
Design and Implementation of Service Framework
for Presence Sensing in Home Network System

Yuki Kashio, Shinsuke Matsumoto, Seiki Tokunaga, Sachio Saiki and Masahide Nakamura
Graduate School of System Informatics, Kobe University

1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
Email: {kashio@ws.cs, shinsuke@cs, sachio@carp, masa-n@cs}.kobe-u.ac.jp.

Abstract—To achieve efficient presence sensing within home
network system (HNS), an inexpensive and elastic system that can
be shared by various HNS applications is required. This paper
presents Presence Sensor Service Framework, which can uniformly
manage presence information in various places using various
types of sensors. The framework consists of Presence Sensor
Device (PSD), Presence Sensor Terminal (PST) and Presence
Sensor Aggregator (PSA). A PST monitors PSDs to detect any
changes of presence, and notifies a PSA of the changes. Upon
the notifications from PSTs, the PSA estimates human presence
around each PSD. The estimation process is deployed as Presence
Sensor Service (PSS), which is used by various HNS applications.
The proposed framework can dynamically add or change sensing
places within a HNS by adding PST and PSD as needed. It can
also integrate presences in multiple HNSs by deploying PSA on
an external cloud. In this paper, we implement a prototype of
the proposed framework by using Phidgets sensors and Java Web
service. Moreover, we develop a presence visualization application
to conduct a preliminary evaluation.

Keywords—presence sensing, home network system, infrared
motion sensor, web service, smart system

I. INTRODUCTION

Presence sensing is a technology that automatically detects
if a person (or an object) is present at a certain place. It
is widely used in the fields of automation and smart ser-
vices. For example, the presence sensing is used in automatic
doors, energy-saving household appliances [1], efficient air-
conditioning in office [2], and automatic light controls in build-
ings [3]. Our research group has been extensively studying
the Home Network System (HNS) [4]. The HNS integrates
various household appliances and equipment via home network
to realize value-added services. In this paper, we especially aim
to develop an efficient method of presence sensing suited for
the HNS within general houses.

To realize indoor presence sensing, many solutions with
various types of presence sensors have been proposed. The
sensors include infrared sensor [5], magnetic sensor [6],
pressure sensor [7], ultrasonic sensor [8], and wireless LAN
[9]. However, it is yet challenging to introduce the current
presence sensing systems in general households, because they
are basically closed systems that require expensive devices or
large-scale infrastructure. Moreover, the current systems do
not assume HNS services or smart city services with multiple
HNSs, where sensing places are dynamically changed.

In order to solve these problems, this paper presents a
new application framework, called Presence Sensor Service
Framework (PSSF). PSSF connects various types of sensors,

and uniformly manages the sensors to detect human presence
in various places within HNS.

PSSF consists of Presence Sensor Device (PSD), Pres-
ence Sensor Terminal (PST), and Presence Sensor Aggregator
(PSA). PSD refers to any physical sensor device used for the
presence sensing. PST works as a local hub managing several
adjacent PSDs. PSA is global data store that aggregates sensor
information from multiple PSTs. A PST has several adjacent
PSDs and monitors values of the PSDs. If value of a PSD
exceeds a threshold, the PST notifies a PSA. Upon receiving
a notification from the PST, the PSA records id and the value
of the PSD, and the date and time of the notification. A
PSA implements an algorithm that estimates the likelihood of
human presence based on the raw data recorded. The PSA also
provides the human presence as a Web service, which is called
Presence Sensor Service (PSS). PSS is an abstract service with
presence sensing API, which achieves loose-coupling between
applications and sensor devices.

By using PSSF, various applications can easily get and
use presence information in the HNS, without considering het-
erogeneous physical sensor devices. PSSF also allows service
administrators to dynamically add, change, or remove any PST
or PSD as needed. Moreover, by deploying the PSA on the
cloud, it is possible to implement smart city services, which
integrate presence information from multiple HNSs.

In this paper, we also implement a prototype system of
PSSF. The prototype exploits Phidgets infrared motion sensors
as PSDs, and a RaspberryPi (with a Phidgets interface kit) as
a PST. A PSA is developed as Java program. Then, the PSA is
deployed with Apache Axis2 web service as PSS. To evaluate
the proposed method, we install the prototype system in an
actual HNS in our lab (CS27-HNS). We then visualize human
presence in our lab, by developing a Web application with the
proposed PSSF and Google Chart API.

