
Implementation and Evaluation of Cloud-based Integration
Framework for Indoor Location

Long Niu, Sachio Saiki, Shinsuke Matsumoto, Masahide Nakamura
Graduate School of System Informatics, Kobe University

longniu@ws.cs.kobe-u.ac.jp, sachio@carp.kobe-u.ac.jp, shinsuke@cs.kobe-u.ac.jp,
masa-n@cs.kobe-u.ac.jp

ABSTRACT
The emerging indoor positioning systems (IPS) enable in-
door location-aware applications (InL-App) within indoor
space where GPS cannot reach. In most conventional sys-
tems, however, IPS and InL-App are tightly coupled, where
one system cannot reuse location data or operation of other
systems. This fact yields expensive development cost and
effort of InL-App. To cope with the problem, this paper pro-
pose a cloud-based integration framework, called CIF4InL.
With a common data model, CIF4InL integrates indoor lo-
cation data obtained from heterogeneous IPS. It then pro-
vides application-neutral API for various InL-Apps. To eval-
uate the practical feasibility, we integrate two different IPS
(RedPin and BluePin) using CIF4InL, where the applica-
tions transparently access the indoor locations gathered by
two different IPS. Since CIF4InL allows the loose coupling
between IPS and InL-Apps, it significantly improves reusabil-
ity of indoor location information and operation.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Data models; H.2.8 [Database
Applications]: Spatial databases and GIS; H.3.4 [Systems
and Software]: Distributed systems; H.3.5 [Online Infor-
mation Services]: Web-based services, Data sharing

Keywords
Indoor positioning framework, location information, data
modeling, location-aware service, API, indoor location query
service

1. INTRODUCTION
With the rapid development of wireless and sensor tech-

nologies, Indoor Positioning System (IPS, for short) is at-
tracting great attention in recent years. IPS is a system
that locates and tracks objects within indoor space (inside
buildings, underground, and so on) where Global Position-
ing System (GPS) does not work well. Compared to outdoor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iiWAS ’15, December 11-13, 2015, Brussels, Belgium
c⃝ 2015 ACM. ISBN 978-1-4503-3491-4/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2837185.2837220

space, within indoor space one can easily deploy extra in-
frastructure for the positioning system. There are many re-
search and development of IPS in the last decade. Enabling
technologies of IPS include sound or ultrasound [4], image
analysis [18], RFID [14], Wi-Fi [16], other radio-based ap-
proaches [11]. Although the goals of these IPS are the same,
they are different in many aspects, such as system topology,
measuring principles, positioning algorithms, location infor-
mation (data model).

By using IPS, various Indoor Location-aware Applications
(we call indoor-location application, or InL-App for short)
can be implemented. An InL-App performs appropriate ac-
tions autonomously, according to indoor location of users or
dynamic/static objects. Typical use cases include search-
ing goods or equipment in a hospital, locating of firemen
in a building on fire, detecting the location of police dogs
trained to find explosives in a building, and finding tagged
maintenance tools and equipment scattered all over a plant.

When we implement an InL-App with an IPS, it is neces-
sary to determine, within the InL-App, how to represent and
manage indoor-location data provided by IPS. Most conven-
tional systems individually define and manage the indoor lo-
cation information, considering the purpose of the InL-App
and characteristics of the IPS used. Such a proprietary rep-
resentation and management method has an advantage of
optimal performance. However, it causes “tight coupling”
between InL-App and the underlying IPS, where indoor-
location data and operations cannot be reused among dif-
ferent InL-App. Thus, the proprietary method makes the
implementation of InL-App complicated, and increases de-
velopment cost and effort.

As the first step to cope with problem, we have previously
proposed a common data model for indoor location, call
DM4InL [15]. The DM4InL defines a common data schema
for representing indoor location information of various ob-
jects (people, appliance, room, spot, and so on) without
depending on any specific IPS or InL-App.

Following the previous achievement of DM4InL, the main
concern of this paper is how to construct a framework, where
various InL-Apps can easily share and consume indoor lo-
cation information gathered by various IPS. For this, we
present the Cloud-based Integration Framework for Indoor
Location (CIF4InL, for short) in this paper. Using DM4InL,
the proposed CIF4InL integrates indoor location data ob-
tained from existing heterogeneous IPS, and provides com-
mon operation as a service for various InL-Apps. Concern-
ing this, we have to tackle two challenges. The first chal-
lenge is data integration, i.e., how to convert indoor location

data produced by heterogeneous IPS into DM4InL. The next
challenge is operation integration, i.e., how to implement
comprehensive location-based queries retrieving data from
DM4InL, to be shared by various InL-Apps.

To overcome those challenges, we design CIF4InL based
on following three components: (1) InL-Adapter, (2)InL-
Database, (3)InL-Query. InL-Adapter adapts the propri-
etary indoor location data to common data model DM4InL.
The InL-Adapter converts the uploaded location data into
DM4InL. InL-Database is a large-scale shared database that
manages the translated data. InL-Query provides application-
neutral API for various InL-Apps to query the indoor loca-
tion information. Operations for these components are pub-
lished as cloud services, and thus they are loosely coupled
by service-oriented architecture.

