
International Journal of Software Innovation, 3(3), 57-68, July-September 2015 57

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Machine-to-Machine (M2M) systems and cloud services provide various kinds of data via distributed Web
services. A context-aware service recognizes real-world contexts from such data and behaves autonomously.
However, it has been challenging to manage contexts and services defined on the heterogeneous and distributed
Web services. In this paper, the authors propose a framework, called RuCAS, which systematically creates and
manages context-aware service using various Web services. RuCAS describes every context-aware service
by an ECA (Event-Condition-Action) rule. For this, an event is a context triggering the service, a condition
is a set of contexts to be satisfied for execution, and the action is a set of Web services to be executed by the
service. Thus, every context-aware service is managed in a uniform manner. Since RuCAS is published as a
Web service, created contexts and services are reusable. As a case study, RuCAS is applied to a real home
network system.

RuCAS:
Rule-Based Framework for

Managing Context-Aware Services
with Distributed Web Services

Hiroki Takatsuka, Graduate School of System Informatics, Kobe University, Kobe, Japan

Sachio Saiki, Graduate School of System Informatics, Kobe University, Kobe, Japan

Shinsuke Matsumoto, Graduate School of System Informatics, Kobe University, Kobe, Japan

Masahide Namamura, Graduate School of System Informatics, Kobe University, Kobe, Japan

Keywords: Context-Awareness, Event-Condition-Action Rule, Home Network System, Sensor Services,
Web Services

INTRODUCTION

The recent spread of cloud computing and
Machine-to-Machine (M2M) technologies al-
lows us to acquire various kinds of data from
heterogeneous and distributed systems (Velte,
Velte and Elsenpeter, 2010; Wu, Talwar, John-
sson Himayat and Johnson, 2011). The cloud

computing provides computational resource
and data as networked services, whereas the
M2M enables devices to communicate with
each other without human intervention. Typical
data include temperature, power consumption,
weather, system state, operation of a device.
Data from the cloud or M2M systems can be
obtained usually through Web services or Web-

DOI: 10.4018/IJSI.2015070105

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

58 International Journal of Software Innovation, 3(3), 57-68, July-September 2015

API. Variety of data achieves a context-aware
service (Cohen et al. 2004), which recognizes a
real-world context and behaves autonomously
for the context. The context-aware services
implement smarter services, which are sensible
for the environment and human activities.

Traditionally, the context-aware services
had been studied in the field of ubiquitous com-
puting (Randell and Muller, 2000; Gellersen,
Schmidt and Beigl, 2002). Many studies were
reported on context acquisition, context reason-
ing and utilization, using ubiquitous sensors
deployed on local smart space. Now, the context-
aware services must evolve so that the services
can deal with global and distributed contexts
obtained from Web services of heterogeneous
systems (e.g. information services, sensor ser-
vices, networked appliances, etc.). However,
there are few studies adopting distributed Web
services for creating context-aware services. In
our previous work, we proposed a sensor service
framework (Nakamura, Matsuo, Matsumoto,
Sakamoto and Igaki, 2011), which invokes
Web services based on contexts with physical
sensors. However, the focus was limited on the
sensors only.

Using Web services for inputs and outputs
can significantly improve the functionality
and flexibility of the context-aware services.
However, a major challenge lies in manag-
ing complex relations among distributed data
sources, defined contexts, and actions caused
by the contexts. Unless managed systematically,
the service provision would be quite difficult.
Therefore, it is essential to have a unified
framework for managing advanced context-
aware services based on the heterogeneous and
distributed Web services.

In this paper, we present a framework called
RuCAS (Rule-based management framework for
Context-Aware Services), which systematically
creates and manages context-aware service
using various Web services. The framework
consists of five layers: Web service layer,
adapter layer, context layer, action layer and
ECA rule layer. The existing Web services for
data acquisition are managed in the Web service

layer. The data acquisition from heterogeneous
Web services is adapted to the standard API in
the adapter layer. In the context layer, every
context is defined based on the data obtained via
the adapter. Every Web service that is triggered
by a context is managed in the action layer.

Using these elements, RuCAS defines ev-
ery context-aware service as an event-condition-
action (ECA) rule. For this, the event defines
a context that triggers a service. The condition
refers to a guard condition to execute the service.
The action defines Web services executed by the
service. Thus, every context-aware service is
simply defined and created as a uniformed rule.

To see the feasibility of the proposed
method, we conduct a case study that applies
the RuCAS framework to creating the context-
aware services in a practical home network
system. In the case study, it is shown that a smart
air-conditioning service with environmental
sensors can be easily created by a sequence of
RuCAS API.

