
Empirical Study on Effects of
Script Minification and HTTP Compression

for Traffic Reduction

Yasutaka Sakamoto, Shinsuke Matsumoto, Seiki Tokunaga, Sachio Saiki and Masahide Nakamura
Graduate School of System Informatics, Kobe University

1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
Email: gen@ws.cs.kobe-u.ac.jp, shinsuke@cs.kobe-u.ac.jp

Abstract—Code-on-demand is an architectural style that a
client dynamically downloads a raw script file and executes
it on the client-side. This style causes a problem of network
traffic because a raw script is not always compiled or minified
in advance. Formatting rules, such as indents, line breaks and
comments for ensuring human readability, are not necessary
to the execution. In order to save wasteful data transfer, it is
necessary to minify or optimize the script on the entirety of the
Web. In this paper, we explore the potential for JavaScript size
reduction with focus on the two reduction approaches: script
minification and HTTP compression. The main two research
questions are: RQ1: How many percent of websites have reduction
potential? RQ2: How much JavaScript size can be reduced on the
Web? Our results show that about 40% of total size of JavaScript
files used on the top 500 websites can be potentially reduced by a
script minification. Moreover, the current JavaScript data traffic
is saving over 50% by HTTP compression. If every website was
configured to use HTTP compression, we can achieve a reduction
rate of 5% to 20%.

Keywords—Traffic reduction, script optimization, HTTP com-
pression, code-on-demand, JavaScript

I. INTRODUCTION

With the advent of HTML5 and the emerging Web tech-
nologies, Web browser is becoming like an operating system
[1][2]. In the following such kind of Web-centered comput-
ing environment, large variety of software capabilities are
distributed on the Web, and are connected with each other
by JavaScript [3]. Roles of the JavaScript are extending far
beyond XML/HTML DOM manipulation. Brief examples of
the extended roles are the following: constructing a rich user
interface, mashup of existing Web APIs, real-time messaging
between client and server, current position retrieval, etc.

Every scripting languages, which are executed on Web
browser (e.g., JavaScript, ActionScript and Java applets), have
a distinct feature named code-on-demand (also called Client-
side scripting). This is one of a constraint of the architectural
style of REST (Representational State Transfer) [4]. According
to the code-on-demand style, a client (i.e., Web browser)
dynamically downloads a raw script file and executes it on
the client-side. The architectural style that a client downloads
and executes a pre-compiled executable binary is an opposite
style of the code-on-demand. Code-on-demand allows flexible
update of client-side capabilities after deploying a Web appli-
cation without any modification of a server-side program.

However, code-on-demand causes a problem of network
traffic. One reason is that since a raw script is downloaded to
a client, it is not always compiled or minified in advance of
deployment. Formatting rules, such as indents, line breaks and
comments for ensuring human readability, are not necessary to
the execution. Moreover, annoying wasteful logical statements,
such as unreachable code, redundant code and unused code,
are potentially hidden in every script. They should be omitted
or eliminated to save wasteful data transfer. Another reason
is in the HTTP protocol. Essentially, text-based Web contents
(e.g., HTML, CSS and JavaScript) have a high potential for
data compression. Although HTTP/1.1 defines a capability
of transferred data compression, it is disabled by default
in the common Web server because the compression and
decompression cause a minor performance hit to both server-
side and client-side.

In order to save wasteful data transfer, it is necessary
to minify or optimize a script on the entirety of the Web.
Extremely high-speed network infrastructures are becoming
more and more popular in developed countries. However,
we still face crowded and low-speed Wi-Fi environments
on airport, cafe, international conference, etc. Especially, a
network environment of mobile devices requires efficient usage
of network bandwidth.

Multimedia contents are occupying a lot of the current Web
traffic (about half, according to [5]) because their file size is
basically large compared to text-based Web contents. However,
applying an encoding or compression process, whether lossy
or lossless, for the multimedia contents was already common
practice. In contrast, size reduction techniques (e.g., minifica-
tion, optimization and compression) for text-based contents are
often neglected due to the its small size. Hence, we assume that
the existing text-based Web contents still have certain amount
of reduction potential.