To evaluate practical feasibility, we apply the proposed
framework to integrate two different IPS. The first IPS is
RedPin [1], which uses Wi-Fi fingerprints to locate mobile
devices. The second IPS is BluePin, which uses Bluetooth
beacons for detecting proximity of the devices. The pro-
posed CIF4InL integrates the two different IPS, so that ap-
plications can transparently uses indoor location informa-
tion gathered by both systems. It is unnecessary for the ap-
plications to manage the difference of RedPin and BluePin.
Since CIF4InL allows the loose coupling between IPS and
InL-Apps, it improves reusability and interoperability of in-
door location information and operation. Thus, it is promis-
ing to reduce development cost and effort of InL-App, sig-
nificantly.

2. PRELIMINARIES

2.1 Indoor Positioning System (IPS)
The indoor positioning system (IPS) generally refers to a

system that estimates position of subject or object within
indoor space. The primary progress in IPS has been made
during the last ten years. Therefore, there is no de-facto
standard for the IPS yet, compared to GPS. In general, IPS
can divided into several categories:

• Vision Based Indoor Localization: Visual infor-
mation can be collected and practiced for indoor navi-
gation in many literature (e.g., [21][13]). However, the
image based localization will consume more computing
resource (analyzing the image) and power.

• Wireless Based Indoor Localization: Unlike light,
wireless wave can get through doors and walls and pro-
vide ubiquitous coverage of a building. The develop-
ment with the existing wireless technologies (e.g., Wi-
Fi, Bluetooth) is relatively easy, and the microwaves
does not obstruct human activities in the building.
Moreover, the power and computing resource consump-
tion also significantly less than vision based indoor lo-
calization. Most current work in indoor localization
use this way.

• Other Methods: There also many other ways for in-
door localization. They include ultrasound [4], acous-
tic background fingerprint [17], accelerometer [8], and
campus by adopting a dead-reckon method [9].

Among recent literatures, the wireless based indoor local-
ization methods take up most proportion of them. Accord-

ing to mathematical techniques used, they can categorize
them into the following three groups:

• Proximity: This method assumes that if a user en-
ter within the range of a known station, then loca-
tion of the user is approximated to the point of the
station. We are currently developing an IPS, called
BluePin, using Bluetooth Beacon technology. On de-
tecting proximity of a user, BluePin produces symbolic
location data. The following data symbolic location
data. The following data L1 represents that user niu

get closed an entrance of room S101.

L1:{personId:niu, locationId:22, locationName:

S101 Entrance, LastUpdate: 2015/07/27 11:23:45

JST}

• Triangulation: This method uses geometric knowl-
edge to obtain the user location. The location is de-
termined by either the distance to the fixed known
measurement points, or the received signal angles.

• Fingerprint: The fingerprint means the characteris-
tic of feature of signals. The method assumes that
each position in the area has a unique fingerprint. Re-
lying on prior knowledge associating a fingerprint with
a position, the current location of a user is obtained.
For example, Redpin [1] is an open-source IPS which
uses Wi-Fi fingerprint for zone-based positioning. The
following data L2 is produced by RedPin, representing
that a user is in location 45 of a room S103, pointed
on (345, 567) on a map KU-System-1F:

L2:{locationId:45, mapName:KU-System-1F, map

Xcord:346, mapYcord:567, symbolicId:S103,

macAddress:’08:60:6e:32:b6:0b’}

2.2 Indoor Location Application (InL-App)
In this paper, Indoor Location Application (InL-App) refer

to any location-aware service or application that performs
appropriate actions according to indoor location informa-
tion. To help understanding, let us introduce the following
examples:

• SmartShop: This service pushes coupons or loyalty
program of a shop to a smartphone when a user ap-
proaches the shop. The user’s location is estimated by
BluePin, where a static beacon station is installed at
the entrance of the shop. When a user 1 gets closed to
the station, the user’s smart phone upload the location
data {personId:1, locationId:7, locationName:s-

hop1, lastUpdate:2015/07/27 11:23:45 JST} to a
server. Since SmartShop knows that user 1 in the shop,
it pushes shop coupons to the user’s smart phone.

• LocEyes: This service visualizes locations of all staff
working in an institute. We assume that every staff
has a smartphone with RedPin, and that the smart-
phone uploads the current indoor location every 10 sec-
onds. An instance of the location is {locationId:45,
mapName:KU-System-1F, mapXcord:346, mapYcord:

567, symbolicId:S103, macAddress:’08:60:6e:32:

b6:0b’}. According to the data, the server visual-
izes the latest location of every staff on the map KU-
System-1F.

IPS 2IPS 1

InL-App1 InL-App2

InL-App1 InL-App2

InL-DB

InL-QueryService

IPS 2IPS 1

InL
-Adapter1

InL
-Adapter2

(a) conventional InL-App (b) proposed InL-App

Figure 1: Two different architectures of InL-App

It is easily to understand that there is no compatibility
between SmartShop (with Bluepin) and LocEyes (with Red-
pin). Indeed, they are individually developed and operated,
considering the service objectives and the underlying IPS.
Figure1(a) shows the implementation architecture of these
InL-Apps. We can see that each In-App is tightly coupled
with an IPS, and that indoor location data and program are
managed independently within each system. Therefore, one
system cannot share or reuse the data and operation of an-
other system. As a result, each InL-App has to be developed
from scratch, which causes expensive cost and effort.

2.3 Previous Work: DM4InL
In our previous work [15], we have proposed DM4InL

(Data Model for Indoor Locations). It defines a common
data schema for representing indoor location information
without depending on any specific IPS or InL-App. DM4InL
consists of three models: location model, building model and
object model. The location model represents spatial data in
vector format and defines a global position for each building.
The building model represents geographic elements, such as
entrance, routes or room. The object model represents var-
ious mobile objects, such as human, robot or vehicle.