PRELIMINARIES

Context-Aware Service

A context refers to a situational information (e.g.
human activity, environment, etc.) derived from
information of sensors and systems. A context-
aware service is a service that automatically
detects change of a context and performs ap-
propriate actions corresponding to the context
change. For instance, a context “Hot” can be
derived from information that “the value of a
temperature sensor in a room is higher than 28
degrees”. A context-aware service “Automatic
Air-conditioning” starts air-conditioning when
the context “Hot” holds.

Traditionally, the context-aware services
had been studied extensively in the ubiquitous
computing area. The conventional studies in-
clude a method that uses sensor information to
reason contexts in a smart space, and a method
that uses smart phone sensors to reason human
behavior (Yamamoto, Kouyama, Yasumoto and
Ito, 2011; Chon and Cha, 2011).

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 57-68, July-September 2015 59

Obtaining Data from Web Services

The advancement of ICT (Information and
Communication Technology) and the Internet
enables to obtain various information through
the Web. Especially, M2M and Web services
play an important role (Wu et al., 2011; Alonso,
Casati, Kuno and Machiraju, 2004). The M2M
allows various devices to communicate with
each other without human intervention. A
background of M2M progress is an accelera-
tion of communication and evolution of sensor
technology. Used with the cloud computing
and big-data processing, M2M is promising to
gather real-world contexts that provide values.

Web service is a technology that provides
a feature of a system as a service on the Web.
Web service can be accessed by a Web stan-
dard protocol. The protocol is usually SOAP
or REST over HTTP to exchange XML data
between a service and a client. The XML-
based communication over the Web standard
allows developers to integrate distributed and
heterogeneous systems. Thus, modern systems
often publish own API as a Web service (called
Web-API) so that external applications can
retrieve information from the system.

In this paper, we focus on modern devices
and systems whose internal information can be
retrieved via Web services. Our interest is how
to create and manage context-aware services
using such distributed and heterogeneous Web
services.

Home Network System (HNS)

Home Network System (HNS) is a system that
provides value added services by connecting
household appliances and equipment with
the home network (Nakamura, Tanaka, Igaki,
Tamada and Matsumoto, 2008; Li and Zhang,
2004). In the HNS, appliances (e.g. TVs, lights,
air-conditioners, curtains, fans, etc.) and sensors
(e.g. temperature, humidity, illuminance, etc.)
are integrated to implement various services
and applications.

In our laboratory, we have been developing
an actual HNS environment, called CS27-HNS

(Nakamura et al., 2008). CS27-HNS exten-
sively exploits the concept of Service Oriented
Architecture (SOA) in order to integrate hetero-
geneous devices and sensors. We encapsulated
vendor-specific operations and communication
protocols within Web services. Every device can
be operated by Web-API by SOAP or REST
protocol. For instance, to change a channel of
a TV to 6, a client just accesses a URL http://
cs27-hns/TVService/setChannel?channel=6.

Previous Work: Sensor
Service Framework

We have previously considered Web services
to implement context-aware services in CS27-
HNS. Sensor Service Framework (SSF) is an
application framework that easily deploys
environmental sensors (e.g. temperature sen-
sor, illuminance sensor, etc.) as Web services
(Nakamura et al., 2011). In SSF, every sensor
service has a property representing a standard
sensor measure. For instance, a temperature
sensor service has temperature property in a
degree Celsius. A client can obtain the value
of a property by getValue() method, as shown
in Figure 1.

Moreover, every sensor service observes
the value of the property, and reasons a context
based on a registered expression (contextual
condition). The registration of the expression
is conducted by register() method. For instance,
suppose that a client registers a contextual
condition Hot: temperature ≥ 28. The registered
condition can be bound with an arbitrary Web
services by subscribe() method. The sensor
service invokes the Web service method when
the contextual condition is satisfied. Figure 2
shows a scenario where a client registers and
subscribes a context Hot.

Sensor Mashup Platform (SMuP) con-
structs advanced sensor services by integrating
multiple sensor services. Sensor Service Binder
provides the easy creation of context-aware
services with SSF for end users (Nakamura,
Matsuo and Matsumoto, 2012).

The above previous methods extensively
focused on implementing sensor as a service.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

60 International Journal of Software Innovation, 3(3), 57-68, July-September 2015

Thus, using the existing Web services for
context-aware services was beyond their scope.