Our long-term goal of this research is to conduct an
extensive empirical study of potential for size reduction of
existing text-based Web contents. In this paper, we focus on
the reduction potential of JavaScript files in terms of the code-
on-demand style. Two approaches are studied as a technique
of JavaScript size reduction: script minification [6][7] and
HTTP compression [8][9]. Script minification is a technique
that reduces size of script files by omitting and eliminating
unnecessary codes. HTTP compression allows Web contents
to be compressed on server-side before transferring to a client.

ISBN: 978-1-4799-6375-1 ©2015 IEEE 127

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

The main two research questions are formulated as follows.
RQ1: How many percent of websites have reduction potential?
RQ2: How much JavaScript size can be reduced on the Web?

II. REDUCING JAVASCRIPT SIZE

A. Definition of Terms and Measures

We first define the following two terms.

Processed or not: The term “Processed” means a given
JavaScript file is already applied script minification or HTTP
compression. Deciding whether a given website is supporting
HTTP compression is simple and clear task because HTTP
response header includes it. However, deciding whether a script
is already minified is not an easy task because of a variety of
minification strategies. In this paper, we regard a given script
as not processed (i.e., not minified) if the script includes one
or more indents or comments. This confirmation process is
conducted by manually.

Reduction rate: This metric is a key indicator in our
empirical study. The reduction rate represents how much can
JavaScript size be reduced by script minification or HTTP
compression. In this paper, we formulate the reduction rate
as follow.

ReductionRate(%) = 100× (1− ProcessedSize

UnprocessedSize
) (1)

B. Script Minification (Scriptmin)

Script minification is a technique to reduce script size
without any modification on essential process. In this paper,
we labeled this technique as Scriptmin.

Here, we describe a concrete example of Scriptmin. The
following raw code snippet of JavaScript is an example of
summing all integers from 0 to 10. The size of this script is
68 bytes.

var sum =0;
f o r (var i =0 ; i <=10; i ++) {

sum += i ;
}
a l e r t (sum) ;

The basic process of Scriptmin is removing a variety of
formatting rules such as indent and comment which are written
for ensuring human readability.

var sum =0; f o r (var i =0 ; i <=10; i ++){sum+= i ;} a l e r
t (sum) ;

As shown in the above code snippet, every line breaks and
unnecessary white-spaces are omitted. The reduction rate of
script size is about 24% by this process.

The most powerful minification is based on considering
logical behavior. This minification can be regarded as one
aspect of program optimization [10]. For example, unused
variable and unreachable code statement are unnecessary to
the execution and can be omitted. The above example script
can be minified as follows by using the logical optimization.

a l e r t (5 5) ;

In the result, we achieve a reduction rate of 85% (i.e., 68
bytes are minified to 10 bytes).

Many variety of minification tools have been released on
the Web. Not surprisingly, they have different features in terms
of minification strategies, principles, and minification effects.
In the experiment, we compare three minification tools to
compare these features (see Section III-C).

C. HTTP Compression (HTTPcomp)

HTTP compression is an optional feature of HTTP/1.1 [4]
to reduce the amount of HTTP traffic of Web contents [9]. It
allows Web contents to be compressed on server-side before
transferring to a client. In general, gzip format, which uses
Lempel-Ziv (LZ77) algorithm with Huffman coding, is used
as a compression algorithm. In this paper, we labeled this as
HTTPcomp.

An example of a sequence of a HTTPcomp negotiation is
follows. First, a client sends a request message to a server with
“Accept-Encoding” parameter in the request header to enable
HTTPcomp.

GET /index.html HTTP/1.1
Host: example.com
Acccept-Encoding: gzip

Then, the server sends a response message with the fol-
lowing response header.

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip

In this case, the requested and transferred HTML content
(i.e., http://example.com/index.html) written in the response
body is compressed by gzip. It is necessary for the client
to decompress the response body before parsing the HTML
content.

