in the given location.
wherewho(time) Returns a list of [location, id] are located within the given time.

• When: Represent the date and time when the target
object exists.

• Where: Represent the location where the target ob-
ject exists.

• Who: Represent the identity of the target object.

Note that other interrogatives like how, what and why
are not included since they tend to be technology-oriented.
KULOCS is designed to accept generic queries based on pos-
sible combinations of the above three elements. KULOCS
then translates the generic query to service-specific queries
for individual services.

2.2 Data Integration
We here describe how to integrate location data of het-

erogeneous locating services. To help to understand, let us
consider the following data records.

- L1: {time:2015-06-21T08:50:12+0900, user:tktk,

location: {latitude:35.4313, longitude:135.147,

address:"1-1 Rokkodai Nada Kobe Japan"}}

- L2: Takatsuka is now in (3.0, 4.5, 0.5) from

entrance of ShopABC.

- L3: Mon Jun 29 15:49:34 CEST 2015, Object123,

KobeUniv.Lab.S101

L1 describes a location of user tktk by a geographic co-
ordinate, where we imagine the data is taken by a GPS-
based service. L2 would be obtained by a fine-resolution
IPS, which represents the current position of Takatsuka by
3D offset from a reference point. L3 describes that Ob-
ject123 is in room S101 of our laboratory, which may be
located by a certain zone-based IPS. Note that L1, L2 and

L3 respectively use different time representation (and time
zone).

To integrate these heterogeneous location data, we con-
sider the elements [when], [where], [who]. As for [when],
it is easy to introduce the common representation with the
Unix timestamp, which is the number of seconds elapsed
from January 1st, 1970 at UTC. KULOCS deals with any
time information by Unix time.

As for [where], there are many ways and different gran-
ularity levels to represent a location. The GPS coordinate
looks generic representation that can describe exact loca-
tions. However, it is too detailed for a user to specify it as
a parameter of location queries. Also, the GPS coordinate
is not useful for indoor locations, which are often relative
coordinates from the reference point.

To compromise different granularity levels and various use
cases, we propose to represent every location by a location
label. A location label is a unique string that is bound for
a location information. Just for convenience, we introduce
two kinds of labels: local label and global label. The local
label is a string, written in position@building, to be used
to represent an indoor location. In the string, building

represents the ID of a building, and position represents the
name of the position in the building. For example, a local
label casher@ShopABC is used to refer to the location in L2.
On the other hand, the global label is a string without @, to
be used to represent an outdoor location. For example, we
can bind a global label kobe_univ to the location in L1.

Thus, KULOCS represents every location by a location
label. It internally maintains binding between a label and
actual location information with the location table shown in
Table 1. We assume that the location labels are registered
in the table by users in a crowd-sourcing fashion, and shared
among the users.

Finally, as for [who], since every locating service has differ-
ent namespace for users and objects, KULOCS has an alias

service serviceId, serviceName, endpoint, returnType, description

serviceId, method, API, return, description

serviceId, method, param, realParam, pOrder, description

gps01, LOCS4Geolocation, http://locs4geo/service/, json, …
ips01, iBeaconLocator, http://ibeacon-locator/, xml, …

gps01, when, getTime, time, …
gps01, where, getLocation, location, ….

:
ips01, where, api/position, position, …

gps01, when, location, address, 2, …
gps01, when, id, user, 1, …
gps01, where, time, time, 2, …
gps01, where, id, user, 1, …

:

api

param

Figure 3: Model diagram of KULOCS service database

table, which consolidates different IDs for the same user (or
object) into a single unique ID. For example, let us recall L1,
L2 and L3, and suppose that all of tktk in L1, Takatsuka in
L2, and Object123 in L3 refer to the same person “hiroki”.
Then, the alias table contains an element: {"id":"hiroki",

"alias":{"L1":"tktk","L2":"Takatsuka", "L3":"Object123"}.

With this information, KULOCS converts the representative
name hiroki into a real user ID when querying each of locat-
ing services. The integration of IDs can be also implemented
with common identity services (e.g., OpenID [6]). However,
it is beyond this paper.
Based on the above design principle, KULOCS unifies L1,

L2 and L3 as shown in Table 2. Through KULOCS, the
location data from any locating service is unified into the
abstract location data with [when], [where] and [who].

