
International Journal of Smart Home

Vol. 9, No. 8 (2015), pp. 151-162

http://dx.doi.org/10.14257/ijsh.2015.9.8.16

ISSN: 1975-4094 IJSH

Copyright ⓒ 2015 SERSC

A Proposal for Deriving Timing Constraint Context on Using

Multiple Sensor Web Servers in Service-Oriented Home Network

BenYan
1
, Hua-Ping Yao

1
, Masahide Nakamura

2
 and Shinsuke Matsumoto

2

1
LuoYang Institute of Science and Technology

No. 90 Wangcheng Road, Luolong District,

Luoyang City, Henan Province, 471023, China
2
Kobe Universities

1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
1
 {yanbenjp, yhplisajp}@gmail.com

2
 masa-n@cs.kobe-u.ac.jp

Abstract

The recent ubiquitous/pervasive technologies allow general household appliances to

be connected within the network at home which is named home network system (HNS, for

short). The great advantage of HNS is that it provides more value-added and powerful

services by integrating multiple appliances and various sensors. Especially, sensor

applications in HNS become much more important technology to build a high-level HNS

service. In our earlier study, we have proposed the sensor service framework (SSF, for

short) in the home network system for developing context-aware service, which wraps

various sensor devices by web services to achieve easy development of context-aware

service. In the SSF, a context was defined by a condition over a single sensor, or multiple

sensors that derived by logical or arithmetic operations. However, the contexts were

limited to the ones that can be defined by current values of the sensors, and can not

describe the timing constraint relation in context on using multiple sensor web servers

such as “after opening the door for 2 seconds, passed the hall” or “setting on the sofa”,

and hindered us from creating high-level timing constraints context.

In this paper, we propose a method for deriving the timing constraints context bases on

the extended study of SSF. We first divide timing constraint in the context into two types:

the sequential timing constraint and the continuous timing constraint. By using two types

of timing constraint, the high-level context can be defined as conditions by using multiple

sensors. After this, we also present a timer service to implement the timing constraints

context within the SSF. We finally demonstrate how the high-level contexts with the timing

constraints are registered and detected in a real home network system.

Keywords: home network system (HNS), context-aware services, sensor service

framework (SSF), timing constraints context, sequential timing constraint, continuous

timing constraint

1. Introduction

The ubiquitous/pervasive technologies allow general household appliances to be

connected within the network at home which is named Home Network System (HNS, for

short). The great advantage of HNS is that it provides more value-added and powerful

HNS services by integrating multiple appliances and various sensors. Recently, to provide

high-level HNS service, the study about the development of context-aware application in

HNS is becoming more and more notable [1][6]. The context refers to an information

collection which contains the status of user，machine, surrounding environment, and

various entities in HNS. It is always defined as a conditional expression by using the

mailto:masa-n@cs.kobe-u.ac.jp

International Journal of Smart Home

Vol. 9, No. 8 (2015)

152 Copyright ⓒ 2015 SERSC

value over a single or multiple sensors. The context-aware application means executable

software which can be implemented when a context is established.

In our earlier study [7], we proposed a Sensor Service Framework (SSF, for short)

based on the idea of service-oriented architecture (SOA, for short) [8]. The SSF can make

a developer use the sensor device (such as temperature sensor, illumination sensor etc.) as

a standard web service by using the standard interfaces in HNS, such as getting value

from sensor, registering context condition etc.. Since the SSF does not depend on any

device or platform, it allowed loose coupling between applications, appliances and

sensors, and the developer can integrate arbitrary appliances and sensors easily by using

web service for developing the context aware application in HNS.

After this, we also propose the Sensor Mush up Platform (SMuP, for short) based on

the SSF. The SMuP is used to derive more complex context which combines multiple

sensor web services, such as the context [Temperature is 28 degrees or more and humidity

is 40% or less] which integrates temperature sensor and moisture sensor, and which can

be presumed as an advanced context.