HTTPcomp is supported by a common Web server soft-
ware (e.g., Apache HTTP Server, Internet Information Services
and Nginx). However, HTTPcomp is disabled by default be-
cause it takes a minor performance hit on both client and server
for the decompression. We consider that this disablement can
be potential for JavaScript size reduction.

D. Pilot Study

In order to confirm the reduction effects of Scriptmin and
HTTPcomp, we have conducted a pilot study. The experimen-
tal objects are famous and widely used JavaScript libraries:
jQuery (ver. 2.1.1), prototype.js (ver. 1.7.2) and backbone.js
(ver.1.1.2). Though the three libraries are provided with an
already-minified version on their website (basically suffixed
with “.min.js”), we use a non-minified version. As noted in
the Section II-B, there are a variety of minification tools.
We picked up YUI compressor which minifies a script by
omitting indents, comments, line breaks and by abbreviating
local variable names.

Table I shows the result of the pilot study. Percentage in
parentheses represents reduction rate. Script sizes are reduced

ISBN: 978-1-4799-6375-1 ©2015 IEEE 128

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

TABLE I. REDUCTION EFFECTS OF Scriptmin AND HTTPcomp

Subject JS lib. unprocessed Scriptmin HTTPcomp Both
jQuery 241.6 KB 128.2 KB 72.9 KB 37.0 KB

— (47%) (70%) (85%)
prototype 193.1 KB 102.3 KB 45.3 KB 33.0 KB

— (47%) (77%) (83%)
backbone.js 59.6 KB 19.7 KB 17.3 KB 6.9 KB

— (67%) (71%) (88%)

about 30% to 50% for each JavaScript library by apply-
ing Scriptmin. In other words, Scriptmin can reduce the
JavaScript size to 50% to 70%. HTTPcomp also have high
reduction rate about 70%. This is because Huffman coding
provides effective performance for a text-based file. Moreover,
we can achieve 90% reduction rate by combining Scriptmin

and HTTPcomp. The reason is that the processing result of
Scriptmin is just a text-based JavaScript file and HTTPcomp

is effective to a text-based file. Therefore, Scriptmin and
HTTPcomp can independently contribute to size reduction.

E. Research Questions

Our research questions can be formulated as follows.

RQ1: How many percent of websites have reduction po-
tential?

We first study the percentage of websites, which have
some possibilities for size reduction, before studying the actual
reduction rate on the Web. The degree of the possibility can be
regarded as one of characteristics of potential for JavaScript
size reduction. To answer this question, we explore whether or
not a JavaScript is already applied Scriptmin and HTTPcomp.

RQ2: How much JavaScript size can be reduced on the
Web?

The second research question is the most essential for this
study. By crawling a lot of websites, we explore the actual
reduction rate by using both Scriptmin and HTTPcomp. If
there still remain many JavaScript, which can be reduced, we
have a potential to achieve more efficient bandwidth usage on
the crowded and low-speed Wi-Fi environment. To answer this
question, we crawl the top-ranking websites and retrieve all
JavaScript files. Then, we apply Scriptmin and HTTPcomp

to the all JavaScript files, and compare with unprocessed one.

III. EXPERIMENT DESIGN

A. Subject Website

We use a list of Alexa Top 500 Global Website1 as an
object of the study. The list of top ranking website is suitable to
confirm our research questions that try to empirically explore
the entirety of the Web. Especially, if a popular website has
high reduction potential, it can be highly effective for reducing
the amount of network traffic.