2.3 Operation Integration
We then propose KULOCS-API, which integrates hetero-

geneous operations of the existing locating services. Basi-
cally, KULOCS-API is an interface for querying KULOCS
about a location of a mobile user (or object). The way of
the query must be technology-neutral and independent of
any specific locating services. Therefore, we again focus on
the elements of [when], [where] and [who].
According to the possible combinations of the three ele-

ments, we derived six methods for KULOCS-API, as shown
in Table 3. For example, where(time, id) is for asking
[where] based on known time (i.e., [when]) and id (i.e.,
[who]). Thus, a user can invoke where(NOW, B) to know
“Where is B (now)?”. To achieve programmable interop-
erability, we publish KULOCS-API as a Web service, and
deploy it in a cloud. For example, the method invocation
where(NOW, B) can be performed in REST format http:

//kulocs/where?time=NOW&id=B.
Once a method of KULOCS-API is invoked, KULOCS

internally converts the method invocation into an appropri-
ate API call for each locating service (see Figure 2). For
the purpose of the method conversion, KULOCS manages
the service database. Figure 3 shows the model diagram of
KULOCS which indicates relations of three entities, data
schemes and examples.

The service database has three entities: service, api and
param. The service entity manages master information of all
the underlying locating services. The information includes a
name, an endpoint of the service, a type of the return value.
In Figure 3, we can see that there are two locating services
(LOCS4Geolocation, iBeaconLocator) registered. For each
service, the api entity manages the mapping from the six
methods of KULOCS-API to actual API in the service. In
Figure 3, we can see that where() method is mapped into
getLocation() for gps01 (i.e., LOCS4Geolocation). The
param entity manages the mapping and order of parame-
ters within every method of KULOCS-API and the ones
within the actual API call. For example, we can see, in
Figure 3, that time and id parameters of where(time, id)

method are respectively passed to time and user parameters
of getLocation(user, time) of gps01. Thus, the method
can be converted.

Figure 4 shows a sequence diagram, where the user ex-
ecutes where(NOW, B) of KULOCS-API. In this scenario,
KULOCS first finds a service gps01 from the service DB, and
then identifies getLocation() API and its parameters user
and time. Next, KULOCS looks up the alias table to convert
the id of “B” into the local name “tktk” within gps01. Next,
it invokes getLocation() of LOCS4Geolocation service with
tktk and the current time, to locate tktk. Finally, the ob-
tained location information is converted into a location la-
bel with the location table. Finally, the label kobe_univ
is returned to the user, as the answer of where(NOW, B).
Similarly, KULOCS can invoke any other locating service
for where(NOW, B). However, the sequence is omitted due
to limited space.

3. SYSTEM DESIGN AND IMPLEMENTA-
TION

3.1 Detailed Design
In order to implement KULOCS, we conduct object-oriented

design. Figure 5 shows the class diagram. We explain the
detail of each class as follows.

service api param alias LOCS4GEOKULOCS-API

where(NOW, B) getService()

gps01,
http://locs4geo/,

json

getApi (gps01,where)

getLocation, location

getParams(gps01, where)

id->user@arg1, time->time@arg2

getUser(B, gps01)

tktk

getLocation(tktk, 2015-06-30T12:34:56)

location: {latitude: 35.4313, longitude:135.147, address:"1-1 Rokkodai Nada Kobe Japan"}

kobe_univ

KULOCS Service DB

location
KULOCS Data Binding External Service

toLabel(gps01, {latitude:35.43, …})

kobe_univ

Figure 4: Sequence diagram of KULOCS-API, in which where(NOW, B) is executed

KULOCSController
KULOCSController class works as a façade of all the un-
derlying classes. It defines the six methods of KULOCS-
API. Each method internally accesses the related databases
and services as explained in Section 2.3, and returns an ob-
ject of the corresponding result class. For instance, where()
method is executed as shown in Figure 4, and the result
is returned by an object of Where. As mentioned in Sec-
tion 2.3, KULOCSController is published as a Web service.
Thus, every method can be executed by Web service proto-
cols (REST and SOAP), so that client applications can use
KULOCS from various kinds of platforms.