However, the context presumed by SSF/SMuP is defined as a condition expression

over a single or multiple sensors by using logical or arithmetic operations, and is

limited to using the current values of the sensors. Thus, we can not describe the

timing constraints contexts such as [ex.: after opening the door for 2 seconds,

passed the hall], [ex.: setting on the sofa].

In this paper, the goal is to propose a method to define and presume the high-level

timing constraints context as an extension of our earlier study of SSF/SMuP. We

first define the timing constraint into 2 types, the sequential timing constraints and

the continuous timing constraints. The sequential timing constraints context is a

sequential time limitation between two contexts and means a relation like this: one

context is detected within few seconds after another context is detected. The

continuous timing constraints context is a continuous time limitation and means a

context is continuously established during a period of time. The high-level context

can be defined by combining such timing constraints between multiple contexts. In

order to measure the time for the above timing constrains context, we a lso proposed

the timer service as a web service to implement them. To evaluate the effectiveness

of the proposed method, we have implemented two contexts (the Entering context

and the Sleeping context) in testing environment CS27-HNS. As a result, the above

timing constraints context can be registered and detected in CS27-HNS by using our

proposed method.

2. Preliminaries

2.1. Home Network System (HNS)

A HNS consists of one or more networked appliances connected to a LAN at

home. In general, each appliance has a set of application program interfaces (APIs),

by which the users or external software agents can control the appliance via the

network. A HNS typically has a home server, which manages all the appliances in

the HNS. Services and applications are installed on the home server. A HNS service

provides a sophisticated and value-added service by using multiple appliances

together. The HNS service is implemented as a software application that invokes the

APIs of the appliances. The appliances and services are deployed in a home, which

is characterized by environmental attributes (e.g., temperature, humidity, brightness,

current, sound, space) [11-[12].

In our library, based on service-oriented architecture (SOA) [4], we are

developing a HNS texting environment [CS27-HNS] which can use various

appliances as web service [10]. The appliances-dependent control method and

http://www.iciba.com/registering

International Journal of Smart Home

Vol. 9, No. 8 (2015)

Copyright ⓒ 2015 SERSC 153

communication protocol are wrapped by web service, and all appliance in CS27-

HNS can be used as a web service of SOAP or REST formality. For example, we

can set TV into 6ch by accessing URL: [http://cs27-

hns/TVService/setChannel?channel=6].

2.2. Sensor Service Framework (SSF)

The sensor service framework (SSF) [2] was developed as an application

framework for deploying sensor devices as web service in CS27-HNS easily. The

web service wraps sensor-specific control logic into standard API. Each sensor has

the measurable property. For example, the temperature sensor has a property

temperature (℃), the light sensor has a property brightness (lux), and the value of

these properties can be acquired from getValue () method in CS27-HNS (Figure 1).

Figure 1. Standard API in SSF

Moreover, by implementing periodic observation of the change of sensor

service’s properties, the context can be detected based on the registered conditional

expression (Figure2). For example, we defined a context named “hot” and registered

it as context condition expression: “temperature > 27” (join context name and

condition together, we write the above context as [hot: temperature >27]). The

temperature sensor keeps observing “temperature” and detects context “hot” when

the value of the “temperature” became higher than 27℃. The registration of context

condition is implemented as “register ()”, and the context can be called from any

web service with using “subscribe ()” method. By using this web service, we can

build context-aware service easily just by appointing am appliance of HNS. For

example, the HNS service of “when the room is hot, the air -conditioner will turn

on” can be implemented as [subscribe (hot, http://cs27-

hns/AirConditionerService/on)]

APPLICATION

 Temperature Sensor

Property：temperature

Subscribe()

Temperature Sensor
Service

Tell me when “hot”

Notify()

“hot”is true

Registered ConteXt

Context Conditions

“cold”: temperature < 5℃
“hot”: temperature > 27℃

...