Problem of Creating
Context-Aware Services

In the previous methods of context-aware ser-
vices, every context is tightly coupled with its
data source and actions to be invoked, which
lacks flexibility and reusability. In many cases,
all operations of obtaining data from sensors,
evaluating defined contexts and invoking
actions are performed within a proprietary
program. Hence, it is impossible to reuse a
context for another service, or to replace an
action with another. In SSF, a context Hot is
managed within a temperature sensor service.
However, it is not obvious to all clients where
the context exists and what happens when Hot
becomes true.

As mentioned before, we aim to implement
context-aware services using heterogeneous
and distributed Web services, not limited to
the conventional sensors. We need to find a
way to systematically manage individual Web
service, contexts, and context-aware services,
in a loose-coupling manner.

RUCAS: FRAMEWORK FOR
MANAGING CONTEXT-
AWARE SERVICES WITH
WEB SERVICES

Overview

To cope with the challenge, we propose a
framework, RuCAS (Rule-based management
framework for Context-Aware Services), which

Figure 1. Obtaining sensor values by standard interface of SSF

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 57-68, July-September 2015 61

creates and manages context-aware services
based on various Web services.

RuCAS supports client applications to
acquire information from heterogeneous and
distributed Web services, and to define and
manage contexts based on the information. In
addition, RuCAS defines every context-aware
service as an ECA (Event-Condition-Action)
rule, where the event is a satisfaction of a context
triggering the service, the condition is a guard
condition enabling the service, and the action
is Web services to be executed.

By using RuCAS, every context-aware
service can be uniformly described by a rule,
which combines defined contexts and actions.
Thus, RuCAS achieves loose coupling of Web
services as a source of contexts, contexts defined

with the data sources and context-aware services
with actions. This enables flexible creation and
management of context-aware services.

Event-Condition-Action (ECA) Rule

The ECA rule is an important design through
of RuCAS, which defines every context-aware
service as a set of [Event, Condition, Action].
In general, a context-aware service can be de-
scribed by a rule that “when a context becomes
true, do something”. Intuitively, the part “when
a context becomes true” corresponds to the
event, whereas “do something” corresponds
to the action in RuCAS.

However, the above rule lacks flexibility,
since the action always fires when the context

Figure 2. Implementing context-aware service with SSF

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

62 International Journal of Software Innovation, 3(3), 57-68, July-September 2015

becomes true. Therefore, we extend the rule
a bit such that “when a context becomes true,
if a condition is satisfied, do something”. The
part “if a condition is satisfied” corresponds
to the condition in RuCAS. More specifically,
in this paper, we define a context, an event, a
condition and an action as follows.

1. A context is a situational information
defined by a logical expression over data
obtained from a Web service. Depending
on the value of the data, every context is
evaluated to true or false. A context can
be also defined by a composition of the
existing contexts.

2. An event is a context triggering the execu-
tion of a context-aware service.

3. A condition is a guard condition enabling
the execution of a context-aware service.
A condition is defined by one or more
contexts.

4. An action is operations executed by a
context-aware service. An action is defined
by one or more Web services.

Then, an ECA rule is defined as follows:

• ECA Rule: Let c1, c2, ... be contexts, and
let a1, a2, ... be invocations of Web services.

An ECA rule r is defined by r = [E: ci, C:
{cj1, cj2, ..., cjm}, A: {ak1, ak2, ..., akn}],
where E is an event, C is a condition, A is
an action. For r, we say “event E occurs” if
the value of context ci moves from false to
true. When E occurs, if all contexts cj1, cj2,
..., cjm are satisfied, we say “r is executed”.
When r is executed, all Web services ak1,
ak2, ..., akn are invoked.

Figure 3 shows semantics of the ECA rule.
An event is defined by a single context, and oc-
curs when the context moves from false to true.
A condition defines a guard evaluated when the
event occurs, If the condition is not satisfied,
no action is performed. If satisfied, the action is
executed to invoke Web services. For instance,
a context-aware service “when it is hot, if a user
is present in a room, turn on an air-conditioner”
can be described by an ECA rule: [E: Hot, C:
{PresentUser}, A: {AirCon.on}].

System Requirement of RuCAS

We determine the following requirements R1
to R4 to implement RuCAS.

Figure 3. Semantics of ECA Rule

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 57-68, July-September 2015 63

R1: The framework should be able to create
contexts using information from the exist-
ing Web services.

R2: The framework should be able to create
actions using an invocation of the existing
Web services.

R3: The framework should be able to create
context-aware services as ECA rules using
the contexts and actions.