ThreeWs
ThreeWs class is an abstract class of the six result classes.
It contains common information used in KULOCS-API, in-
cluding parameters of a given query, error message, and ex-
ecution time. More specifically:

• message: An error message of API execution.

• timeQuery: A time parameter of the query.

• locationQuery: A location parameter of the query.

• idQuery: ID parameter of the query.

• executionTime: An execution time of the API.

When
When class is the result class of when(location, id). As
the answer of the query, the class contains the latest time

(time) specifying when the object is in the given location.
Also, it has existence indicating whether or not the given
object is there now. Clients of KULOCS-API typically ask
if the target object is currently in the given location. The
existence attribute helps such clients to save the effort for
parsing time. In the current version, existence takes the
true value if time is within one minute from now.

• time: The latest time when the object is in the loca-
tion.

• existence: A flag indicating the object is currently
there.

Where
Where class is the result class of where(time, id). As the
answer of the query, the class contains the location where
the object exist(ed) in the given time. The returned location
is represented by localLabel or globalLabel.

• localLabel: An indoor location where the object ex-
ists in given time.

• globalLabel: An outdoor location where the object
exists in given time.

Who
Who class is the result class of who(time, location). As the
answer of the query, the class contains the list (objectidList)
of ID’s of all objects who exist(ed) in the given time in the
designated location.

• objectidList: A List of ID’s of all objects which ex-
ist(ed) in the given time and in the given location.

- message:String
- timeQuery:String
- locationQuery:String
- idQuery:String
- executionTime:Date

ThreeWs

+ ThreeWs()

- time:Date
- existence:boolean

When

+ When()

- localLabel:String
- globalLabel:String

Where

+ Where()

- objectidList:List<String>

Who

+ Who()

- objectList:
List<WhenWhereItem>

WhenWhere

+ WhenWhere()

- objectList:
List<WhenWhoItem>

WhenWho

+ WhenWho()

- existence:boolean
- time:Date
- objectid:String

WhenWhoItem

+ WhenWhoObject()

- objectList:
List<WhereWhoItem>

WhereWho

+ WhereWho()

- localLabel:String
- globalLabel:String
- objectid:String

WhereWhoItem

+ WhereWhoObject()

+ when()
+ where()
+ who()
+ whenWhere()
+ whenWho()
+ whereWho()

KULOCSController

1

*

1

*

- existence:boolean
- time:Date
- localLabel:String
- globalLabel:String

WhenWhereItem

+ WhenWhereObject()

1

*

KULOCS

Figure 5: Class diagram of KULOCS

WhenWhere
WhenWhere class is the result class of whenwhere(id). As the
answer of the query, the class contains a list (objectList) of
WhenWhereItem, representing a history that when and where
the given object has been.

WhenWho
WhenWho class is the result class of whenwho(location). As
the answer of the query, the class contains a list (objectList)
of WhenWhoItem, representing a history that when and who
has existed in the given location.

WhereWho
WhereWho class is the result class of wherewho(time). As the
answer of the query, the class contains a list (objectList)
of WhereWhoItem, representing a snapshot of whole locating
services that where and who exist(ed) in the given time.

3.2 Implementation
Based on the detailed design, we have implemented KUL-

COS. The total system comprised of around 4,000 lines of
code, and the development effort was three man-months.
Technologies used for the implementation are as follows:

• Language: Java 1.7.0 85

• Web server: Apache Tomcat 7.0.39

• Web service framework: Jersey 2.5.1

• Backend database: MySQL 5.1.36

• Server spec: CentOS 6.4, Dual-Core CPU 2GHz,
4GB memory

In order to show the practical feasibility of KULOCS, we
have also implemented two locating services: BLE Locating
Service and GPS Locating Service.