II. PRELIMINARIES

A. Home Network System (HNS)

Home network system (HNS) is a system that achieves
value-added services by connecting household appliances, sen-
sors and equipment to home network. Various home appliances
such as TVs, DVD recorders, lights, air-conditioners, electric
fans, and air-cleaners are integrated to implement various HNS
services and applications.

To create HNS environment in our laboratory (CS27-
HNS) [4], we have extensively utilized the concept of service
oriented architecture (SOA) within HNS. In CS27-HNS, ev-
ery feature of the household appliances can be used as the

ISBN: 978-1-4799-6375-1 ©2015 IEEE 109

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

Web-API, accessed by standard Web service protocols (i.e.,
SOAP or REST). Underlying proprietary protocols and device-
specific controls are wrapped by Web services. For example, to
change a TV channel to 6, a user or an application simply ac-
cess a URL http://cs27-hns/TVService/setChannel?channel=6.

We have been developing value-added services within
CS27-HNS. For example, the appliance control service from
outside, the energy consumption visualization service [10],
the electric peak shaving service[11], the integrated service of
multiple appliances [12], the voice operation service [13], the
personalized home control service [14], and so on. We have
also developed the sensor service framework (SSF) [15], which
facilitates installation of environmental sensors in the HNS.
The sensor service binder(SSB) [16] supports non-expert users
to develop custom context-aware services with the sensors.

B. Presence Sensing within HNS Environment

The presence sensing is a technology that determines
whether a person (or an object) is present at a certain place. It is
used in various fields [17]. In this paper, we especially focus on
presence sensing of human users within a HNS environment.
The presence sensing within HNS environment provides an
efficient means to detect user’s movements or location in a
house. It can be used to check if a user is in a room, to
estimate user’s position, or to detect user’s approach to a
specific location or object (e.g., a door, an entrance, or an
appliance). These information are useful to implement more
user-centric applications and services in the HNS.

When we introduce a presence sensing system in a general
household, the system must be installed easily with inexpen-
sive cost. Also, it must be able to be adapted for the future
change of the house. Therefore, in this paper, we especially
consider the following four requirements:

• Requirement R1: The system can use various sensor
devices for presence sensing.

• Requirement R2: The system can dynamically add,
change or remove the places of sensing in the house.

• Requirement R3: Various HNS services and applica-
tions can obtain and share the presence information.

• Requirement R4: The system is not limited in a
single house, and can be extended for multiple houses.

The purpose of Requirement R1 is to allow users to select
various sensor devices suited for individual circumstances
(the size of house, family, budget, etc.). Requirement R2
enables the system to adapt heterogeneous house environments
(room layout, equipment, etc). Requirement R3 allows external
applications to make full use of the system. Requirement R4
considers the adaption to smart city services in the future.

There have been various types of presence sensing systems
so far. However, none of the conventional systems is for gen-
eral households, and thus they do not meet these requirements.
Most existing systems are for business office environment
or public facilities, which are basically closed systems for
proprietary services or appliances.

Therefore, we are conducting research and development of
a new presence sensing system that can be easily adopted for
general houses with the HNS environment.

Fig. 1. Architecture of the proposed framework

III. SERVICE FRAMEWORK FOR PRESENCE SENSING IN
HNS ENVIRONMENT

A. System architecture

Figure 1 shows the architecture of the proposed framework,
called Presence Sensor Service Framework (PSSF). In the
framework, a presence sensor device (PSD) is a physical sensor
device that detects human movements, a Presence Sensor
Terminal (PST) is a local hub managing several adjacent PSDs.
A Presence Sensor Aggregator (PSA) is a global data store that
aggregates sensor information from all the PSTs in a house.

A PSD is deployed in a place, where a user wants to detect
human presence. To improve accuracy and cover wider range,
several PSDs can be deployed nearby. The adjacent PSDs are
connected to a PST. The PST monitors values of the PSDs. If
a value of a PSD exceeds a pre-determined threshold, the PST
notifies the PSA of sensor information, consisting of id of the
PST, id of PSD, the value of PSD, and location information.