According to Yuan et al. [20], every spatial object must
have theme, space and time attributes, to represent what,
where and when, respectively. Hence, every object in the
object model has an indoor-location point (in the location
model), each of which is explained by spatial elements of a
building (in the building model).

The original concept of DM4InL was published in a work-
shop paper [15]. Changes were made on this paper most sig-
nificantly the addition of ObjectLocationLog, which stores
the history of time-series indoor locations for every object.
We will give some detailed descriptions of DM4InL in Sec-
tion 3.3.

2.4 Long-Term Goal and Scope of Paper
As mentioned in Section 2.2, the conventional architec-

ture lacks compatibility and reusability, due to the tightly
coupling between InL-App and IPS. Therefore, our research
goal is to establish an application platform as shown in Fig-
ure 1(b), which achieves loose coupling between InL-Apps
and the underlying IPS. This paper focuses on implement-
ing a framework that horizontally integrates the existing IPS
and provides common operation as a service shared by var-
ious InL-Apps. To implement such a common framework,

we have to tackle two challenges: data integration and op-
eration integration. The data integration considers how to
convert indoor location data produced by various IPS into
the one conforming to a common data model. Following
the previous work, we investigate how to convert the propri-
etary indoor location data into DM4InL. On the other hand,
the operation integration deals with implement comprehen-
sive queries retrieving application-neutral location data from
DM4InL.

3. CIF4INL: CLOUD-BASED INTEGRATION
FRAMEWORK FOR INDOOR LOCATION

3.1 Architecture
To overcome those challenges mentioned in Section 2.4, we

propose CIF4InL (Cloud-based Integration Framework for
Indoor Location). CIF4InL works as an abstract layer be-
tween InL-App and IPS. This layer first integrates indoor
location data gathered by heterogeneous IPS, and then pro-
vides application-neutral API for various InL-App, by which
InL-App can access to different IPS transparently.

Figure 1(b) shows its architecture. The CIF4InL con-
sists of three components: InL-Adapter, InL-Database, InL-
Query. Features of each component are describe below:

• InL-Adapter (Indoor Location Adapter Service)
This is a Web service that adapts the proprietary in-
door location data to the common data model DM4InL.
When a client uploads proprietary indoor location data
via Web-API, InL-Adapter converts the data into the
one in DM4InL, and inserts the converted data in a
database (InL-Database, see below). Since different
IPS create location data in different format, we need
to implement a dedicated adapter for every IPS.

• InL-Database (Indoor Location Database)
This is a large-scale shared database that manages the
indoor location data provided by InL-Adapter. Every
record of indoor location data complies with DM4InL,
and is stored with time-stamp to keep the history.

• InL-Query (Indoor Location Query Service)
This is a Web service for querying indoor location
data stored in InL-Database. It provides application-
neutral API for various InL-Apps to query indoor lo-
cation of any object. InL-Query provides two types of
API: fundamental API and composite API.

The whole CIF4InL itself is deployed as cloud service,
where the above components are loosely coupled by service-
oriented architecture (SOA).

3.2 Approach Overview
In order to manage the data integration and the operation

integration, CIF4InL is designed specifically as follows:

• Data Integration: Heterogeneous indoor location
data are managed in a single schema of DM4InL. The
conversion from proprietary data format into DM4InL
is conducted by individual InL-Adapter. By doing this,
it is unnecessary to modify the existing IPS. A client
just uploads the location data via Web-API of desig-
nated InL-Adapter, where all the tasks for the data
conversion and storing are delegated to CIF4InL. The
detail of InL-Adapter will be described in Section 4.

• Operation Integration: Heterogeneous operations
for the existing IPS are consolidated by InL-Query,
with which every InL-App can retrieve indoor location
data in DM4InL. Each application does not need to
know technical details of the underlying IPS. As will be
shown in Section 5, InL-Query provides fundamental
API and composite API.

3.3 Data Schema of DM4InL
Before going into the details, we briefly review data schema

of DM4InL, since it is essential for CIF4InL. The DM4InL
aims to prescribe a common data schema, independent of
implementation of IPS or the usage of InL-App. It rep-
resents location of every indoor object with three kinds of
models: location, building and object.

• Location Model: It represents any location in a
building by a relative position (3-dimensional offset)
from the base coordinates of the building. Using the
coordinate, we construct four geometric primitives: lo-
cal point, local line, local polygon and local space. It
also defines global position in [longitude, latitude, alti-
tude] and an angle formed by its X axis and the north
direction.

• Building Model: It defines every building with theme
attributes and global position. It also defines geo-
graphic elements in each building such as partitions,
routes and spots. Each spot (route or partition) is lo-
cated by a local point (a local line or a local space,
respectively) in the location model. It also identifies
every building with a reference point represented by a
global position.

• Object Model: It defines various objects in building,
such as people, appliance, furniture, and object loca-
tion log stores location and time information of ob-
jects. Each object location log refers to a local point
in the location model to represent its position.