BLE Locating Service
Bluetooth Low Energy (BLE) [15] is a short-range wireless
communication technology, which can be used to detect the
proximity of mobile objects. By deploying multiple BLE de-
vices (called beacons) within indoor space, it is possible to
implement an IPS based on the proximity. Our research
group has been developing such a BLE-based IPS using
BLE-equipped tablets (as mobile clients) and BLE hard-
ware modules (as beacons). By wrapping the above IPS,
we have developed a locating service, which we call BLE
Locating Service in this paper. The technologies used for
implementing the service are as follows:

• Mobile client: Google Nexus 7 (Android 5.0.2)

• Data collector: Android native application

• BLE beacons: Aplix MyBeacon MB004 At-SR [1]

• Language: Java 1.7.0 85

• Web server: Apache Tomcat 7.0.39

• Web service framework: Jersey 2.5.1

• Response format: XML

• Backend database: mySQL 5.1.36

• Server spec: CentOS 6.4, Dual-Core CPU 2GHz,
4GB memory

Figure 6: Screenshot of Umbrella Reminder Service

The BLE Locating Service is integrated with KULOCS as
one of locating services.

GPS Locating Service
We have also implemented another locating service for out-
door space, using GPS sensors of a smart phone. We call this
service GPS Locating Service in this paper. In the service,
every mobile client (in outdoor space) periodically uploads
the current location obtained by GPS to the server. The
server provides the location data for authorized client appli-
cations via Web-API. The GPS Locating Service has been
implemented with the following technologies:

• Mobile client: SHARP AQUOS PHONE SERIE SHL22
(Android 4.2.2)

• Data collector: Android native application

• Language: Java 1.7.0 85

• Web server: Apache Tomcat 7.0.39

• Web service framework: Jersey 2.5.1

• Response format: JSON

• Backend database: MongoDB 2.4.5

• Server spec: CentOS 6.4, Dual-Core CPU 2GHz,
4GB memory

Compared to the BLE Locating Service, we intentionally
used different technologies for response format and the back-
end database. This is to illustrate how KULOCS can accom-
modate the heterogeneity. The GPS Locating Service is also
integrated with KULOCS as one of the locating services.

4. DEVELOPING APPLICATION SERVICES
WITH KULOCS

On top of KULOCS implemented in the previous section,
we have developed two practical application services: Um-
brella Reminder Service and Stay Areas Visualization Ser-
vice.

4.1 Umbrella Reminder Service
The Umbrella Reminder Service prompts a user, who is

leaving home, to take an umbrella when it is raining. In this
service, KULOCS is used to evaluate the location context
that “a user is about to leave home”. The context is de-
fined by the fact a user gets close to an entrance of a house,
which is easily detected by KULOCS-API, e.g., who(NOW,
ENTRANCE@MYHOUSE).

In order to bind some actions to the location context, we
used RuCAS [18], which was developed in our previous work.
RuCAS is a framework that creates context-aware services
using Web services. In RuCAS, every context-aware service
is defined as an ECA (Event-Condition-Action) rule such
that “when an event occurs, if a condition is satisfied, do
designated actions”.

Thus, the Umbrella Reminder Service has been imple-
mented with RuCAS and KULOCS as follows:

• Event: A user is going to leave home (actually our
laboratory). The context is defined as a situation that
somebody is at the entrance, detected by KULOCS.

• Condition: It is rain outside. The context is defined
as a fact that a weather forecast Web service indicates
that it is rainy today.

• Action: Trigger a speech reminder “Do you have an
umbrella?” using a Text-to-Speech Web service.

Figure 6 shows a screenshot of the user interface of Ru-
CAS, where displays the page of a detailed ECA rule. The
list in the left side of the page shows registered contexts and
actions for select. The pane in the right side represents a
created ECA rule, Umbrella Reminder Service.

Thus, the Umbrella Reminder Service implements a sce-
nario that: when a user leave home, if the weather of today
is rainy, the system speaks to alert “Do you have an um-
brella?”.

4.2 Stay Areas Visualization Service

Table 4: Comparison of two versions with KULOCS and with the conventional integration

Used Service Lines of Code Response Time (ms)
Individual Locating Services 53 273.9
KULOCS 35 289.2

Table 5: Response time of KULOCS-API

API Parameters Total RT (ms) RT of KULOCS (ms) RT of LS (ms)
when() location=kobe univ&id=tktk 34.5 10.4 24.1
where() time=now&id=tktk 24.4 11.6 12.8
who() time=now&location=kobe univ 45.4 31.1 14.3
whenwhere() id=tktk 198.5 117.2 81.3
whenwho() location=kobe univ 201.7 11.0 190.7
wherewho() time=now 179.2 91.1 88.1