Upon receiving a new sensor information, the PSA updates
the sensor information, and records the last update date and
time. The PSA implements a method that estimates whether
a person is present around each PSD. The method is exposed
as a Web service, so that various HNS applications can easily
play with the human presence information via Web-API. The
Web service that wraps PSA is called Presence Sensor Service
(PSS). The details are described in the following sub sections.

B. Presence Sensor Device (PSD)

The Presence Sensor Device (PSD) plays a roll of detecting
human movement within the HNS environment. A PSD is
a physical sensor device supposed to be installed in a place
where a user wants to perform presence sensing. As for the
PSD, the user can use various types of sensors, including
infrared, magnetic, pressure or wireless LAN. However, to
introduce the PSSF in a general house, the sensor should be
inexpensive, and be installed easily with low cost.

Considering the cost, we chose an infrared motion sensor
(Phidget 1111 0) in this study. This motion sensor measures
a change of infrared light generated by movement of goods

ISBN: 978-1-4799-6375-1 ©2015 IEEE 110

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

having heat. Thus, it can sense the human movement around
the sensor. Software driver of the sensor allows to add an event
listener that notifies an event when the sensor value changes.
Each PSD is associated with an unique id (called, psdId).

The accuracy and coverage of presence sensing can be
improved by placing several PSDs nearby. For example, when
we detect human movements in a room, using four sensors
instead of one can cover larger area with better accuracy.
However, improving coverage and accuracy increases the cost
of sensors, which is a trade-off relation.

C. Presence Sensor Terminal (PST)

The Presence Sensor Terminal (PST) plays a roll of a local
hub connecting several adjacent PSDs, and notifies a PSA
when a sensor value changes. A PST has a set of observers
each of which monitors a connected PSD. Moreover, a PST
has an id (pstId) and a URL of the PSA to be notified. The PST
sets these information to the observers when every observer is
created.

Each observer has a threshold of the sensor value, by
which a human movement is determined. It also has meta-
data explaining location of the sensor (locationInfo). Using the
event listener of the PSD, each observer monitors change of
the sensor value of the PSD. If the value exceeds the threshold,
the observer notifies a PSA (specified in a URL) of a sensor
information. The sensor information consists of pstId, psdId,
locationInfo, and the sensor value.

Note that notifications to the PSA are executed by observers
autonomously, based on an event-driven communication. Thus,
the communciation occurs only when a sensor value exceeds
the threshould, and the the direction of communication is
always from a PST to a PSA. This achieves the high scalability
of the PSA in the number of PSDs and the number of PSTs.

On the other hand, there are many cases where the sensor
values are not changed frequently even if a person is present.
For such cases, the estimation of human presence is not
determined by PST only, and is delegated to the PSA. In other
words, we divide the responsibility between the PST and the
PSA. That is, the PST detects a major change of sensor values
as an event, whereas the PSA estimates the human presence
based on the events and their history.

D. Presence Sensor Aggregator (PSA)

The Presence Sensor Aggregator (PSA) is a global data
store that aggregates sensor information (sensorInfo) from all
the PSTs in a house. A PSA is associated with a URL, to which
a PST can send the sensorInfo. A PSA first collects sensorInfo
from the PSTs, and then estimates human presence around
every PSD. The result of estimation is stored to a database to
construct log (i.e., history) of human presence.

For each PSD connected to a PST, the PSA manages a
sensor state to characterize the current status of each sensor.
A sensor state consists of pstId, psdId, locationInfo, sensor
value, last update date, and last update time. Each PST notifies
a PSA of a sensorInfo by using updateSensorState()
API. When this API is executed, the PSA updates the sensor
state using the data in the sensorInfo with the current date and
time.

Fig. 2. Graph of the presence likelihood

The PSA provides the latest sensor state for external
applications via getSensorState() API with a PSD key.
The PSD key is a concatenation of pstId and psdId, which
uniquely identifies a PSD within a house.

The PSA also has getHumanPresence() API, which
estimates human presence based on the sensor state. For a
given PSD key, the API returns presence information with
respect to the PSD. Although there are many ways to describe
human presence, we here choose to represent the presence as
likelihood, which is a possibility that a human is present near a
certain place. We call it presence likelihood. Thus, the presence
information consists of pstId, psdId, and presence likelihood.