Figure2 shows an ER diagram of DM4InL, representing
relationships among the three models. The diagram follows
the notation defined in [19]. A square represents an entity.
A relationship may be defined between a pair of entities,
where

• (+——∈) represents a parent-child relationship,

• (+——· · ·) represents a reference relationship,

• (+——◦+) represents a sub-type relationship

Every indoor location (i.e., LP, LLN or LSP) is associated
with a single building, whereas every building involves more
than one indoor locations. A building (B) is located by a
global position (GPos). A geographic element in a building
(i.e., spot, route or partition) refers to a location entity (LP,
LLN or LSP, respectively). An object location log refers to
a local point and an object entity. The full description of
DM4InL can be found in [15].

4. INL-ADAPTER FOR DATA INTEGRATION

4.1 Overview
To achieve the data integration of heterogeneous IPS, the

proposed CIF4InL implements InL-Adapter (Indoor Loca-
tion Adapter Service). InL-Adapter is a Web service that
adapts the proprietary indoor location data to DM4InL.

As mentioned in Section 3.2, clients of each type of IPS
first uploads the proprietary location data to InL-Adapter,
and then the InL-Adapter converts the data into the one
with DM4InL.

To implement this, we have to address two issues: topology
adaptation and data conversion. The topology adaptation
considers the structure of how to upload the measured data
to InL-Adapter, which will be described in Section 4.2. The
data conversion considers how the InL-Adapter converts the
uploaded data into DM4InL format, which will be described
in Section 4.3.

4.2 Topology Adaptation
As a first step, we need to slightly modify the existing IPS,

so that the measured indoor location data are uploaded to
an InL-Adapter. For this modification, we have to consider
the system topology of the IPS. However, the topology varies
from one IPS to another. Therefore, we propose different
adaptation patterns for different topology.

According to Liu et al. [10], there are four different sys-
tem topology for IPS: remote-positioning, self-positioning,
indirect remote-positioning, and indirect self-positioning.

Figure 3 shows the four topology. In the figure, a triangle
represents a static device or station deployed in the infras-
tructure. A circle represents a mobile device to be located.
A rectangle represents a server. A hexagon represents an
InL-Adapter, to which we newly adapt the existing IPS. The
labels “M”, “R” and “T” represent roles of measuring unit,
signal receiver, and signal transmitter, respectively.

Figure 3 (1) shows the remote-positioning topology, where
the remote server locates the mobile device. The static sta-
tions receive the signal transmitted from the mobile device,
and forward the signal to the server. The server then com-
putes the location of the mobile device. An IPS with pres-
ence sensors in [7] belongs to this topology. In the remote-
positioning topology, all the location data are managed in
the server. Therefore, we modify the server so as to upload
the measured data to an InL-Adapter.

Figure 3 (2) shows the self-positioning topology, where the
mobile device itself measures the location. This mobile de-
vice receives signals from infrastructure, and computes the
current location from the signals. IMES [12] and GPS be-
long to this topology. In the self-positioning topology, all

Global Position (GPos)

Route (R)

Spot (S)

Partition (P)

Local Line (LLN)

Local Space (LSP)

Appliance(A)

People(P)

Building Model Location Model Object Model

Building (B) Object(O)

Local Point (LP)

ObjectLocationLog

Figure 2: DM4InL as a composition of 3 models

R

T

InL-
Adapter

InL-
Adapter

InL-
Adapter

InL-
Adapter

Master
Station

R

R

R

T

T

T

M

M M

M

T

Aggregation
Remote
Server

T

T

T

R

(1) (2)

(3) (4)

Remote
Measuring
Server

Figure 3: Four different IPS topologies and adaptation patterns

the location data are managed by the mobile device. There-
fore, we modify the mobile device so as to upload measured
location data to an InL-Adapter.

Figure 3 (3) shows the indirect remote-positioning topol-
ogy, where the mobile device is located indirectly by the
remote server. To cover wide area or multiple buildings,
several stations with the measuring capability collaborate
to send the location data to the aggregation server. In the
indirect remote-positioning topology, the location data are
managed by either the measuring stations or the aggregation
server. Considering the fact that the aggregation server is of-
ten complex and is implemented with un-modifiable patent
products, we choose to modify the stations to upload the
data to an InL-Adapter.

Figure 3 (4) shows the indirect self-positioning topology,
where the mobile device indirectly obtains its location via
the remote server. The mobile device first receives signals
from the infrastructure, and then forwards the signals to the
remote server. The server computes the current location,
and returns the location data to the mobile device. With

the development of IoT and cloud technologies, this type of
IPS are gaining popularity. RedPin and BluePin introduced
in Section 2.1 belong to this topology. In the indirect self-
positioning topology, the location data are held by either
the mobile device or the measuring server. Considering the
complexity and workload of the measuring server, we choose
to modify the mobile device to upload the returned location
data to an InL-Adapter.

4.3 Data Conversion
The second step is to consider how the InL-Adapter con-

verts the uploaded location data into DM4InL. In general,
every IPS defines its own location data format relying on
the specific infrastructure and/or positioning algorithm. It
is, therefore, impossible to enumerate data converters for all
possible IPS in this paper. Instead, we present a template
of how an InL-Adapter should convert the proprietary data
into DM4InL. Then the template is validated by practical
examples with RedPin and BluePin.

Figure 4 shows the configuration template of InL-Adapter.