Figure 7: Screenshot of Stay Areas Visualization
Service

The Stay Areas Visualization Service is a Web service that
displays the history of areas, where selected users have vis-
ited on the specified day. It is implemented by whenwhere()

of KULOCS-API, JavaScript, HTML and CSS. Figure 7
shows a screenshot of the service. The vertical axis indi-
cates the hours and the horizontal axis indicates the users.
We can see in the screenshot that on July 31st, 2015, the
user tktk went to his desk of his laboratory at 8 o’clock and
worked until 12 o’clock. Then, tktk went a meal in the cafe-
teria at 12 o’clock and worked until 19 o’clock. After eating
dinner, tktk went to the home. Similarly, another user hori-
hori went to the izakaya, where is a place of his part-time
job, from 18 o’clock, and the user takatori worked until late
after the dinner.
Note that the service can display the log of various loca-

tions seamlessly, regardless that the locations are inside or
outside. This is the great advantage of KULOCS that can
horizontally integrate heterogeneous locating services.

5. EXPERIMENTAL EVALUATION

5.1 Application Development with or without
KULOCS

To demonstrate the practical effectiveness, we here con-
duct an experiment, where we investigate two cases of ap-
plication development. The one is with KULOCS, and the
other is with the conventional manual integration of locating
services. Intuitively, the experiment is to see the difference
between Figure 1 and Figure 2.

In the experiment, we implement two versions of a Web
application, either of which returns the current location of a
given user. The implementation language used for the both
versions is Node.js. The one version is implemented with the
developed KULOCS, whereas the other version directly uses
the API of the BLE Locating Service and the GPS Locating
Service (see Section 3.2).

Table 4 shows the lines of code and the response time of
the applications. The response time is the average time of
10 executions. The two versions were executed in the same
condition that:

• the user queries the location of a user tktk (e.g., where(
now, tktk) of KULOCS-API.

• tktk is in kobe_univ and is located by the GPS Locat-
ing Service.

We can see in Table 4 that using KULOCS reduces about
34% of the code from the conventional application. One may
think that it is not a drastic reduction. This is, however, jus-
tified by the fact that there were only two locating services
in the experiment (i.e., the BLE Locating Service and the
GPS Locating Service). Thus, the conventional integration
did not become complicated very much. If the number of
locating services becomes larger, the developer has to inte-
grate heterogeneous API and data format by himself, which
requires more time and effort. In that case, the benefit of
KULOCS becomes much more significant.

In Table 4, we can see that KULOCS imposes small perfor-
mance overhead compared to the conventional application.
However, according to the investigation, we found that most
of the response time is spent in the underlying locating ser-
vices, and that the overhead is so small that it cannot be a
serious issue of the application execution. Thus, we can see
that using KULOCS, a developer can implement location-
based applications efficiently without a performance prob-
lem.

5.2 Performance Evaluation of KULOCS-API
As shown in Table 3, KULOCS-API consists of six differ-

ent methods. These six methods can be used for different
purposes. However, in some use cases, one can implement
the same feature with different methods. For instance, sup-
pose that a developer wants to check a context “tktk is in
Kobe University now” in the application. Then, the de-
veloper can use any of the six methods to implement it,
which yields a design choice. Now our interest here is which
method should be chosen for the better implementation.
Table 5 compares the six methods, where each method is

used to evaluate “tktk is in Kobe University now”. The sec-
ond column represents parameters necessary for each method
to locate tktk in Kobe University. The third column repre-
sents the total response time for executing the correspond-
ing method. The fourth and fifth columns represent the
response time spent in KULOCS and the locating services,
respectively. Each value of the response time is the average
value for ten measurements.
In Table 5, we can see that there is no much difference in

response time among when(), where(), who(), as well as
among whenwhere(), whenwho(), wherewho(). However,
there is a big performance gap between the two groups. One
reason of the gap is that whenwhere() and wherewho() scan
all the locating services to extract the history of location
data, which is quite time-consuming. Moreover, whenwhere()
(whenwho() and wherewho() as well) returns a list of objects,
which imposes expensive data parsing on KULOCS.
Thus, when a developer has a design choice, the best way

is to try to use when(), where() or who() as much as pos-
sible. In the case of checking “tktk is in Kobe University
now”, using when() (or where()) is the good choice in the
perspectives of performance and intuition.