http://ejje.weblio.jp/content/registration
http://cs27-hns/AirConditionerService/on
http://cs27-hns/AirConditionerService/on

International Journal of Smart Home

Vol. 9, No. 8 (2015)

154 Copyright ⓒ 2015 SERSC

Figure 2. Registered Conditional Expression and Context Presumed
2.3. Sensor Mash-up Platform (SMuP)

In SSF, we note that the sensor service is always limited to the use of sensor. In

order to build complex service by using various sensors, we developed the Sensor

Mash-up platform (SMuP). The SMuP can create a virtual sensor service

dynamically as an arithmetical or a logical operation on combining the property of

existing sensor service or the condition of existing context. For example, take the

average value of brightness by using multiple light sensors, combining temperature

sensor and moisture sensor together to create a comfortable sensor. Based on this

idea, the SMuP can build and detect more complex context easily, which can not be

detected by using one sensor in SSF.

The virtual sensor can be created by createSensor () method, and the

addProperty() method can create new property for virtual sensor by combining

exiting sensors. Because the virtual sensor can be implemented as a sensor service,

it can be implemented by using register () and subscribe () method, which is the

same as sensor service of SSF.

3. Research Goal and Approach

In our earlier study (SSF/SMuP), the condition of context was limited to the use

of the current value of a sensor; it does not support to define the timing constraints

context on using multiple sensors.

For example, we can not define and detect the flow contexts by using SSF/SMuP:

(P1: came home): [after opening the door for 2 seconds, passed the hall]

(P2: have a rest): [setting on the sofa]

(P3: begin to watch TV during a break): [setting on the sofa and begin to watch

TV]

Under this circumstance, our goal is to propose a method to derive the timing

constraints context as an extension of the earlier study of SSF/SMuP. To achieve

this goal, we first analyze the timing constraints analysis and classify the timing

constraints context into two types:

[Type1]: Sequential Timing Constraints Context

[Type2]: Continuous Timing Constraints Context

After this, we also propose a timer service which can measure the time of the

timing constrains context. At last, we implement cases study in our testing

environment CS27-HNS to prove the proposed method is effective.

4. Proposed Method

4.1. Key Idea

The key idea of this paper is to define timing constrains into two types. One is

“the sequential timing constraint”; another is “continuous timing constraint”. The

timing constraint means a limited relation of times for one or multiple contexts must

be satisfied. For example, the detection conditions of context described in chapter 3

can be defined as the flowing timing constrains:

 P1 (came home): [The motion sensor of entrance reacts within 5

seconds after the door sensor reacts.]

International Journal of Smart Home

Vol. 9, No. 8 (2015)

Copyright ⓒ 2015 SERSC 155

 P2 (have a rest): [The motion sensors of a sofa continue reacting

for 15 seconds.]

 P3 (begin to watch TV during a break): [The TV is set to ON

within 10 seconds after the motion sensors of a sofa react for 15 seconds.]

4.1.1. Sequential Timing Constraints：The sequential timing constraints is a time

limited relation that a context Cx is detected within n seconds after another context

Cy is detected. T is a new context with join Cx and Cy.

[T : #n [Cx , Cy]]

For example, a context [C1: opening door] detected by the door sensor of

entrance can be defined as [EntranceOpen: DoorSensor.isOpen == true], another

context [C2: people in entrance] detected by the motion sensor of entrance can be

defined as [HumanDetect: MotionSensor1.motion==true], then the detected

condition P1 of the new context [T1: coming home] in 4.1 can be defined as

[ComingHome : #5 [EntranceOpen, HumanDetect]]

On the other hand, reverse the turn of C1 and C2 above, another detected

condition of a new context [T2 : Leaving home] can be defined as

[LeavingHome : #5 [HumanDetect, EntranceOpen]]

Moreover, the context including more than three can also be expanded in to new

timing constraints context. For example, join a new context [C3: people in

washroom] which is detected by the motion sensor of the washroom into context T1,

the detected condition of C3 can be defined as [WashRoom:

MotionSensor2.motion==true], then a new context [T3: washing hands] can be

created and defined as

[WashHands: #60 [ComingHome, WashRoom]]

4.1.2. Continuous Timing Constraints：The continuous timing constraints is a time

limitation that a context Cx continues being established during period of time n. T is

a new context.