M DB

Measuring
Unit

Master
Data

InL-Database

Data
Converter

InL-Adapter

Measured
Data

Converted
Location Data

Figure 4: Configuration of InL-Adapter

As seen in the figure, the role of the InL-Adapter is to con-
vert the measured location data in a proprietary format into
the one in DM4InL. To achieve the conversion, two kinds of
data depending on IPS are essential: measured data and
master data. The measured data is real-time location data
(i.e., raw data) measured by the given IPS. The master data
is static data specifying various configuration information of
IPS, such as users, devices, stations, buildings and indoor
maps. As shown in Figure 4, every InL-Adapter contains
data converter, which defines a specific mapping from the
measured data into DM4InL based on the master data.

To help understanding, we demonstrate the process of
data conversion of BluePin and RedPin, using instances of
location data L1 and L2 (See Section 2.1). According to
DM4InL, we divide data items in L1 (or L2) into three ele-
ments: time, object, position. As for the time information,
it is easy to introduce the common representation in UTC.

For example, 2015/07/27 11:23:45 JST in L1 can be con-
verted into 2015-07-27T02:23:45. For L2, since RedPin
does not define time attribute, we need to modify the Red-
Pin client to add the times tamp to L2, like 2015-07-27T01:
11:01.

As for the object information, we create a mapping from
a proprietary ID of the located object into an object ID.
For instance, the person ID niu in L1 of BluePin is bound
to object ID of DM4InL. Using the master data of BluePin,
other data items of the object model can be filled. On the
other hand, the macAddress in L2 of RedPin can be mapped
to the object ID of DM4InL, since it is a unique string.

The conversion of the position information is rather com-
plex. For L1, we need to convert the symbolic information
“22” and “S101 Entrance” into a spot in building model of
DM4InL. Also, the spot should be represented by a local
point. For this, we use the master data of BluePin to look
up the detailed location information of 22. Suppose that the
detailed information points position (3.50m, 5.5m, 1.5m) of
a building B001. Then we create a spot “S101 Entrance”
in B001, whose coordinate is (3.50, 5.50, 1.50). Finally, we
define a mapping from L1 to the spot.

On the other hand, as seen in L2, RedPin represents the
position based on 2-dimensional coordinate over a given
map, i.e., image of the floor plan. Therefore, multiplying
the coordinates by the map scale derives the actual X and
Y offsets. The Z offset can be derived from the altitude of
the floor. Thus the coordinates of a local point can be calcu-
lated. The spot information can be derived from meta-data
of the floor ma. For instance, suppose that KU-System-1F

represents a map of the first floor of building B001 with al-
titude of 1.5m, and that the map scale is 1/51.6. Then, L2
is converted into a spot bound to a local point (6.70, 10.44,
1.50).

Based on the above conversion, the heterogeneous mea-
sured data L1 and L2 are converted into DM4InL format
showed in Table 1, 2, 3.

Table 1: LocalPoint
Pcode x-offset y-offset z-offset Building-Seq
P001 3.50 5.50 1.50 B001-01
P002 6.70 10.44 1.50 B001-02

Table 2: Spot
BuildingID SpotID SpotName PointCode
B001 s00001 S101-Entrance P031
B001 s00002 S103 P001

Table 3: ObjectLocationLog
ObjectID P-Code DateTime
niu P001 2015-07-27T02:23:45
08:60:6e:32:b6:0b P002 2015-07-27T01:11:01

We have developed an InL-Adapter for RedPin and mod-
ified the client of RedPin. The modification of RedPin
Android client comprised of around 418 lines of code, and
the InL-Adapter of RedPin comprised of around 536 lines
of code. Technologies used for the implementation are as
follows: Language: Java 1.7.0, Database: MySQL 5.1,
Web server: Apache Tomcat 7.0.57, Web service en-
gine: Apache Axis 2 1.6.2.

5. INL-QUERY FOR OPERATION
INTEGRATION

5.1 Overview
To achieve the operation integration, the proposed CIF4InL

implements InL-Query (Indoor Location Query Service). InL-
Query is a Web service that provides application-neutral
API for querying indoor location data stored in InL-Database.
It is supposed to be deployed on cloud.

According to the data schema of DM4InL, we develop two
types of API for InL-Query: fundamental API and compos-
ite API, as mentioned in Section 3.2 The fundamental API
provides interface for querying entities within a signal model
at a time: location, building or object model. The details
will be described in Section 5.2. The composite API allows
advanced queries accessing multiple models simultaneously,
which will be explained in Section 5.3.

5.2 Fundamental API
DM4InL represents location information of every indoor

object with three kinds of models: location, building and
object. (See Section 3.3). Depending on model to which a
given query belongs, we define three groups of API: location
query API, building query API and object query API.

Query entity By
Attribute

items
get

Figure 5: Derivation process of building and object
query API

Table 4: Detail Entity and Attribute Item Table
QUERY
ENTITY

ATTRIBUTE ITEM

BUILDING
Theme Attribute BuildingID, Name, Type

Spatial Attribute GPID

PARTITION
Theme Attribute PartitionID, Name

Spatial Attribute SpaceCode, BuildingID

ROUTE
Theme Attribute RouteID, Name

Spatial Attribute LineCode, BuildingID

SPOT
Theme Attribute SpotID, Name

Spatial Attribute PointCode, BuildingID

OBJECT
Theme
Attribute

NULL ObjectID, Type

People ObjectID, name, sex, …

Appliance ObjectID, Appliance Type, status, …

Spatial Attribute PointCode

Time Attribute Date Time

5.2.1 Location Query API
This API provides a set of methods (i.e., functions) query-

ing any entity within the location model. As shown in Fig-
ure 2, the location model consists of four entities. Each en-
tity has a set of methods that returns appropriate instances
based on given known attributes. The naming convention of
the methods is get[TargetEntity]By[given attribute].
For instance, getLPByPointCode(pointCode) returns a lo-
cal point designated by the given point codes.