Table II represents summary of lists of subject websites. 22
of 500 websites was already not found and was ignored in our
study. Focusing on Alexa top 500 shows every website includes
about 20 separated JavaScript files in average. The total size
of JavaScript files was 157 MB. This size can be regarded
as a baseline measurement in the study. The answer of RQ2

1http://www.alexa.com/topsites

TABLE II. SUMMARY OF SUBJECT WEBSITE LIST

Metric Subject website list
Alexa top 500 Japanese gov. univ.

included websites 500 86
not found websites 22 0
average # external JS files 5.8 6.3
average # internal JS files 15.5 5.7
average # JS files 21.3 12.0
average size of JS files 314 KB 141 KB
total size of JS files 157 MB 12 MB

com
(62.5%)

net (5.3%)

cn (4.2%)
jp (2.2%)

org (1.8%)
ru (1.8%)
de (1.4%)
fr (1.4%)

uk (1.4%)
others

(17.0%)

Fig. 1. Percentage of top-level domain of Alexa top 500 websites

indicates how the 157 MB can be reduced by Scriptmin and
HTTPcomp.

Note that the website list has some bias because the Alexa’s
ranking data is collected through Alexa Toolbar which is
installed on the user’s browser. So, the bias and the results are
influenced by the population of users of the Alexa Toolbar.
To confirm the dataset bias, we show percentages of top-level
domain of the top 500 websites in Figure 1. About 70 %
websites are belong to “com”, “net” or “org” (i.e., commercial
organizations, network infrastructures or organizations). More-
over, there are few country code top-level domains. It includes
East and North Asia (China, Japan and Russia), and Europe
(Germany, France and United Kingdom). This distribution may
strongly affect to our empirical results.

In addition, we use a list of websites of Japanese all
86 government universities. The current World Wide Web
includes an enormous number of websites and is growing more
and more. It is necessary to explore not only popular websites
but also various other non-popular websites in order to answer
our questions. Therefore, we chose Japanese universities as an
example non-popular websites.

Note that our study explores only the root directory (i.e.,
welcome index page) of a specified website because we
assumed that the welcome page has a strong tendency to reflect
other web contents in the same website.

B. Experimental Procedure

Figure 2 shows an experimental procedure for both RQ1
and RQ2.

1. Fetching to root domain: For a given domain name
(“example.com” in the figure), we send an HTTP GET
request to the root directory and retrieve a root index
page.

2. JavaScript extraction: The response body is ana-
lyzed by an HTML DOM parser to extract scripts.

ISBN: 978-1-4799-6375-1 ©2015 IEEE 129

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

2. JS extraction3. Fetching ext. JS

1. Fetching
root domain

minif.
tool

7. Storing minif. results
to analyze

5. Merging all JS

6. Applying JS
minification

all.JS

dom
parser

example.com

internal JSexternal JS

4. Storing
HTTP header
to analyze

result

Fig. 2. Experimental Procedure

Scripts written directly in an HTML document are la-
beled “internal JavaScript”. They are described within
<script> tag.

3. Fetching external JavaScript: The HTML document
includes some “external JavaScript” which are dy-
namically loaded on client-side. They are fetched
respectively. The URI of the external JavaScript is
described as <script src="ext.js">.

4. Storing HTTP header to analyze HTTPcomp: An
HTTP response header which is retrieved on Step.3 is
stored to a database. This header includes information
whether the external JavaScript is transferred with
HTTP compression or not.

5. Merging all JavaScript: Internal and external
JavaScript are merged with holding the order of
execution.

6. Applying JavaScript minification: The “all.js” is mini-
fied by using three minification tools. More detailed
description of these tools are shown in the next
section.

7. Storing minification results to analyze Scriptmin: The
effects of script minification, such as reduction rate or
minification time, are saved to analyze Scriptmin.

C. Minification Tools

We selected the following three tools for the empirical
study from a variety of minification tools published on the
Web. We assumed that the first (YUI) has high-applicability
but less-reduction rate, in contrast, the second (CC) has high-
reduction rate but low-applicability, and the third (packer) is
an obfuscation tool.

YUI Compressor [11] (abbr. YUI) is a well-known tool
for JavaScript minification. YUI supports some format mini-
fication (e.g., omitting white-spaces, indents, and line breaks)
and a few logical optimization (e.g., shrinking variable names).

page not found
(4.6%) no script

(2.6%)

fully
minified
(6.0%)

partially or not
minified (86.8%)

(a) Alexa top 500

no script (2.3%)
fully
minified
(1.2%)

partially or not
minified (96.5%)

(b) Japanese gov. univ.

