
24 International Journal of Software Innovation, 3(2), 24-34, April-June 2015

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
In order to achieve intuitive and easy operations for home network system (HNS), the authors have previously
proposed user interface with virtual agent (called HNS virtual agent user interface, HNS-VAUI). The HNS-VAUI
was implemented with MMDAgent toolkit. A user can operate appliances and services interactively through
dialog with a virtual agent in a screen. However, the previous prototype heavily depends on MMDAgent,
which causes a tight coupling between HNS operations and agent behaviors, and poor capability of using
external information.To cope with the problem, this paper proposes a service-oriented framework that allows
the HNS-VAUI to provide richer interaction. Specifically, the authors decompose the tightly-coupled system
into two separate services: MMC Service and MSM service. The MMC service concentrates on controlling
detailed behaviors of a virtual agent, whereas the MSM service defines logic of HNS operations and dialog
with the agent with richer state machines. The two services are loosely coupled to enable more flexible and
sophisticated dialog in the HNS-VAUI. The proposed framework is implemented in a real HNS environment.
The authors also conduct a case study with practical service scenarios, to demonstrate effectiveness of the
proposed framework.

Virtual Agent as a User Interface
for Home Network System

Hiroyasu Horiuchi, Graduate School of System Informatics, Kobe University, Hyogo, Japan

Sachio Saiki, Graduate School of System Informatics, Kobe University, Hyogo, Japan

Shinsuke Matsumoto, Graduate School of System Informatics, Kobe University, Hyogo, Japan

Masahide Namamura, Graduate School of System Informatics, Kobe University, Hyogo,
Japan

Keywords: Finite State Machine, Home Network System, Interactive Voice Interface, Service-Oriented
Architecture, Virtual Agent

INTRODUCTION

Research and development of home network
system (HNS, for short) is recently a hot topic
in the area of ubiquitous computing (Igaki,
Nakamura, & Matsumoto, 2004; Li, & Zhang,
2004). Orchestrating house-hold appliances
(e.g., TVs, DVDs, speakers, air-conditioners,

lights, curtains, windows, etc.) and sensors (e.g.,
temperature, humidity, brightness, human-pres-
ence, etc.) via the network, the HNS provides
value-added services for home users.

In the HNS, improving the usability is an
essential requirement. Since home users oper-
ate appliances and services every day, the user
interface must be intuitive and easy to learn.

DOI: 10.4018/ijsi.2015040103

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(2), 24-34, April-June 2015 25

Virtual agent user interface (VAUI, for short),
which uses virtual agent as an interface, is a
promising approach to fulfill the requirement
(Ochs, Pelachaud, & Sadek, 2008; Cassell,
2000). Using voice recognition and synthesis
technologies, the VAUI allows users to talk to
an agent in a screen, to make intuitive opera-
tions for the system.

In our research group, we have been study-
ing VAUI for HNS (say, HNS-VAUI) within an
actual HNS environment (called CS27-HNS)
(Nakamura, Tanaka, Igaki, Tamada, & Matsu-
moto, 2008). In our previous study (Soda et
al., 2012), we have implemented a prototype
system of HNS-VAUI, using MMDAgent
Toolkit (Mmdagent.jp, 2009). Extending the
finite state machine of MMDAgent so as to
invoke external Web services, we successfully
allowed the virtual agent to operate appliances
and services of the HNS. The study showed that
home users enjoyed operating the HNS through
natural conversations with the agent.

However, the previous prototype system
was able to provide quite limited interactions,
since the extension was just made locally to
the state machine. Thus, the prototype strongly
depended on the design of MMDAgent Tool-
kit, which caused the lack of flexibility and
expressivity. More specifically, operations of
the HNS and detailed behaviors of the virtual
agent were both described in the same state
machine. The tight coupling of the operations
and the behaviors made the system difficult
to manage and extend. Also, the original state
machine was so primitive that it could not use
information from external Web services. More-
over, it was impossible to update and modify
the state machine during run time.

To cope with the problem, we propose
a new framework that allows HNS-VAUI to
provide richer interactions. Exploiting the
concept of service-oriented architecture (SOA)
(Papazoglou and Georgakopoulos, 2003), we
decompose the tightly-coupled system into
two separate services: MMC Service and
MSM service. The MMC service concentrates
on controlling detailed behaviors of a virtual
agent. Wrapping MMDAgent, the MMC service

publishes a stateless Web service that simply
commands a virtual agent to speak or move.
On the other hand, the MSM service manages
logic of HNS operations and dialog with the
agent using richer state machines. The MSM
service publishes a stateful Web service that
invokes external Web services (including HNS
and MMC services), based on a given input
and the current state. The new state machine
involved in the MSM service enables the usage
of external information as well as the dynamic
update of the state machine. Thus, the MMC
and MSM services are loosely coupled to en-
able more flexible and sophisticated dialog in
the HNS-VAUI.