The local query API also provides methods querying spa-
tial relation among geometric primitives in location model.
The spatial relation can be used to investigate how a spatial
object in a space is located in relation to another object. In
Location Query API, we define two types of spatial relation:

• Topological relation: It represents how an object is
topologically related to another object. The operators
manipulating the topological relation include: within,
covers, coveredBy, intersects, touches, equals, di-
sjoint, crosses, overlaps. For instance, getLPwitni-
nLSP(LocalSpace) returns all the local points within
a given certain local space.

• Distance relation: It represents how far an object is
from another object. The operators manipulating the
distance relation include: at, nearby, vicinity, far.

For instance, getLPnearbyLP(LocalPoint) returns all
local points nearby a given local point.

5.2.2 Building Query API
This API provides methods for querying entities defined

in building model. In order to cover all possible queries, we
derive the methods based on the structure shown in Figure
5. The figure shows that every method is constructed by
varying query entity and attribute items. The query entity
represent an entity to be returned by the method. Each
entity has a designated set of attribute items, which explain
the entity from the theme or spatial perspectives. Table
4 summarizes the entities and attribute items contained in
the building model (as well as in the object model). The
methods are derived from all the possible combinations of
the entities and the attribute items.

For instance, getBuildingByGPID(GPID) returns a build-
ing identified by a given global position ID. Also, getRouteB-
yName(buildingID, spotname) searches routes in a given
building by its name.

5.2.3 Object Query API
This API provides methods querying entities in the object

model. Similar to the Building Query API, the methods
are constructed based on the structure in Figure 5. The
attribute items are shown in the bottom of Table 4. We can
see that the time attributes exists for the object entity, as
an object usually take different location as the time passes.
The methods are derived from all the possible combinations
of the entities and the attribute items.

For instance, getObjectsAtPoint(pointcode, dateTime)

returns a set of object that exist in a given local point on
given data and time.

5.3 Composite API
The fundamental API allows only basic queries limited

within a signal model. Hence, it is often too primitive to
meet sophisticated requirements of InL-App, which requires
developers to integrate multiple API manually. For example,
to implement a query “Who is in Room S101?”, the developer
need to integrate the building query API and the object
query API. This motivated us to develop the composite API,
which allows high-level queries by internally combing some
fundamental API.

Methods of the composite API have been derived based on
typical use cases of location query in InL-App, so that they
can reduce development cost and effort. Investigating the
typical use cases, we have developed three type of composite
API. The first type is building−object API, which returns ge-
ographic elements of a building based on known information
of an object. For instance, getPartitionContainObject(o-
bjectID) returns a partition that contains a given object.
The method is implemented by re-using multiple methods
of the fundamental API, specifically:

1 Partition getPartitionContainObject(objectID)
2 Object o=geObjectByID(objectID)
3 LocalSpace ls=getLSPContainsLP(o.pointCode)
4 Partition p=getPartitionByCode(ls.spacecode)
5 return p

The second type is object−building API, which searches
objects based on known geographic elements of building. For
instance, getPeopleWithinPartition(bName, pName) returns

people within a partition pName of a building bName. This
method can be implemented as follows:

1 Person [] getPeopleWithinPartition(bName,
2 pName)
3 Partition p=getPartitionByName(bName, pName)
4 LocalSpace ls=getLSPBySpaceCode(p.spaceCode)
5 LocalPoint[] lps = getLPcontainedInLSP(ls)
6 Person [] H = empty
7 foreach ls in lps
8 Person h=getPersonAtPointIntim(
9 lp.pointCode, NOW)

10 push(H, h)
11 return H

The last type is calculation API, which measures a certain
metric among object and geographic elements, using the spa-
tial relations. For instance, getDistanceBetweenSpotAndOb-
ject(buildingID, spotId, objectId) returns a distance
between a given spot and a given object. This method can
be implemented as follows:

1 double getDistanceBetweenSpotAndObject(
2 buildingId, spotId, objectId)
3 Spot s=getSpotBySpotId(buildingId, spotId)
4 Object o=getObjectByObjectId(objectId)
5 double d = getDistanceBetweenLP(
6 s.pointcode, o.pointcode)
7 return d

The implementation of the API is currently under way.
Technologies used for the implementation are as follows:

• Language: Java 1.7.0,

• Database: MySQL 5.1,

• Web server: Apache Tomcat 7.0.57,

• Web service engine: Apache Axis 2 1.6.2.

6. EVALUATION
To evaluate the practical feasibility of CIF4InL, we con-

duct a comparative study among three IPS: RedPin, BluePin
and CIF4InL (that integrates RedPin and BluePin).

6.1 Capabilities for Location-Dependent
Queries

The comparison is based on sufficiency of essential ca-
pabilities of location-dependent queries [5]. The location-
dependent means that any change of the locations of an
object significantly affects the result of query for the object.
For example, suppose that a user A wants to find friends
within a range of 100m from A while navigating a shopping
center. The result of the query depends on A’s current posi-
tion, as well as on the location of the friends. According to
[5], the following capabilities should be supported especially
in the indoor location queries:

• Position Queries return the locations of mobile and
static objects, and are processed according to either a
geometric or a symbolic model of space.