The presence likelihood takes a value from -1 to 100,
where -1 means “nobody is present” and 100 represents
“somebody must be present”. Let t be the time elapsed
from the last update time of the sensor state until the time
getHumanPresence() methods is invoked. Intuitively, the
smaller t yields more presence likelihood, because there is
a fact that a human movement was detected within a short
time. Thus, if the time is not elapsed enough after a PSD
detects a human movement, the possibility that a person is
present is high. Conversely, as the value of t becomes larger,
the presence likelihood decreases because the person moves
out of the range of the sensor. Based on the above principle,
we define the presence likelihood as the following function
PL(t) with respect to the elapsed time t:

PL(t) =

{
100 (1− t/texp) (0 ≤ t ≤ texp)
−1 (t > texp)

In the function, texp represents the time of expiry. When t
is smaller than texp, the presence likelihood linearly decreases
from 100 to 0. When t exceeds texp, the presence likelihood
becomes -1, indicating that nobody is present. The graph of
PL(t) is depicted in Figure 2.

The presence information (i.e., pstid, psdid, and presence
likelihood) is stored in a database every second, which forms
presence log. Table I shows a data table of the presence log.
Each record consists of log id, pstId, recorded date, recorded
time and presence likelihood. The presence likelihood is rep-
resented as key-values of psdID and the value of likelihood of
the PSD.

ISBN: 978-1-4799-6375-1 ©2015 IEEE 111

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

TABLE I. TABLE OF PRESENCE LOG

Log id date time pstId presence likelihood
ObjectId(”539f0697e4b014”) 2014-06-13 16:55:50 149180 {1:-1, 2:20, 3:100, 4:50, 5:-1, 6:-1}
ObjectId(”539f0697e4b015”) 2014-06-13 16:55:51 149180 {1:100, 2:10, 3:90, 4:30, 5:-1, 6:-1}
ObjectId(”539f0697e4b016”) 2014-06-13 16:55:52 149180 {1:90, 2:0, 3:80, 4:20, 5:-1, 6:10}

The presence log can be retrieved by
collectSensorLog() API of PSA. This API can
be invoked by specifying pstId, psdId, start date, end date,
start time, end time, and term. start date (or end date)
specifies the date from (or until, respectively) when you
retrieve the presence log, which is given in the form of
“yyyy-MM-dd”. start time (or end time) specifies the time
from (or until, respectively) when you retrieve the presence
log, which is given in the form of “hh:mm:ss”. term specifies
an interval of date of retrieving the presence log, which
is given in the forms of “yyyy-**-**”, “****-MM-**”,
or “****-**-dd”. For example, by giving “2014-**-**” as
a term, it is possible to retrieve all presence log within
2014. Similarly, giving “****-11-**” as a term retrieves get
presence log in November of every year.

In collectSensorLog() API, arguments that are not
needed for the search can be given as “null”. For example, to
obtain presence log of all PSTs and PSDs from November 1,
2014 at 00:00:00 until November 23, 2014 at 12:00:00, the
user specifies [null, null, 2014-11-01, 2014-11-23, 00:00:00,
12:00:00, null] to the API. Both pstId and term are independent
of any other arguments. In contrast, pstId cannot be omitted
when psdId is given. Moreover, both start time and end time
must be given at a time. Similarly, both start date and end date
must be given as a pair.

E. Presence Sensor Service (PSS)

The Presence Sensor Service (PSS) provides fea-
tures of the PSA as a Web service, so that various
HNS applications can easily use the features. The PSS
wraps a PSA, and provides various Web services us-
ing the API of PSA (such as getHumanPresence()
and collectSensorLog()). For example, the PSS in-
cludes Web-API getAllSensorStates() which re-
turns the current sensor states of all PSDs, as well as
getAllPresence() which returns the presence informa-
tion of all PSDs.

The PSS also provides Web-API
getSensorLogsBypstID() that returns presence log
related to a given PST. In this Web-API, arguments required
for collectSensorLog() are automatically configured
by setting null values to arguments except pstId, which is
convenient for the user. When a HNS application obtains
presence logs, arguments that are not required for search
(e.g., start time, end time, and start date) can be omitted. PSS
can be extended easily by adding more API adapting to the
requirement of the data search.