5.3 Applicability to Practical Services
To show further potential of KULOCS, here we try to de-

velop ideas of other practical services enabled by KULOCS.

• Time Card Service: This service provides a capabil-
ity of a time card, which automatically manages how
long a user has been staying at a certain place. The
service can be implemented with when() of KULOCS-
API. Typical use cases include the attendance manage-
ment of a company, car parking, and unified manage-
ment of rental space by the hour (e.g., karaoke rooms).

• Seamless Tracking Service: This service displays
user’s current location on a map (e.g., Google Map)
seamlessly, regardless the location is indoor or out-
door. This service can be implemented with where()

of KULOCS-API. A user no longer needs to switch
among different maps for different locating services.

• Attendance Checking Service: This service allows
a user to check who and how many people are attend-
ing in a certain place. The service can be implemented
with who() of KULOCS-API. Typical use cases include
counting participants in an event and checking atten-
dance in a college class.

• Guestbook Service: This service automatically gen-
erates a guestbook recording who came when at a
certain place. The service can be implemented with
whenwho() of KULOCS-API. Typical use cases include

counting visitors to a touristic place (e.g., shrine and
temple) and checking guests in a ceremony (e.g., wed-
ding).

• Travel Companion Reviewing Service: This ser-
vice allows a user to recall who the user traveled with.
The service can be implemented with wherewho() of
KULOCS-API. Reviewing the travel log with the com-
panion information may motivate the user to do better
future travels. For instance, a user may think: “I found
that I did not travel much with my family recently. So
I will spare more time with my family for the next
holiday.”.

These practical services make full use of location infor-
mation gathered from users. Therefore, it is important to
carefully consider operation policies of the services, which
addresses the security and privacy of the users. Indeed, this
is not a specific issue with KULOCS only, but also is seen in
many other SNS and location-based services. Considering
reasonable policies for security and privacy will be left for
our future work.

6. RELATED WORK
Ficco et al. [14] proposed a hybrid location system, which

combines wireless fingerprinting technologies for indoor po-
sitioning together with GPS-based positioning for outdoor
localization. As a user moves to different places, the sys-
tem autonomously switches to the best available positioning
method supported by the mobile device and the surround-
ing environment. This study mainly focuses on the switching
mechanism in the mobile clients. However, it does not cover
how to integrate the existing locating services and location
data. Thus, the significant difference is that they try to inte-
grate different positioning systems within client side, which
heavily relies on the capability of the mobile device. On the
other hand, we try to integrate them within the server side,
which does not rely on any capability of clients.

Ahn et al. [12] proposed a web service framework based on
service-oriented architecture, called LOCA (LOcation-based
Context-Aware web services) framework. LOCA discovers
available Web services based on client location information
and preference. Thus, a client can dynamically find, in-
tegrate and consume Web service available in the current
location. The difference from our approach is that LOCA
provides a location-based service discovery, while KULOCS
provides a location query portal for any location-based ser-
vices. In this sense, LOCA can integrate KULOCS to man-
age wider locations efficiently.

Christensen et al. [13] proposed Searchlight Graph (SLG)
and Searchlight Continuous Query Processing Framework
(CQPF). SLG is a directed graph representing the topology
of multiple locations (indoor and outdoor), where each lo-
cation is associated with mobile objects. Using CQPF with
an SQL-like language, a user can query the past, current
or future location of a mobile object within the SLG. Their
approach of representing location as a point on the graph is
similar to our thought of using location label in KULOCS.
Compared to KULOCS, Searchlight allows more detailed lo-
cation queries with topology information (range, area, etc.).
However, the topology is limited within the SLG, and in-
teroperability among different locating services are not well
considered. On the other hand, KULOCS does not currently

support any topology, as it is abstracted during the data in-
tegration. We consider it a trade-off between a framework
compromising different location models, and a framework
imposing special constraints for the location model. Indeed,
it is interesting to consider how to manage topological in-
formation within KULOCS, which will be left for our future
work.