[T : @n[Cx]]

For example, a context [C4: somebody is setting on sofa] detected by the setting

sensor of sofa can be defined as [HumanSitting: SittingSensor.isSitting == true],

then the detected condition P2 of the new context [T4: have a rest] in 4.1 can be

defined as

[Rest: @15 [HumanSitting]]

Moreover, the logic operation between multiple contexts can be used in the above

formula too. For example, a context [C5: people is not in living room] detected by

the sensor of living room can be defined as [NotHumanDetect:

MotionSensor3.motion == false], another context [C6: air-conditioner is working]

is defined as [ACWorking: AC.power==true], then a new context [T5: WastePower]

for power saving can be defined as

[WastePower: #600 [NotHumanDetect && ACWorking]]

4.1.3. Combination of Timing Constraints Context: Our proposal is also applicable

to the combination of sequential and continuous timing constraints contexts to

create for creating much more complex application. For example, for a context [C7:

TV on] is defined as [TVon : TV.power==true], by joining the context [T4:have a

rest] that was defined in 4.3, a new context [T6: have a rest and watching TV] can

be defined as

[WachingTV : #10 [@15[HumanSetting] , TVon]]

http://ejje.weblio.jp/content/combination

International Journal of Smart Home

Vol. 9, No. 8 (2015)

156 Copyright ⓒ 2015 SERSC

4.2. Registration and Detection of Timing Constrains Context with Time Service

In order to implement the timing continuous context in HNS, we also proposed a

time service for time measurement which consists of 4 methods and 3 states.(Table

1)

Table 1. Main Components of Timer Service

4.3. Registration and Detection Steps for Timing Constrains Context

In this section, we will show how to register and detect the timing constrains

context by using sensor service and timer object of SSF/SMuP. It includes 4 steps as

below (Figure 3).

 STEP1: Create a virtual sensor S for detecting timing

constrains context T;

 STEP2: Create a timer service for measuring time n by using

time service;

 STEP3: Start to measures time n;

 STEP4: Define the detecting condition and add it to S as a

property.

<STEP1>
createSensor T

TimerService

SSF/SMuP

Cx Sensor Service

<STEP4>
addProperty(detecting conditions)

<Virtual Sensor>
T Sensor

<STEP3>
subScribe(Cx == true,Timer.start())

[T:#n[Cx,Cy]] or [T:@n[Cx]]

Register()

<STEP2>
createTimer T

Figure 3. The Registration and Detection Steps of Timing Constrains
Context

For example, for the sequential timing constraints context [T: #n [Cx , Cy]], we

have a registration requirement of context [T1:coming home] which is defined as

[ComingHome: #5 [EntranceOpen, HumanDetect]]

Following the steps above, the registration steps of this context are as below:

 STEP1: Creating a virtual sensor ComingHomeSensor by using

createSensor() method;

 STEP2: Creating a timer service (CHTimer) for measuring 5 seconds

by using createTimer(5) method of time service;

Meth

od

createTimer(

n)

Create a timer object for measuring time n.

start(), Start to measure time n.

stop() Stop to measure time n.

isActive() Get the status of timer object.

state

Waiting The timer object does not start to measure time n.

Working The timer object is measuring time n.