Fig. 3. Percentages of the usage of Scriptmin

not gzipped (7.8%)

gzipped (92.2%)

(a) Alexa top 500

gzipped
(15.1%)

not gzipped (84.9%)

(b) Japanese gov. univ.

Fig. 4. Percentages of the usage of HTTPcomp

The advantage of this tool is less side effects on script behavior
compared with other minification tools. This paper assumes
this tool as a baseline of script minification.

Closure Compiler [12] (abbr. CC) is one of a minification
and optimization tool provided by Google. In contrast to
YUI Compressor, CC supports powerful logical optimization
strategies. For example, the most minified result described
at Section II-B is processed by CC. However, CC imposes
some restrictions on an optimized script in order to retrieve
a maximally-optimized code. We assumed that CC has high
efficiency but low-applicability for script minification.

Dean Edwards’ JavaScript packer [13] (abbr. packer)
is an obfuscation tool of JavaScript. In general, obfuscation
drastically changes script logics to reduce readability. An
obfuscated script by packer with Base62 encoding option is
always started with as follows.

e v a l (f u n c t i o n (p , a , c , k , e , d) { . . .

Obfuscation and minification are similar but quite different
in terms of the purpose and principles. However, obfuscation,
particularly packer, also provides an similar effect of script
minification. So, we picked up this tool as one of a studied
minification tools.

All the above three tools have some optional parameters to
select several algorithms for minification, optimization and ob-
fuscation. The tool parameters used in the study are footnoted

ISBN: 978-1-4799-6375-1 ©2015 IEEE 130

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

0

unprocessed

Total size of JavaScript files

YUI

CC

packer

50 100 150

6%

17%

39%

(MB)

(a) Alexa top 500

0

unprocessed

Total size of JavaScript files

YUI

CC

packer

2 4 6 8 10 12

45%

27%

16%

(MB)

(b) Japanese gov. univ.

Fig. 5. Minification effects of Scriptmin

below2.

IV. EXPERIMENT RESULT

A. RQ1: How many percent of websites have reduction poten-
tial?

First, we explain the result of Scriptmin. Figure 3 shows
the percentages of the usage of JavaScript minification for
Alexa top 500 websites (Figure 3a) and Japanese university
websites (Figure 3b). The “partially or not minified” represents
that a website has a certain amount of reduction potential
because one or more scripts can be minified. The results show
that the most (86.8%) of the top 500 websites have a potential
for size reduction by using Scriptmin. In particular, non-
popular websites, compared with the top 500 (i.e., Japanese
university), have a high potential (96.5%).

Next, the result of HTTPcomp is shown in Figure 4. This
figure shows how many percentages of websites have been
configured to support HTTP compression. From Figure 4a, we
can see that the most of the popular websites (92.2%) already
used HTTPcomp. On the other hand, Figure 4b shows that
there are still remain many websites which do not support
HTTPcomp.

B. RQ2: How much JavaScript size can be reduced on the
Web?

Figure 5 shows the effect of minification tools and Figure
6 shows more detailed minification effects for the top 10

2YUI Compressor: Default option, which means the most powerful mini-
fication in YUI, is used. It allows omitting format style and replacing local
symbols. Closure Compiler: Advanced optimization, the most aggressive
setting, is selected. It transforms over the entire code with considering logical
behavior. CC gives a compile error message if the target code does not keep
compilation restrictions packer: Base62 encoding option is selected. Words
are encoded into alphanumeric characters (a-z, A-Z and 0-9) to decrease code
readability.