• Navigation Queries encompass all queries that di-
rectly help the users to find and reach some points
of interest by providing them with navigational infor-
mation, while optimizing some criteria such as total
traversed distance or travel time.

• Range Queries are used to find and retrieve infor-
mation on objects of interest or places within a user-
specified range or area.

• k Nearest Neighbor(kNN) Queries search for the
k closest qualifying objects to a moving user with re-
spect to his or her current location.

Moreover, Liu et al. [10] suggested that the time is also
an essential attribute for the location-dependent query.

• Time queries search a target object and a location
by time, or retrieves the time from an object and a
location. Each query depends on a record that the
object stayed in the location at the time.

6.2 Result of Comparison
Table 5 compares the three IPS with respect to the above

five capabilities. In the table, labels ⃝, △ and × repre-
sent that the capability is “satisfied”, “partially satisfied”,
and “not satisfied”, respectively. First, we can see that all
the three IPS supports the position queries. Although their
representations of the position are different, they all have
methods to ask the indoor location of a target object.

The navigation queries cannot be supported by RedPin or
BluePin. In RedPin and BluePin, no topology information
among multiple locations is not maintained. Also, it cannot
be derived from individual location data, since each loca-
tion is represented as a pre-defined venue (not a position).
However, once CIF4InL converts their location data into
DM4InL, the topology can be defined using the coordinates
of the locations. Using the topology, CIF4InL can support
applications to implement navigation queries. Note, how-
ever, that the queries are limited to the spots or positions
that are already registered in InL-Database.

CIF4InL binds indoor location with a three-dimensional
coordinate in DM4InL. Using the topological and distance
relations and the calculation API, one can easily implement
the range queries. However, the range queries cannot be sup-
ported by BluePin, since BluePin specifies each location as
a symbolic label, from which we cannot calculate the range.
The location data of RedPin contains a two-dimensional co-
ordinate on the map, from which we can calculate the dis-
tance between two locations. However, when two locations
are represented in separate maps (e.g., different floors), the
distance cannot be calculated. In that sense, RedPin cannot
fully satisfy the range queries. The same discussion applies
to the kNN queries, since the essentials of the kNN queries
are almost the same as the ones of the range queries.

As for time query, RedPin cannot support them as the
data does not contain any time attribute, BluePin contains
a time-stamp in the location data, while CIF4InL manages
time-series data of ObjectLocationLog in DM4InL. There-
fore, these two IPS can support the time queries.

Based on the above discussion, we can see that CIF4InL
supports more capabilities for the location-dependent queries.
Through the data and operation integration, CIF4InL even
enriches the existing proprietary IPS. Thus, it is expected
that application developers can develop InL-App more effi-
ciently and intuitively, using CIF4InL.

7. RELATED WORK
Our work is situated closely to the intersecting fields of in-

door location framework, indoor positioning platforms, and

Table 5: Comparison of three IPS w.r.t. capabilities of location-dependent queries
IPS Position Navigation Range kNN Time
RedPin ⃝ × △ △ ×
BluePin ⃝ × × × ⃝
CIF4InL ⃝ △ ⃝ ⃝ ⃝

data modeling techniques for indoor spaces. A number of
indoor positioning framework or platforms have been pro-
posed so far.

Brachmann et al. [2] proposed a multi-platform software
framework. It aims to manage sensor data from different
smartphone platforms for better understanding of RSSI(Wi-
Fi)-based and other sensor-based IPS. The key idea of this
framework lies in the normalization techniques for individ-
ual sensor data, such as magnetometer, accelerometer and
gyroscope. Thus, the framework is limited for wireless IPS,
which belongs to indirect self-positioning system (see Fig-
ure 3-(4)). It does not consider other IPS topology. In this
sense, the application scope is narrower than CIF4InL.

Gubi et al. [3] presented a platform that can dynami-
cally provide efficient location technologies. As a user moves
around a building, the platform suggests a best-available in-
door positioning method based on current position of the
user. The platform manages building data in the form of
symbolic map, and markup of associated RF infrastructure
Wi-Fi and Bluetooth. However, the platform assumes that
applications manage their own maps individually. So, it
does not provide application-neutral API that can re-use
the indoor location data over different applications.

INSTEO Inc. [6] present an IPS technology that relies
on optimal hybridization algorithms of multiple information
sources. The data source includes power measurement of
Wi-Fi, Bluetooth Low Energy signals, smartphone sensors
(accelerometer, compass, barometer, and so on). However,
this approach is similar to Gubi’s, which focuses on the com-
bination of location technologies at the IPS level. Neither
of them aims the loose coupling between IPS and InL-App.

8. CONCLUSION
In this paper, we have proposed a cloud-based integration

framework, called CIF4InL, in order to achieve data and
operation integration for heterogeneous IPS. To achieve the
data integration, CIF4InL implements InL-Adapter which
provides different adaptation patterns for different system
topology of IPS. We also have implemented InL-Query, which
provides fundamental API and composite API based on the
data schema of DM4InL. CIF4InL contributes to loose cou-
pling of IPS and InL-App, which will significantly improve
the efficiency and re-usability in the InL-App development.
We have actually applied the proposed framework to inte-
grate two existing IPS, RedPin and BluePin. In addition, we
have evaluated the CIF4InL by investigating the sufficiency
of the five capabilities of location-dependent queries.