In this paper, we implement the proposed
framework within the CS27-HNS. The MMC
and MSM services are both implemented by the
Java Web service (Apache Axis2 on Tomcat)
(Axis.apache.org, 2004) (Tomcat.apache.org,
1999). Also, Julius is used for the voice rec-
ognition engine (Julius.sourceforge.jp, 2002).
Using the developed system, we also conduct
a case study to demonstrate effectiveness of
the proposed framework. In the case study, we
implement three service scenarios: (a) turning
on a TV, (b) asking today’s weather, and (c)
recommendation of using fan. It is shown that the
proposed framework allows HNS-VAUI to pro-
vide more advanced and flexible interactions.

PRELIMINARIES

Home Network System (HNS)

The home network system consists of a vari-
ety of household appliances (e.g., room light,
television), and sensors (e.g., temperature,
brightness). The appliances and sensors are
connected via a network. Each device has
control API, which allows users or external
agents to control the device over the network.
Application services include personal home
controllers (Tokuda, Matsumoto, & Nakamura,
2012), remote monitoring/controls, appliance
orchestration (Nakamura, Igaki, Tamada, &
Matsumoto, 2004), energy saving, context-

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of Software Innovation, 3(2), 24-34, April-June 2015

aware services (Takatsuka, Saiki, Matsumoto,
& Nakamura, 2013).

In our research group, we have imple-
mented an actual HNS environment, called
CS27-HNS. Introducing the concept of ser-
vice-oriented architecture (SOA), CS27-HNS
integrates heterogeneous and multi-vendor
appliances by standard Web services. Since
every API can be executed by SOAP or REST
Web service protocols, it does not depend on
a specific vendor or execution platform. For
example, to change channel of a TV to 6 in
CS27-HNS, a client just accesses URL http://
hns/TVService/setChannel?channel=6.

Virtual Agent (VA)

Virtual agent (VA) is an animated, human-like
graphical chat bot program. Displayed on a
screen, VA often serves as intuitive user inter-
face of the system through voice interactions in
natural language. Due to the natural interactions
and a sense of intimacy, VA has received a lot
of attention in recent years as a next generation
user interface. In this paper, the user interface
implemented with a VA is called VAUI.

MMDAgent is known as a powerful toolkit
to implement VAs. Using a three-dimensional
movie model of MMD together with built-in
speech recognition and synthesis technologies,
MMDAgent allows a user to easily develop
a custom VA with a spoken dialogue system.
Figure 1 shows virtual agent “Mei” bundled
with the toolkit.

In MMDAgent, behaviors of a VA are de-
fined by a dedicated finite state machine (which
we call MMDA-FSM). Events and actions in
the MMDA-FSM include motion of agent,
speech synthesis, speech recognition, lip sync,
application invocation, camera work, loading an
MMD model, etc. Individual developers crate
own VAs by customizing the MMDA-FSM.

Prototyping VAUI for HNS

We have been studying intuitive user interface
for our CS27-HNS. We consider that VAUI
fits well for operating various appliances and
services in the HNS. A VAUI specifically

designed for HNS is called HNS-VAUI in this
paper. With HNS-VAUI, a user can operate
HNS via natural interaction just like a “talk with
a friend”, instead of the conventional dreary
one-way controls. Moreover, HNS-VAUI can
efficiently use visual information to avoid long
speech feedback.

In our previous work, we have developed
a prototype HNS-VAUI for CS27-HNS using
MMDAgent. We have revised the original
MMDAgent in order to adapt it to the CS27-
HNS. Major revisions are summarized as
follows.

A. Command input from external applications

The original MMDAgent has a dedicated
voice input system, with which MMDAgent
first analyzes and recognizes voice input, and
then generates a command as an input to the
MMDA-FSM. However, the dedicated voice
input was obstacle to achieve multi-modal
controls of HNS. Therefore, we replaced the
input system with a new Web service (called
Virtual Agent Service), by which any external
application can send commands directly to the
MMDA-FSM.

B. External voice recognition system

Owing to Virtual Agent Service, MMDA-
gent no longer depends on the built-in voice
recognition system. Therefore, using a variety
of existing voice recognition engines, we
implemented an external application for voice
input. The application simply recognizes user’s
voice input, and sends an appropriate command
to the Virtual Agent Service. The command is
passed via Web-API of the service in a platform
independent manner.

C. Revision of MMDA-FSM to execute
Web-API

To invoke operations of HNS services and
appliances, we revised MMDA-FSM so that it
can execute Web services. CS27-HNS can be

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(2), 24-34, April-June 2015 27

operated by Web-API. Therefore, the revision
allows MMDAgent to execute any appliance or
service within CS27-HNS, in the same way as
other operations specified in the MMDA-FSM.