0To
ta

l s
ize

 o
f J

av
aS

cr
ip

t fi
le

s

100

200

300

400

500

go
og

le
.c

om

fa
ce

bo
ok

.c
om

yo
ut

ub
e.

co
m

ya
ho

o.
co

m

ba
id

u.
co

m

w
ik

ip
ed

ia
.o

rg

am
az

on
.c

om

tw
itt

er
.c

om

qq
.c

om

ta
ob

ao
.c

om

unprocessed
YUI
CC
packer

(KB)

Fig. 6. Detailed minification effects for the top 10 websites

websites. The undermost “unprocessed” in Figure 5 represents
the total size of the current JavaScript files for all specified
websites. Please note that the “unprocessed” includes already
minified scripts and raw (i.e., neither minified nor optimized)
scripts. The other labels, “YUI”, “CC” and “packer”, repre-
sent the total size after applying each minification tool. The
percentage means the reduction rate.

Figure 5 shows that Dean’s packer is the highest reduction
rate and YUI is the lowest. This is because packer has a
quite different strategy from the other minification tools. More
specifically, packer encodes a script based on Huffman coding
algorithm on the supposition that the script is just a string
data, not a program. Therefore, though the other tools have
less effect on already minified scripts, packer is effective for
whether already minified or not. This result also can be shown
in Figure 6. So, we conclude that we can achieve a reduction
rate about 39% by applying packer.

The effects of HTTPcomp are shown in Figure 7. The
“unprocessed” represents that we do not apply any process
for captured HTTP traffic as with Figure 5. The undermost
“fully-not gzipped” means a hypothetical situation where all
the websites do not configure HTTPcomp. In contrast to that,
“fully-gzipped” means a hypothetical situation where all the
websites use HTTPcomp. The “lev.” means a compression
level, one is the lowest compression, nine is the best and five
is the middle.

Focusing on the “fully-not gzipped” in Figure 7a shows
the traffic size of JavaScript files on the current Web has
already been reduced by more than half by HTTPcomp. If
every website was configured to use HTTPcomp, we can
achieve a reduction rate of 5% to 19%. Moreover, Figure 7b
shows that Japanese university’s websites have much further
reduction rate (59% to 65%). So, we conclude that there still
remain certain possibilities for the traffic size reduction by
HTTPcomp.

C. Related Works

The expected effects of applying Scriptmin and
HTTPcomp for Web traffic reduction are strongly depends on
the proportion of total size of JavaScript in all Web content.
Ihm and Pai reported an analysis of modern Web traffic for

ISBN: 978-1-4799-6375-1 ©2015 IEEE 131

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

0

fully-not gzipped

unprocessed

fully gzipped (lev.=1)

fully gzipped (lev.=5)

fully gzipped (lev.=9)

Total amount of HTTP traffic of JavaScript files
20 40 60 80 100 120

5%

19%

20%

(MB)

(a) Alexa top 500

0

fully-not gzipped

unprocessed

fully gzipped (lev.=1)

fully gzipped (lev.=5)

fully gzipped (lev.=9)

Total amount of HTTP traffic of JavaScript files
2 4 6 8 10

59%

64%

65%

(MB)

(b) Japanese gov. univ.

Fig. 7. Compression effects of HTTPcomp

five years of real traffic data [5]. They found that multimedia
contents consume about 50% (image and video are 40%
and 10% respectively), text-based contents take about 45%
(HTML, CSS and JavaScript are 25%, 5% and 15%) and
others are 5%. Hence, we assume that our results would affect
to the 15% of Web traffic data.

There are wide variety of techniques of Web contents
minification and optimization [6][7][14][15][16]. Martin et al.
have proposed another JavaScript compression tool, which
reduces the size of JavaScript file by converting it into an
abstract syntax tree [14]. The concept of minification, which
reduces data size by omitting unnecessary code, can be applied
for HTML and CSS [15]. Merging some Web contents into a
single HTML file can save data transfer by eliminating some
HTTP requests [6].

Chrome mobile browser is providing a browser embed-
ded feature for reducing data traffic [17]. Turning on the
“Reduce data usage” setting bypasses all HTTP requests to
proxy servers hosted at Google. Text-based Web contents
are compressed by simple minification process, and applied
HTTP compression. Furthermore, image files are transcoded
to WebP, which is an image format of lossy and lossless
compression developed by Google. According to Google’s
report, this setting can reduce the size of web pages by 50%.