Expired The timer object is time-out.

http://ejje.weblio.jp/content/time+measurement

International Journal of Smart Home

Vol. 9, No. 8 (2015)

Copyright ⓒ 2015 SERSC 157

 STEP3: Implementing subscribe(EntranceOpen, CHTimer.start)

method of the DoorSensorService which is registered by context

EntranceOpen, and connect CHTimer.start() with EntranceOpen;

 STEP4: Adding a new property (comingHome: HumanDetect ==true

&& CHTimer.isActive==working) to the virtual sensor ComingHome

sensor.

Then property ComingHome of ComingHomeSensor become to true only when

HumanDetect is established within 5 seconds after EntranceOpen is established.

The property ComingHome can be acquired through getValue() method of

ComingHomeSensor which was made at the time of context T1 registration

(Figure4:T1 Coming home) .

For the continuous timing constraints context [T: @n[Cx]], we suppose that we

have a registration requirement of context [T4:have a rest] which is defined as

[Rest: @15 [HumanSitting]]

and this context can be registered as below:

 STEP1: Creating a virtual sensor RestSensor by using createSensor()
method;

 STEP2: Creating a timer (RTimer) for measuring 15 seconds by

using createTimer(15) method of time service;

 STEP3: Implementing subscribe(HumanSitting, CHTimer.start)

method of the SittingSensorService that was registered by context

HumanSitting, and connect CHTimer.start() with HumanSitting;

 STEP4: Adding a new property (Rest: HumanSettingt ==true &&

RTimer.isActive==Expired) to the virtual sensor RestSensor.

Then property Rest of RestSensor becomes true only when HumanDetect

continues establishing for 15 seconds. The property Rest can be acquired through

getValue() method of RestSensor which was made at the time of context T4

registration (Figure4:T4 have a rest).

<3>
isActive()

SSF/SMuP

<3>
getValue()

CHTimer

getValue()

<1>
getValue(ComingHome)

<Virtual Sensor>
Coming Home Sensor

Motion Sensor
Service

<2>
getValue()

<3>
isActive()

SSF/SMuP

<3>
getValue()

RTimer

getValue()

<1>
getValue(Rest)

<Virtual Sensor>
Rest Sensor

Sitting Sensor
Service

<2>
getValue()

[T1:coming home] [T4:have a rest]

Figure 4. The Example of Registration and Detection Steps for
[T1: coming home] and [T4: have a rest]

International Journal of Smart Home

Vol. 9, No. 8 (2015)

158 Copyright ⓒ 2015 SERSC

5. Case Study

5.1. Implementation of Time Service

To derive high-level timing constraints, we implemented the timer service as a

web service and deployed it in our HNS testing environment CS27-HNS. The

developing environment and the technique we used as follows:

 Development Tools: Eclipse3.5.2

 Development Language: Java(JRE1.5.0_18)

 Web Server: Apache Tomcat 5.5

 Web Service Engineer: Apache Axis 2.1.3

5.2. Case Study

As a case study, this section shows two timing constraints cases which were

implemented in our HNS testing environment CS27-HNS. One is a sequential timing

constrains context [T:Entering], another is a continuous timing constraints context

[T:Sleeping].

CS27-HNS is a testing home network system environment in Kobe University.

For this testing case, we use 2 motion sensors (Motion Sensor 1111) and 3 force

sensors (Force sensor 1106) of Phidgets Company to detected the above two

contexts. Each sensor can be used as a web sensor service based on SSF/SMuP.

5.2.1. Implementation of Context [T:Entering]: Two motion sensor devices are

deployed on entrance and living room of CS27-HNS. Each sensor can be accessed

as a web sensor service: MotionSensorService1 (entrance) and

MotionSensorService2 (living room), and each service has a motion property to

judge that there is a person or not. The context HumanDectect1 and

HumanDectect2 are registered as

[HumanDectect1: MotionSensorService1.motion==true]

[HumanDectect2: MotionSensorService2.motion==true].

Then the detected condition of context [T:Entering] is defined as [Entering:

#5[HumanDetect1, HumanDetect2]], it means that “the motion sensor of living

room reacts within 5 seconds after the motion sensor of entrance reacts” . Following

the steps that we proposed in section 4-3, the context [T:Entering] can be registered

as below.