As for the future work, we plan to conduct further evalu-
ation of CIF4InL, with respect to performance and security
for practical use cases. We are also interested in how to
address more pragmatic issues. They include uncertainty
of location caused by unreliable devices, as well as feature
interactions when integrating data and operations.

9. ACKNOWLEDGMENTS

This research was partially supported by the Japan Min-
istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (B) (No.26280115, No.15H02701),
Young Scientists (B) (No.26730155), and Challenging Ex-
ploratory Research (15K12020)].

10. REFERENCES
[1] P. Bolliger. Redpin - adaptive, zero-configuration

indoor localization through user collaboration. In
Proceedings of the First ACM International Workshop
on Mobile Entity Localization and Tracking in
GPS-less Environments, MELT ’08, pages 55–60,
September 2008.

[2] F. Brachmann. A multi-platform software framework
for the analysis of multiple sensor techniques in hybrid
positioning systems. In Proceedings of 10th Conference
on Telematics Engineering, JITEL 2011, September
2011.

[3] K. Gubi, R. Wasinger, M. Fry, J. Kay, T. Kuflik, and
R. Kummerfeld. Towards a generic platform for indoor
localisation using existing infrastructure and symbolic
maps. In Proceedings of 18th International Conference
on User Modelling, Adaptation and Personalisation,
June 2010.

[4] A. Harter, A. Hopper, P. Steggles, A. Ward, and
P. Webster. The anatomy of a context-aware
application. In Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile
Computing and Networking, MobiCom ’99, pages
59–68, 1999.

[5] S. Ilarri, E. Mena, and A. Illarramendi.
Location-dependent query processing: Where we are
and where we are heading. ACM Comput. Surv.,
42(3):12:1–12:73, March 2010.

[6] INSITEO Inc. Plat-
form of insiteo, 2014. Retrieved September 7, 2015 from
http://www.insiteo.com/joomla/index.php/en/plateform.

[7] Y. Kashio, S. Matsumoto, S. Saiki, and M. Nakamura.
Design and implementation of service framework for
presence sensing in home network system. In The
Third International Conference on Digital
Information, Networking, and Wireless
Communications, DINWC2015, pages 109–114,
February 2015.

[8] N. Kothari, B. Kannan, E. D. Glasgwow, and M. B.
Dias. Robust indoor localization on a commercial
smart phone. Procedia Computer Science,
10:1114–1120, August 2012.

[9] J. A. B. Link, P. Smith, N. Viol, and K. Wehrle.
Footpath: Accurate map-based indoor navigation
using smartphones. In Proceedings of 2011
International Conference on Indoor Positioning and
Indoor Navigation (IPIN), pages 1–8, September 2011.

[10] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of
wireless indoor positioning techniques and systems.
Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 37(6):1067–1080,
November 2007.

[11] K. Lorincz and M. Welsh. Motetrack: A robust,
decentralized approach to rf-based location tracking.
In T. Imielinski and H. F. Korth, editors, Location-
and Context-Awareness, pages 63–82. Springer Berlin
Heidelberg, 2005.

[12] D. Manandhar, S. Kawaguchi, and H. Torimoto.
Results of imes (indoor messaging system)
implementation for seamless indoor navigation and
social infrastructure platform. In Proceedings of the
23rd International Technical Meeting of The Satellite
Division of the Institute of Navigation, ION GNSS
2010, pages 1184–1191, September 2010.

[13] M. K. Mohamed, S. Patra, and A. Lanzon. Designing
simple indoor navigation system for uavs. In
Proceedings of 19th Mediterranean Conference on
Control Automation (MED), pages 1223–1228, June
2011.

[14] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil.
Landmarc: indoor location sensing using active rfid.
In Proceedings of the First IEEE International
Conference on Pervasive Computing and
Communications (PerCom 2003), pages 407–415,
March 2003.

[15] L. Niu, S. Matsumoto, S. Saiki, and M. Nakamura.
Considering common data model for indoor
location-aware services. In Proceedings of the 4th
International Workshop on Location and the Web,
LocWeb ’14, pages 25–32, November 2014.

[16] P. Tarrio, M. Cesana, M. Tagliasacchi, A. Redondi,
L. Borsani, and J. R. Casar. An energy-efficient
strategy for combined rss-pdr indoor localization. In
Proceedings of 2011 IEEE International Conference on
Pervasive Computing and Communications Workshops
(PERCOM Workshops), pages 619–624, March 2011.

[17] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik.
Indoor localization without infrastructure using the
acoustic background spectrum. In Proceedings of the
9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, pages
155–168, June 2011.

[18] R. Wand, A. Hopper, V. Falcao, and J. Gibbons. The
active badge location system. ACM Trans. Inf. Syst.,
10(1):91–102, January 1992.

[19] K. Watanabe. Introduction to Data Modeling for
Database Designing. Nippon Jitsugyo, Tokyo, 2003.

[20] M. Yuan. Wildfire conceptual modeling for building
gis space-time models. In Proceedings of GIS/LIS ’94,
Annual Conference and Expo Phoenix, Arizona,
GIS/LIS ’94, pages 860–869, October 1994.

[21] J.-C. Zufferey, A. Klaptocz, A. Beyeler, J.-D. Nicoud,
and D. Floreano. A 10-gram microflyer for
vision-based indoor navigation. In Proceedings of 2006
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3267–3272, October 2006.