In contrast to the existing minification tools and articles, the
contribution of our study is to examine and show the reduction
potential for real 500 websites. Conducting empirical study
with other minification techniques are our future work.

V. CONCLUSION

We have explored the potential for JavaScript size reduction
with focus on the two approaches: script minification and

HTTP compression. Our results raise following conclusions.

• 87% of top 500 websites have a certain amount of
reduction potential by script minification.

• 92% of top 500 websites have already been configured
to support HTTP compression, whereas most non-
popular websites (85%) have not yet.

• 39% of the total size of JavaScript files can be
potentially reduced by applying script minification.

• HTTP compression is saving over 50% of the current
traffic size of total JavaScript files. If every website
was configured to use HTTP compression, we can save
a further 5% to 20% of JavaScript traffic.

ACKNOWLEDGMENT

This research was partially supported by the Japan Min-
istry of Education, Science, Sports, and Culture [Grant-in-
Aid for Scientific Research (C) (No.24500079, No.24500258),
Scientific Research (B) (No.26280115), Young Scientists (B)
(No.26730155)] and Kawanishi Memorial ShinMaywa Educa-
tion Foundation.

REFERENCES

[1] A. Wright, “Ready for a web OS?” Commun. ACM, vol. 52, no. 12,
pp. 16–17, 2009.

[2] A. Weiss, “WebOS: Say goodbye to desktop applications,” netWorker,
vol. 9, no. 4, pp. 18–26, 2005.

[3] D. Benslimane, S. Dustdar, and A. P. Sheth, “Services mashups: The
new generation of web applications,” Internet Computing, vol. 12, no. 5,
pp. 13–15, 2008.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1. RFC Editor,
1999.

[5] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,” in
Internet Measurement Conference, 2011, pp. 295–312.

[6] S. Souders, High Performance Web Sites -Essential Knowledge for
Front-End Engineers-. O’reilly, 2007.

[7] G. Frederick and R. Lal, Optimizing Mobile Markup. Apress, 2009,
pp. 213–238.

[8] Z. Liu, Y. Saifullah, M. Greis, and S. Sreemanthula, “HTTP com-
pression techniques,” in Wireless Communications and Networking
Conference, vol. 4, Mar. 2005, pp. 2495–2500.

[9] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W. Lie,
and C. Lilley, “Network performance effects of HTTP/1.1, CSS1, and
PNG,” in Conf. Applications, Technologies, Architectures, and Protocols
for Computer Communication, 1997, pp. 155–166.

[10] G. A. Kildall, “A unified approach to global program optimization,” in
Symp. Principles of Programming Languages, 1973, pp. 194–206.

[11] J. Lecomte, “YUI compressor,” http://yui.github.io/yuicompressor/,
[Online; accessed 01-Dec-2014].

[12] Google Inc., “Closure compiler,” https://developers.google.com/closure/
compiler/, [Online; accessed 01-Decv-2014].

[13] D. Edwards, “A javascript compressor. version 3.0,” http://dean.edwards.
name/packer/, [Online; accessed 01-Dec-2014].

[14] M. Burtscher, B. Livshits, G. Sinha, and B. G. Zorn, “JSZap: Compress-
ing javascript code,” in USENIX Conf. Web Application Development,
2010, pp. 39–50.

[15] A. B. King, Website Optimization. O’Reilly, 2008.
[16] F. Qian, J. Huang, J. Erman, Z. M. Mao, S. Sen, and O. Spatscheck,

“How to reduce smartphone traffic volume by 30%?” in Int’l Conf.
Passive and Active Measurement, 2013, pp. 42–52.

[17] Google Inc., “Data compression proxy,” https://developer.chrome.com/
multidevice/data-compression, [Online; accessed 01-Dec-2014].

ISBN: 978-1-4799-6375-1 ©2015 IEEE 132

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, Moscow, Russia 2015