Providing the PSS as a Web service allows heterogeneous
HNS applications to use the presence sensing information in
a standardized manner. Each application invokes the Web-API
with the REST or SOAP protocol, and receives the result in
the form of XML.

Fig. 3. Presence sensor terminal with four presence sensor devices

PST
PSD

(Phidgets)

PSA

(Web Server)

(Raspberry Pi)

PSD

(Phidgets)

Fig. 4. Installation of the prototype in our laboratory

IV. IMPLEMENTATION

A. Prototype of Presence Sensor Service Framework

Based on the proposed method, we have developed a
prototype of the PSSF. We have also installed the prototype in
our CS27-HNS to conduct presence sensing in our laboratory.

Figure 3 shows the developed prototype of a presence sen-
sor terminal (PST) with four presence sensor devices (PSDs).
In order to develop the prototype, we have used the Phidgets
infrared motion sensor (1111 0 - MotionSensor) for the PSDs.
We then connected four motion sensors with the Interfacekit
(1018 2 - PhidgetInterfaceKit 8/8/8). The Interfacekit was
connected to an one-board PC (Raspberry Pi) via USB. The
one-board PC was finally connected to CS27-HNS via LAN.

The software of the PST presented in Section III-C was
implemented in Java. We integrated the motion sensors in
the software using phiget21 library, provided by Phidgets
Inc. The developed prototype was installed on the ceiling in
our laboratory. Figure Figure III-C shows the image of the
installation of the prototype.

Moreover, both the PSA and the PSS were developed in
Java. The developed program was deployed on a web server

ISBN: 978-1-4799-6375-1 ©2015 IEEE 112

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

TABLE II. TECHNOLOGIES USED IN THE PROTOTYPE

PSSF Layer Technologies Used
Presence Sensor Device (PSD) Phidgets 1111 0 – Motion Sensor,

Phidgets 1018 1 – InterfaceKit
Presence Sensor Terminal (PST) Raspberry Pi Model B,

Phidget21.jar, Java JDK7
Presence Sensor Aggregator (PSA) Vine Linux 4.2,

Java JDK7,
mongo-2.10.1.jar

Presence Sensor Service (PSS) Java JDK7,
Apache Tomcat6.0,
Apache Axis2 1.4

Database mongoDB 2.6.1

� �
<ns:getHumanPresenseResponse>
<return type="jp.kobe_u.cs27.pss.Human
Presense">

<locationInfo>
West Door of S101

</locationInfo>
<presence>94</presence>
<psdID>1</psdID>
<pstID>149180</pstID>

</return>
</ns:getHumanPresenseResponse>� �

Fig. 5. Result of getHumanPresence() Web-API

as the Web service. For this, we used Apache Axis2 Web
service middleware, and Tomcat 6.0 for the Web server. Table
II summarizes technologies used for the prototype.

Figure 5 shows a result of invocation of Web-API
getHumanPresence(), shown in an XML format. In this
example, the result shows that the presence likelihood at West
Door of the room S101 is estimated to 94.

B. PresenceViewer: Client Application of Framework

We have also implemented PresenceViewer, which is a
client application of the developed framework. PresenceViewer
visualizes the human presence on a room map in a web
browser. PresenceViewer was developed by using JavaScript
and Google Chart Tools. It internally invokes the Web-API of
the PSS using the REST protocol.

Figure 6 shows the screenshot of PresenceViewer. For a
given term between the start date/time and end date/time,
PresenceViewer retrieves the presence log from the PSS, and
visualizes the likelihood with bubbles on the room map. Each
bubble represents a value of the presence likelihood by a color
and the size. When the value of presence likelihood is larger,
the bubble becomes darker and bigger. For every second, the
bubbles are refreshed to visualize the presence log in the next
seconds (here it is set to 5 seconds). Thus, the presence sensing
is animated as the time passed. Using PresenceViewer, one can
easily review the past human presence within our laboratory.

V. DISCUSSION

A. Satisfaction of Requirements

We here discuss how the proposed framework satisfies the
requirements mentioned in Section II-B.