 STEP1: Create a virtual sensor

http://cs27-hns/SMuP/createSensor?name=EnterHomeSensor

 STEP2: Create a timer

http://cs27-hns/TimerService/createTimer?name=EHTimer&time=5

 STEP3: Connect MotionSensor1 and timer

http://cs27-hns/MotionSensorService1/subscribe?context=Human

Detect1¬ify =http://cs27-hns/ETimer/start

 STEP4: Register HumanDetect2 and timer to context T as property

http://cs27-

hns/SMuP/EnterLeaveSensor/addProperty?name=EnterHome

&property=HumanDetect2==true && EHTimer==Working

Then the context [T:Entering] can be detected by calling “http://cs27-

hns/SMuP/EnterLeaveSensor/getValue?property=Enter".

5.2.2. Implementation of Context [T:Sleeping]: The context [T:Sleeping] is

implemented by using 3 force sensors which is setting on left, middle and right side

of sofa in CS27-HNS. Each force sensor has a property (SittingL, SittingM and

SittingR) which can be accessed as a web service for judging a person is setting on

http://cs27-hns/MotionSensorService1/subscribe?context=Human%20Detect1&
http://cs27-hns/MotionSensorService1/subscribe?context=Human%20Detect1&
http://cs27-hns/SMuP/EnterLeaveSensor/addProperty?name=EnterHome%20&property
http://cs27-hns/SMuP/EnterLeaveSensor/addProperty?name=EnterHome%20&property
http://cs27-hns/SMuP/EnterLeaveSensor/addProperty?name=EnterHome%20&property

International Journal of Smart Home

Vol. 9, No. 8 (2015)

Copyright ⓒ 2015 SERSC 159

there or not. Because the detected condition of [T:Sleeping] is that the force

sensors of sofa continue reacting for 60 seconds, so it can be defined as

[Sleeping:@60[SittingL&&SittingM&&SittingR]].

Following the steps that we proposed in section 4-3,, the context [T:Sleeping] can

be registered as below steps.

 STEP1: Create a virtual sensor

http://cs27-hns/SMuP/createSensor?name=SleepingSensor

 STEP2: Create a timer

http://cs27-hns/TimerService/createTimer?name=STimer&time=60

 STEP3: Connect Force Sensors and timer

http://cs27-hns/SMuP/createSensor?name=AllForceSensor

http://cs27-

hns/SMuP/AllForceSensor/addProperty?name=AllPress&

property=SittingL==true && SittingC==true && SittingR==true

http://cs27-

hns/SMuP/AllForceSensor/subscribe?context=AllPress&

notify=http://cs27-hns/STimer/start

 STEP4:Register AllPress property and timer to virtual sensor

http://cs27-

hns/SMuP/SleepingSensor/addProperty?name=Sleeping&

property=AllPress==true && STimer==Expired
Then the context [T:Entering] can be detected by calling “http://cs27-

hns/SMuP/SleepingSensor/getValue?property=Sleeping".

6. Conclusions and Future Work

6.1. Conclusions

In this paper, we have presented a method for detecting the high-level timing

constraints context based on the sensor service in HNS. In this proposed method, the

timing constraints context was defined into 2 types: the sequential timing

constraints context and the continuous timing constraints context. The sequential

timing constraints context is a sequential time limitation between two contexts and

means a relation such as one context is detected within few seconds after another

context is detected. The continuous timing constraints context is a continuous time

limitation that means a context continuously being established during a period of

time.

In order to measure the time for the above timing constrains context, we also

proposed the timer service as a web service to implement them. To evaluate the

effectiveness of the proposed method, we have implemented two contexts (the

Entering context and the Sleeping context) in testing environment CS27-HNS. As a

result, the above timing constraints context can be registered and detected in CS27-

HNS by using our proposed method.