7. CONCLUSION
In this paper, we have proposed a unified locating ser-

vice, called KULOCS. In order to integrate the existing
heterogeneous locating services, KULOCS was designed to
achieve data integration and operation integration. Based
on technology-neutral elements [when], [where] and [who],
we proposed a method of the data integration with Unix
time, the location label, and the alias table. For the op-
eration integration, we propose KULOCS-API with the six
methods derived from the combination of the three elements.
We have also implemented KULOCS and underlying lo-

cating services (BLE Locating Service and GPS Locating
Service). On top of the implementation, we developed two
application services to demonstrate the practical feasibility.
In the experimental evaluation, we conducted application
development with and without KULOCS. The result shows
that KULOCS reduces the effort of application development,
especially when the number of locating services becomes
large. We also discussed the performance of KULOCS-API
and the applicability to more practical services.
Finally, we summarize our future work. A challenging

topic is to consider how to cope with the security and privacy
issues when integrating multiple locating services. We are
also interested in how to preserve topological information in
the data integration of KULOCS.

8. ACKNOWLEDGMENTS
This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (B) (No.26280115, No.15H02701),
Young Scientists (B) (No.26730155), and Challenging Ex-
ploratory Research (15K12020)].

9. REFERENCES
[1] Aplix MyBeacon MB004 At-SR.

http://www.aplix.co.jp/?page_id=10721. Accessed:
2015-09-01.

[2] Family Sharing. http:
//www.apple.com/ios/whats-new/family-sharing/.
Accessed: 2015-09-01.

[3] Glympse. https://www.glympse.com/. Accessed:
2015-09-01.

[4] Google Maps APIs.
https://developers.google.com/maps/. Accessed:
2015-09-01.

[5] IndoorAtlas. https://www.indooratlas.com/.
Accessed: 2015-09-01.

[6] OpenID. http://openid.net/specs/
openid-connect-core-1_0.html. Accessed:
2015-09-01.

[7] OriginGPS. http://www.origingps.com/. Accessed:
2015-09-01.

[8] Pathshare. https://pathsha.re/. Accessed:
2015-09-01.

[9] Skyhook. http://www.skyhookwireless.com/.
Accessed: 2015-09-01.

[10] Swarm by foursquare. https://www.swarmapp.com/.
Accessed: 2015-09-01.

[11] Tiny GPS module.
http://kilohertz.io/portfolio/tiny-gps-module/.
Accessed: 2015-09-01.

[12] C. Ahn and Y. Nah. Design of location-based web
service framework for context-aware applications in
ubiquitous environments. In 2010 IEEE International
Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing, pages 426–433, June 2010.

[13] K. Christensen, L. Linnerup Christiansen,
T. Pedersen, and J. Pihl. Searchlight: Context-aware
predictive continuous querying of moving objects in
symbolic space. In 2015 IEEE 31st International
Conference on Data Engineering, pages 687–698, April
2015.

[14] M. Ficco, F. Palmieri, and A. Castiglione. Hybrid
indoor and outdoor location services for new
generation mobile terminals. Personal and Ubiquitous
Computing, 18(2):271–285, 2014.

[15] M. Kohne and J. Sieck. Location-based services with
ibeacon technology. In 2014 2nd International
Conference on Artificial Intelligence, Modelling and
Simulation, pages 315–321, November 2014.

[16] D. Manandhar and H. Torimoto. Opening up indoors:
Japan’s indoor
messaging system, IMES, 2011. http://gpsworld.com/
wirelessindoor-positioningopening-up-indoors-11603/

Accessed: 2015-09-01.

[17] A. R. Pratama, R. Hidayat, et al. Smartphone-based
pedestrian dead reckoning as an indoor positioning
system. In 2012 International Conference on System
Engineering and Technology, pages 1–6. IEEE,
September 2012.

[18] H. Takatsuka, S. Saiki, S. Matsumoto, and
M. Nakamura. Design and implementation of
rule-based framework for context-aware services with
web services. In The 16th International Conference on
Information Integration and Web-based Applications &
Services, pages 233–242, December 2014.

[19] H. Takatsuka, S. Saiki, S. Matsumoto, and
M. Nakamura. On integrating heterogeneous locating
services. In 2nd EAI International Conference on IoT
as a Service, October 2015. (to appear).

[20] S. Ting, S. K. Kwok, A. H. Tsang, and G. T. Ho. The
study on using passive RFID tags for indoor
positioning. International journal of engineering
business management, 3:9–15, 2011.