Fig. 6. Screenshot of PresenceViewer

Requirement R1 is satisfied in the proposed framework,
since the framework does not rely on specific sensor devices.
For any sensor device given, a developer just writes a method
of getting sensor value in PSD, defines an appropriate threshold
for detecting human movements in PST, and sets an address
of a PSA to be notified. Even a smartphone with embedded
sensors can be adapted to the framework, by using the sensors
as PSDs and the smartphone as a PST.

Requirement R2 is satisfied by the layered architecture of
the proposed framework. If a user wants to add a place of
presence sensing, the user just installs a new PSD in the place,
and connects it to a nearest PST. For this, no modification is
required in PSA or PSS. The same thing applies to changing
or removing the place of sensing.

Requirement R3 is satisfied by Web service of the PSS.
Through the Web-API of the PSS, the presence information
can be used by various HNS applications and appliances in a
platform-independent manner. Also, as seen in the developed
PresenceViewer, it is quite easy to integrate the PSS with other
Web services, such as Google Charts, Email, Twitter, SNS.

Finally, Requirement R4 can be satisfied by deploying the
PSA and PSS on the external cloud server. The URL of the
PSA is not necessary closed within a house. Therefore, by
installing PSA and PSS in the external server as the cloud
service, the presence information can be collected from multi-
ple houses with HNS environment. However, when gathering
human presence of multiple houses within the external server,
we must consider security and privacy issues carefully. We
would like to leave the security and privacy issues for one of
our most important future work.

B. Other Applications and Services

We here consider more other applications and services
using the proposed PSSF. Using the presence information
and the presence log of the PSSF extensively, the following
services can be developed.

1) Daily Life Review Service: Using the PSSF, a user
can look back daily life with respect to the human presence.
Reviewing the past situation may evoke some idea to improve
user’s life style, or may detect unexpected intrusions during
the absence of the user.

ISBN: 978-1-4799-6375-1 ©2015 IEEE 113

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

2) Task Remind Service: This service is used to remind
a user of periodic tasks or daily routines using the presence
information. For example, when a user forgets to throw out the
garbage in the garbage collection day, the service detects the
fact from the presence information in the kitchen, and alerts
the user to wake up.

3) Time Estimation Service: By analyzing the presence log
of the PSSF extensively, we may find the time patterns when
people are often present. Based on the log, we can estimate the
presence likelihood in the future, which realizes a value-added
service. For example, if the service can estimate the time when
the family is present a living room, the HNS automatically
turns on a light of the living room on the time.

4) Location Estimation Service: Similarly, by analyzing
the presence log of the PSSF, we may guess a place where
a user moves next. Since a PST usually has multiple PSDs,
the order of reactions of the PSDs may characterize user’s
actions or movements of direction. By analyzing the patterns,
the service may derive the next location where the user moves.
For example, if the service knows that a user often goes to the
second floor when the presence is detected near the stair, then
the service automatically turns on the lights of the second floor
in advance.

VI. CONCLUSION

In this paper, we have presented a framework, called Pres-
ence Sensor Service Framework (PSSF), for efficient presence
sensing within the home network system (HNS). The proposed
framework is designed by a layered architecture consisting
of the presence sensor devices (PSDs), the presence sensor
terminals (PSTs), the presence sensor aggregator (PSA), and
the presence sensor service (PSS). A PSD is a physical sensor
device for detecting human movements. The PST is a local
hub monitoring adjacent PSDs. A PSA collects all sensor
information generated in a house. A PSS is a service to pro-
vide presence information to HNS applications. Various HNS
applications and appliances can obtain presence information
easily through Web-API provided by the PSS.

We have also prototyped the proposed framework using
Phidgets infrared motion sensors, a Raspberry Pi, and Java,
and installed the prototype within the HNS in our laboratory.
To confirm the effectiveness, we developed an application,
PresenceViewer, which visualizes the human presence in our
laboratory. We finally discuss other potential applications and
services.

In our future work, we would like to evaluate the per-
formance of the proposed system (e.g., accuracy of human
presence and response speed). Also, we investigate the security
and privacy issues in presence sensing of multiple houses for
emerging smart city services.

ACKNOWLEDGEMENT

This research was partially supported by the Japan Min-
istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (C) (No.24500079, No.24500258),
Scientific Research (B) (No.26280115), Young Scientists (B)
(No.26730155)] and Kawanishi Memorial ShinMaywa Educa-
tion Foundation.