6.2. Future Work

Depending on the proposed method above, although the more complicated

context can be detected, the creation work of context conditions itself is

complicated. The current limitation is that for creating high-level context with

timing constraints, the creator needs to know the details about the pre-existing

context of HNS, and also needs to have the ability to analyze and implement

complex logic to detect the high-level timing constraints context.

http://cs27-hns/SMuP/createSensor?name=SleepingSensor
http://cs27-hns/SMuP/createSensor?name=AllForceSensor
http://cs27-hns/SMuP/AllForceSensor/addProperty?name=AllPress&
http://cs27-hns/SMuP/AllForceSensor/addProperty?name=AllPress&
http://cs27-hns/SMuP/AllForceSensor/subscribe?context=AllPress&
http://cs27-hns/SMuP/AllForceSensor/subscribe?context=AllPress&
http://cs27-hns/SMuP/SleepingSensor/addProperty?name=Sleeping&
http://cs27-hns/SMuP/SleepingSensor/addProperty?name=Sleeping&

International Journal of Smart Home

Vol. 9, No. 8 (2015)

160 Copyright ⓒ 2015 SERSC

Thus, in the future, we plan to develop a framework to create the high-level

context with timing constraints. This framework should be a web service for

collectively managing the information of a pre-existing context of HNS. When the

developer uses a pre-context to create high-level context, it isn't necessary to call

each sensor service as before, the goal is to make the development of the context

aware application with a new timing constraints context easier than before.

Acknowledgements

This research was partially supported by the Scientific Research Start Funds of

LuoYang Institute of Science and Technology (No.14308051); the Japan Ministry of

Education, Science, Sports, and Culture [Grant-in-Aid for Scientific Research (B)

(No.26280115, No.15H02701), Young Scientists (B) (No.26730155)].

References

[1] B. N. Schilit, N. Adams and R. Want, “Context-Aware Computing Applications”, Proceedings of the

1st IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), (1994) December 8-9,

Washington, DC, USA.

[2] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of context and context-awareness”,

Proceeding of the 1st International Symposium on Handheld and Ubiquitous Computing (HUC), (1999)

September 27-29, Karlsruhe, Germany.

[3] H. Sakamoto, H. Igaki and M. Nakamura, “A Sensor Service Framework for Context-aware

Applications”, Technical Report Of The Institute Of Electronics, Information And Communication

Engineers, vol. 108, no. 458, (2009) March, pp. 381-386.

[4] T. Erl, “Service-Oriented Architecture, Concepts, Technology and Design”, Prentice Hall (2008).

[5] H. Sakamoto, H. Igaki and M. Nakamura, “SMuP, A Service-oriented Platform for Sensor Service

Mashups”, Winter workshop 2010 in Kurasiki, vol. 2010, no. 3, (2010) January, pp. 73-74.

[6] A. Tanaka, M. Nakamura, H. Igaki and K. –I. Matsumoto, “Adapting Conventional Home Appliances

to Home Network Systems Using Web Services”, Technical Report Of The Institute Of Electronics,

Information And Communication Engineers, vol. 105, no. 628, (2006) March, pp. 67-72.

[7] M. Fukuda, H. Seto, H. Sakamoto, H. Igaki and M. Nakamura, “A Looking Back Service for Power

Consumption Logs in Home Network System”, Technical Report Of The Institute Of Electronics,

Information And Communication Engineers, vol.109, no. 272, (2009) November, pp. 29-34.

[8] M. Nakamura, H. Igaki, H. Tamada and K. –I. Matsumoto, “Implementing Integrated Services of

Networked Home Appliances Using Service-oriented Architecture”, the Journal of Information

Processing Society of Japan, vol. 46, no. 2, (2015) February, pp. 314-326.

[9] “Phidgets Inc. Unique and Easy to Use USB Interface”,http://www.phidgets.com/.