R4: The framework should be able to use, update
and delete the created method.

Architecture of RuCAS

Figure 4 shows the architecture of RuCAS. In
order to efficiently build ECA rules from exist-
ing elements, RuCAS consists of five layers:
Web service layer, adapter layer, context layer,
action layer and ECA rule layer. Each layer
creates and manages elements using features
of an underlying layer. In the ECA rule layer
at the top, RuCAS defines every context-aware

service as an ECA rule, by combining existing
elements created in underlying layers. Features
of each layer are described below.

Web Service Layer

The Web service layer manages the exist-
ing Web services used as input or output of
context-aware services. The input Web service
is a Web service that can return a certain value
(numeric, Boolean, string, etc.) for defining a
context. Typical examples include the conven-
tional sensor services, the status of a device,
dynamic Web information (weather, stock
price, exchange rate, etc.), SNS, clock, system
logs. The output Web service is a Web service
that can yield an action. Examples include an
operation of home network system (switch on/
off, voice announce, etc.) and a request to an
information system or service (send an email,
post a comment to SNS, etc.).

Figure 4. Architecture of RuCAS

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

64 International Journal of Software Innovation, 3(3), 57-68, July-September 2015

Adapter Layer

To obtain data from a Web service, a client
needs to invoke Web-API and extract the
necessary data by parsing the return value.
However, Web-API and the return value vary
from a Web service to another. Therefore, the
adapter layer creates an adapter that normal-
izes the heterogeneous interface. Specifically,
every Web-API used to obtain data is adapted
to uniform API getValue().

For example, we can create an adapter
TempAdapter, by using a temperature sensor
Web service, say http://cs27-hns/Temperature-
SensorService/getTemperature. Within RuCAS,
TempAdapter.getValue() returns a temperature
by internally invoking the Web service.

Context Layer

The context layer manages all contexts defined
by data from Web services via the adapter
layer. In this layer, every context is defined
by context ID and context expression. The
context ID is a label to identify every context.
The context expression is a logical formula, in
form of Adapter.value comp_op const, where
comp_op is a comparative operator and const
is a constant value. For example, to define Hot
context to be “the temperature is equal to or
more than 28 degrees”, RuCAS describes it by
[Hot: TempAdapter.value >= 28]. Similarly, to
define Humid to be “the humidity is equal to
or more than 70 percent”, RuCAS describes it
by [Humid: HumidAdapter.value >= 70]. Each
context can be associated with a refresh interval,
by which RuCAS periodically evaluates the con-
text expression. For example, when the refresh
interval of Hot is one minutes, RuCAS obtains
a new value from TempAdapter and evaluates
the truth value of Hot every one minutes.

RuCAS can define two types of contexts:
atomic and compound. The atomic context is
a context directory defined by a single Web
service. The compound context is a context
defined by the existing contexts combined with
logical operators (!: NOT, &&: AND, ||: OR).
For example, a compound context Muggy can

be defined by combining Hot and Humid such
that [Muggy: Hot && Humid].

Action Layer

The action layer manages all actions used in
ECA rules. Every action wraps an output Web
service of a context-aware service, and is defined
by an endpoint, a method name, and parameters
of the Web service. Each action is associated
with action ID, by which RuCAS invoke the
Web service as an action. For example, we can
create an action CoolingOn, by using an air-
conditioner Web service, say http://cs27-hns/
AirConService/on?mode=cooling.

When RuCAS invokes CoolingOn, the Web
service is executed to turn on an air-conditioner
with a cooling mode.

ECA Rule Layer

The ECA rule layer defines a context-aware
service as an ECA rule by using contexts in the
context layers and actions in the action layer.
An ECA rule can be created as follows:

1. Define an event by choosing a single con-
text from the context layer.

2. Define a condition by choosing one or more
contexts from the context layer.

3. Define an action by choosing one or more
actions from the action layer.

The created ECA rule is evaluated and
executed by RuCAS, based on the semantics
defined before.

API of RuCAS

Figure 5 shows the typical API of RuCAS, regis-
tering a new element to a layer. registerAdapter()
creates a new adapter with adapter ID, endpoint
and method of a Web service. registerContext()
creates a new context with context ID, type to
specify atomic (A) or compound (C), context
expression, refresh interval (in msec), and
adapter ID used to obtain data. registerAction()
creates a new action with action ID and URL
of a Web service. registerECA() creates a new

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 57-68, July-September 2015 65

ECA rule with ECA rule ID, event given by a
context ID, condition given by a set of context
IDs, action given by a set of action IDs.