REFERENCES

[1] SONY, “Presence sensor,” http://docs.esupport.sony.com/referencebook/
en/ve5/pages/funfeatures/presencesensor.html, [Online; accessed 11-
Dec-2014].

[2] HITACHI, “Heat recovery operation,” http://www.hitachi-ap.com/
products/business/ac/packaged/recovery/operation.html, [Online; ac-
cessed 11-Dec-2014].

[3] GIRA, “Automatic light control,” http://www.gira.com/en/
gebaeudetechnik/produkte/automatische-lichtsteuerung.html, [Online;
accessed 11-Dec-2014].

[4] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. ichi Matsumoto,
“Constructing home network systems and integrated services using
legacy home appliances and web services,” International Journal of
Web Services Research, vol. 5, no. 1, pp. 82–98, January 2008.

[5] G. T. by NABCO Entrances Inc, “About sensors,” http://www.
nabcoentrances.com/about sensors.pdf, [Online; accessed 11-Dec-
2014].

[6] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai,
and M. Wiseman, “Indoor location sensing using geo-magnetism,”
in Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’11. New
York, NY, USA: ACM, 2011, pp. 141–154. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000010

[7] freescale, “Pressure sensors,” http://www.freescale.com/webapp/sps/
site/overview.jsp?code=DRSNSPRSSR&uc=true&lang cd=en, [Online;
accessed 11-Dec-2014].

[8] M. Hazas and A. Hopper, “Broadband ultrasonic location systems for
improved indoor positioning,” IEEE TRANSACTIONS ON MOBILE
COMPUTING, vol. 5, no. 5, pp. 536–547, 2006.

[9] P. Tao, A. Rudys, A. M. Ladd, and D. S. Wallachm, “Wireless
lan location-sensing for security applications,” http://www.cs.rice.edu/
∼dwallach/pub/wise2003.pdf, [Online; accessed 11-Dec-2014].

[10] Y. Watanabe, M. Nakamura, and S. Matsumoto, “Implementing per-
sonalized energy visualization service in home network system,” in
14th ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD2013). IEEE Computer Society, July 2013, pp. 529–536,
honolulu, USA.

[11] K. Tokuda, S. Matsumoto, and M. Nakamura, “Implementing a mobile
application for spontaneous peak shaving of home electricity,” in Sixth
International Workshop on Selected Topics in Mobile and Wireless
Computing (STWiMob2013). IEEE Computer Society, October 2013,
pp. 284–289, lyon, France.

[12] M. Nakamura, H. Igaki, Y. Yoshimura, and K. Ikegami, “Considering
online feature interaction detection and resolution for integrated services
in home network system,” in 10th International Conference on Feature
Interactions in Telecommunications and Software Systems (ICFI2009).
IOS Press, June 2009, pp. 191–206, lisbon, Portugal.

[13] S. Soda, M. Nakamura, S. Matsumoto, S. Izumi, H. Kawaguchi, and
M. Yoshimoto, “Implementing virtual agent as an interface for smart
home voice control,” in Asia-Pacific Software Engineering Conference
(APSEC2012), December 2012, pp. 342–345, hong Kong.

[14] K. Tokuda, S. Matsumoto, and M. Nakamura, “Implementing personal
home controllers on smartphones for service- oriented home network,”
in International Conference on Wireless and Mobile Computing, Net-
working and Communications (Wimob 2012), October 2012, pp. 777–
784, barcelona, Spain.

[15] M. Nakamura, S. Matsuo, S. Matsumoto, H. Sakamoto, and H. Igaki,
“Application framework for efficient development of sensor as a service
for home network system,” in the 8th IEEE 2011 International Con-
ference on Services Computing (SCC 2011), July 2011, pp. 576–583,
washington D.C.

[16] M. Nakamura, S. Matsuo, and S. Matsumoto, “Supporting end-user
development of context-aware services in home network system,” in
Studies in Computational Intelligence, R. Lee, Ed. Springer, November
2012, pp. 159–170.

[17] JAXA, “Wireless lan location-sensing for security applications,” http://
global.jaxa.jp/article/special/michibiki/yoshitomi\ e.html, [Online; ac-
cessed 11-Dec-2014].

ISBN: 978-1-4799-6375-1 ©2015 IEEE 114

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