[10] M. Syuhei, S. Hideharu, S. Hiroyuki, H. Igaki and M. Nakamura, “Sensor search with spatial

information and support by showing similar parameter for building sensor context”, technical report of

the institute of electronics, information and communication engineers, ,vol. 109, no. 327, (2009)

December, pp. 59-64.

[11] B. Yan, M. Nakamura, L. du-Bousquet, and K. -I Matsumoto, “Validating Safety for Integrated

Services of Home Network System Using JML”, Journal of Information Processing (JIP), vol.49, no. 6,

(2008) June, pp. 1751-1762.

[12] B. Yan, M. Nakamura and K. -I Matsumoto, “Deriving Safety Properties for Home Network System

Based on Goal-Oriented Hazard Analysis Model”, International Journal of Smart Home, vol.3, no. 1,

(2009) January, pp. 67-80.

[13] B. Yan, M. Nakamura, L. D. Bousquet and K. -I Matsumoto, “Improving Reusability of Hazard

Analysis Model with Hazard Template for Deriving Safety Properties of Home Network System”,

International Journal of Smart Home, vol.3, no. 2, (2009) April, pp.71-88.

[14] L. D. Bousquet, M. Nakamura, B. Yan and H. Igaki, “Using Formal Methods to Increase Confidence in

a Home Network System Implementation”, a Case Study, Innovations in Systems and Software

Engineering (ISSE Journal), vol. 5, no. 3, (2009) September, pp. 181-196.

International Journal of Smart Home

Vol. 9, No. 8 (2015)

Copyright ⓒ 2015 SERSC 161

Authors

Ben Yan, received the B.E. degree in Henan University of Science

and Technology, China, in 1999, M.E. degree in Department of

Information Science Okayama University of Science, Japan, in 2006,

and Ph.D. degree in the Graduate School of Information Science at

Nara Institute of Science and Technology, Japan, in 2008. From 2009

to 2014, he worked for Panasonic Group, SANYO Information

Technology Solutions Co., Ltd, and Osaka, Japan. He is currently a

professor in the Department of Computer and Information

Engineering at Luoyang Institute of Science and Technology (LIT).

His main research interests include the service-oriented architecture,

the V&V of home network systems, and requirements engineering for

safety critical systems.

HuaPing Yao, received the B.E. degree in Henan University

of Science and Technology, China, in 1999, M.E. degree in

Department of Information Science Okayama University of

Science, Japan, in 2006. From 2006 to 2014, he worked for CSI

and Trend Creates Co., Ltd, Osaka, Japan. She is currently a

lecturer in the Department of Computer and Information

Engineering at Luoyang Institute of Science and Technology

(LIT). Her main research interests include the e-learning,

software engineering and home network system.

Masahide Nakamura, received the B.E., M.E., and Ph.D.

degrees in Information and Computer Sciences from Osaka

University, Japan, in 1994, 1996, 1999, respectively. From 1999

to 2000, he has been a post-doctoral fellow in SITE at University

of Ottawa, Canada. He joined Cyber media Center at Osaka

University from 2000 to 2002. From 2002 to 2007, he worked for

the Graduate School of Information Science at Nara Institute of

Science and Technology, Japan. He is currently an associate

professor in the Graduate School of System Informatics at Kobe

University. His research interests include the service /cloud

computing, smart home, smart city, and life log. He is a member

of the IEEE, IEICE and IPSJ.

Shinsuke Matsumoto, received the B.E. degree in computer

science from Kyoto Sangyo University in 2006. He received M.E.

and Ph.D. degrees in information science from Nara Institute of

Science and Technology in 2008 and 2010, respectively. He is

currently an assistant professor in the Graduate School of System

Informatics at Kobe University. His research interests include

software engineering, mining software repository and cloud

computing.

International Journal of Smart Home

Vol. 9, No. 8 (2015)

162 Copyright ⓒ 2015 SERSC