Based on the concept of SOA, the above
API is deployed as a Web service so that various
clients can easily create and manage their own
context-aware services. For example, to create
TempAdapter mentioned before, a client just
accesses the following URL: http://RuCAS/re
gisterAdapter?adapterid=TempAdapter&endp
oint=http://cs27-hns/TemperatureSensorServic
e&method=getTemperature

Creating Context-Aware
Service with RuCAS

Using RuCAS, we can easily create a context-
aware service by the following four steps:

Step 1 (Creating Adapters): Define adapters
by registerAdapter() with interesting Web
services.

Step 2 (Creating Contexts): Using the adapt-
ers, define necessary contexts by register-
Context().

Step 3 (Creating Actions): Define actions by
registerAction() with Web services to be
executed.

Step 4 (Creating ECA Rule): Define an ECA
rule by registerECA() with the created
contexts and actions.

CASE STUDY

To demonstrate the proposed framework, we
create a smart air-conditioning service using

RuCAS. The definition of the service is as fol-
lows: “when a room becomes muggy, if some
people are present in the room and the room is
bright enough, turn on an air-conditioner and
announce the service”. The service is supposed
to be implemented in a real environment of
CS27-HNS. Using Web services of CS27-HNS,
we create contexts and actions within RuCAS.

Figure 6 shows the outline of service
creation. We create the service as an ECA rule
such that [E: Muggy, C: {SomePeople, Bright},
A: {CoolingOn, SayCoolingOn}]. In the rule,
Muggy is a compound context defined by Hot
and Humid, where Hot is an atomic context
that “temperature is greater than 28 degrees”,
and Humid is an atomic context that “humidity
is greater than 70 percent”. In the condition,
SomePeople is an atomic context that “the
number of people is greater than 0”, and Bright
is that “the illuminance is greater than 700 lux”.
Finally, CoolingOn is an action that “turn on
an air-conditioner”, and SayCoolingOn is an
action that speaks “Starting air-conditioning.”
to announce the users.

As seen in the previous section, we create
the service by the following four steps.

Step 1 (Creating Adapters): To create the con-
text, we use sensor Web services of CS27-
HNS, including a temperature sensor, a
humidity sensor and an illuminance sensor.
We also use InOutUserManageService to
get the number of people within the room.
Using registerAdapter() of RuCAS, we cre-
ate four adapters Temperature, Humidity,
Illuminance, PeopleCounter by specifying
parameters in Table 1.

Figure 5. Method of RuCAS

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

66 International Journal of Software Innovation, 3(3), 57-68, July-September 2015

Step 2 (Creating Contexts): We first create
four atomic contexts Hot, Humid, Bright,
SomePeople using the four adapters Tem-
perature, Humidity, Illuminance, People-
Counter, respectively. Then, a compound
context Muggy is created with Hot and
Humid. These contexts are created by
registerContext() of RuCAS by specifying
parameters in Table 2.

Step 3 (Creating Actions): We use the Air-
Condtioner Web service and SpeechToText
Web service to define CoolingOn and
SayCoolingOn. These actions created by

registerAction() of RucAS by specifying
parameters in Table 3.

Step 4 (Creating ECA Rule): We create the
ECA rule [E: Muggy, C: {SomePeople,
Bright}, A: {CoolingOn, SayCoolingOn}]
using the created contexts and actions. The
ECA rule is created by registerECA() of Ru-
CAS by specifying parameters in Table 4.

We implemented a prototype of RuCAS,
and confirmed that the smart air-conditioning
service works fine in CS27-HNS. Due to limited
space, the details of design and implementa-

Figure 6. Outline of creating smart air-conditioning service

Table 1. Parameters of registerAdapter()

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(3), 57-68, July-September 2015 67

tion of RuCAS will be discussed in our future
publications.

CONCLUSION

In this paper, we have proposed a rule-based
framework RuCAS for creating and managing
context-aware services with distributed and het-
erogeneous Web services. Using RuCAS, every
context-aware service is uniformly defined by
an ECA rule. Every ECA rule is assembled by
a loose coupling of Web services, contexts and
actions, coordinated by five layers of RuCAS.
A case study showed that a practical context-
aware service can be implemented easily by
invoking RuCAS API.

Our future work includes implementation
of a service platform of RuCAS and user support
tools (e.g. GUI and manuals). We also plan to

conduct an experimental evaluation of service
creation. The service interaction problem is also
an important issue to guarantee the consistency
among multiple user-made services (Wilson,
Kolberg and Magill, 2008).

ACKNOWLEDGMENT

This research was partially supported by the Ja-
pan Ministry of Education, Science, Sports, and
Culture [Grant-in-Aid for Scientific Research
(C) (No.24500079, No.24500258), Scientific
Research (B) (No.26280115), Young Scientists
(B) (No.26730155)] and Kawanishi Memorial
ShinMaywa Education Foundation.

Table 2. Parameters of registerContext()

Table 3. Parameters of registerAction()

Table 4. Parameters of registerECA()

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

68 International Journal of Software Innovation, 3(3), 57-68, July-September 2015

REFERENCES

Alonso, G., Casati, F., Kuno, H., & Machiraju, V.
(2004). Web Services. Berlin, German: Springer
Berlin Heidelberg. doi:10.1007/978-3-662-10876-5

Chon, J., & Cha, H. (2011). Lifemap: A smartphone-
based context provider for location-based services.
IEEE Pervasive Computing / IEEE Computer Society
[and] IEEE Communications Society, 10(2), 58–67.
doi:10.1109/MPRV.2011.13

Cohen, N. H., Black, J., Castro, P., Ebling, M., Leiba,
B., Misra, A., & Segmuller, W. (2004). Building
context-aware applications with context weaver.
NY, US: IBM Research Division, TJ Watson Re-
search Center.

Gellersen, H. W., Schmidt, A., & Beigl, M. (2002).
Multi-sensor context-awareness in mobile devices
and smart artifacts. Mobile Networks and Applica-
tions, 7(5), 341–351. doi:10.1023/A:1016587515822

Li, X., & Zhang, W. (2004). The design and imple-
mentation of home network system using OSGi
compliant middleware. IEEE Transactions on
Consumer Electronics, 50(2), 528–534. doi:10.1109/
TCE.2004.1309419

Nakamura, M., Igaki, H., Yoshimura, Y., & Ikegami,
K. (2009). Considering Online Feature Interaction
Detection and Resolution for Integrated Services in
Home Network System. International Conference
on Feature Interactions in Telecommunications and
Software Systems (pp. 191-206).

Nakamura, M., Matsuo, S., & Matsumoto, S. (2013).
Supporting end-user development of context-aware
services in home network system. Software Engi-
neering, Artificial Intelligence, Networking and
Parallel [Springer Berlin Heidelberg.]. Distributed
Computing, 2012, 159–170.

Nakamura, M., Matsuo, S., Matsumoto, S., Sakamoto,
H., & Igaki, H. (2011). Application framework for
efficient development of sensor as a service for
home network system. IEEE International Confer-
ence on Services Computing (pp. 576-583). IEEE.
doi:10.1109/SCC.2011.18

Randell, C., & Muller, H. (2000). Context awareness
by analysing accelerometer data. The Fourth Inter-
national Symposium on Wearable Computers (pp.
175-176). IEEE. doi:10.1109/ISWC.2000.888488

Velte, T., Velte, A., & Elsenpeter, R. (2009). Cloud
computing, a practical approach. New York, USA:
McGraw-Hill, Inc.

Wilson, M., Kolberg, M., & Magill, E. (2008).
Considering Side Effects in Service Interactions
in Home Automation-An Online Approach. [IOS
Press.]. Feature Interactions in Software and Com-
munication Systems, IX, 172–187.

Wu, G., Talwar, S., Johnsson, K., Himayat, N., &
Johnson, K. D. (2011). M2M: From mobile to em-
bedded internet. IEEE Communications Magazine,
49(4), 36–43. doi:10.1109/MCOM.2011.5741144

Yamamoto, S., Kouyama, N., Yasumoto, K., & Ito, M.
(2011). Maximizing users comfort levels through user
preference estimation in public smartspaces. IEEE
International Conference on Pervasive Computing
and Communications Workshops 2011 (pp. 572-577).
IEEE. doi:10.1109/PERCOMW.2011.5766955

http://dx.doi.org/10.1007/978-3-662-10876-5
http://dx.doi.org/10.1109/MPRV.2011.13
http://dx.doi.org/10.1023/A:1016587515822
http://dx.doi.org/10.1109/TCE.2004.1309419
http://dx.doi.org/10.1109/TCE.2004.1309419
http://dx.doi.org/10.1109/SCC.2011.18
http://dx.doi.org/10.1109/ISWC.2000.888488
http://dx.doi.org/10.1109/MCOM.2011.5741144
http://dx.doi.org/10.1109/PERCOMW.2011.5766955