Limitations of Prototype

After evaluation in the practical setting, we
have found several limitations of the prototype
system, which prevent future extensions for
advanced user requirements. These limitations
mainly came from the fact that the prototype
strongly relied on the MMDA-FSM.

A. Limitation L1: Tight coupling of VA be-
haviors and HNS operations

In the prototype system, detailed motions
of a VA and HNS operations (i.e., Web-API)
were both specified statically within the same
big MMDA-FSM. Thus, the behaviors of VA
were tightly coupled with the invocation of
HNS operations, which made the whole system
quite complex to maintain. We could not use
VA independently of the HNS, or could not
modify the FSM dynamically from external
applications.

Figure 1. Virtual Agent “Mei” of MMDAgent (Copyright 2009-2013 Nagoya Institute of Tech-
nology. Used with permission.)

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Software Innovation, 3(2), 24-34, April-June 2015

B. Limitation L2: Low expressive power of
MMDA-FSM

In the prototype system, HNS-VAUI
worked according to a given MMDA-FSM.
However, the expressive power of the MMDA-
FSM was not high enough to describe rich
and advanced interactions. For example, the
original MMDA-FSM did not have a feature
to obtain data from an external service and use
it in another transition. Thus, it was difficult
to include dynamic contexts in HNS-VAUI
obtained from, for example, sensor services or
external information services.

PROPOSED FRAMEWORK

In order to cope with the limitations of the pro-
totype system, we propose a new framework for
HNS-VAUI in this section. The new framework
is supposed to provide more advanced interac-
tions and higher usability.

Overview

To illustrate the key idea of the new framework,
we first present architectures of the prototype
and the new HNS-VAUI in Figure 2. As shown
in the upper half of the figure, the prototype
system used a single MMDA-FSM to specify
both motions of a VA and external HNS services.
This yielded the problem of tight coupling
discussed in previous section.

In the proposed framework, we decompose
the tightly-coupled system into two separate
services: MMC service and MSM service.
The MMC (Miku Miku Command) service
concentrates on controlling detailed motions
of a VA. As shown in the Figure 3, wrapping
MMDAgent with the original MMDA-FSM,
the MMC service publishes a stateless Web-API
that simply commands a VA to speak or move.
Thus, the MMC service implements a puppet
VA that behaves as is just requested.

On the other hand, the MSM (Miku State
Machine) service manages logic of HNS op-
erations and dialog with the agent using richer
state machines (called MSM-FSM). The MSM

service publishes a stateful Web service that
invokes external Web services based on a given
input and the current state. Since the detailed
motions of VA is delegated in the MMC service,
the MSM service can deal with the VA motion
and the HNS operation in the same way. The
MSM-FSM can use the return value of Web-API
for dynamic contexts, and has API for dynamic
update of the FSM. Thus, behaviors of VA and
invocation of HNS operations are decomposed,
which achieves more flexible and sophisticated
dialog in the HNS-VAUI.

In the following sections, we explain details
of the MMC and MSM services.

MMC (Miku Miku
Command) Service

The MMC service provides a stateless Web
service that directly sends commands to a VA
of MMDAgent. It has two service API: say()
and doMotion(). The method say() commands
the VA to speak a given speech text, whereas
doMotion() commands the VA to perform a
given motion. When an external client ap-
plication invokes the API, the MMC service
internally communicates with the MMDAgent.
The communication is encapsulated so that the
client does not worry about the timing of mes-
sage exchange or specification of the MMDA-
FSM. Thus, the client can execute API at any
time regardless the status of the VA.

Although the MMC service is supposed to
provide stateless API, it takes some time for a
VA to complete every single motion or speech.
Therefore, when multiple service requests arrive
within a short period, the MMDAgent would
not be able to handle all the requests, simulta-
neously. Thus, it would fall into a panic state
without proper flow control.

To cope with the problem, we implement
a synchronization mechanism between the
MMC service and the MMDAgent. Figure 4
shows the proposed mechanism, represented
by two communicating FSMs handling the
flow control of say() API. An MMC-FSM in
the left side synchronizes a MMDAFSM in
the right side, via message exchanges. In the

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(2), 24-34, April-June 2015 29

FSMs, “?” represents an input message, while
“!” represents an output message. A message
in lower-case letters with () represents an input
message to the MMC service (i.e., API call of
MMC), and a message in upper case is a com-
mand to the MMDAgent. A pair of input/output
messages (with the same label) synchronizes
state transitions of two FSMs.

The flow control works as follows. First, the
MMC service receives a request say(“Hello”)
at the wait state. The service sends a SPEECH
command to the MMDAgent and moves to the
execute state. Upon receiving the command, the
MMDAgent tells a VA to start speaking ”hello”.

When the VA finishes speaking, the MMDAgent
executes over() method of the MMC service.
Then, the MMC returns to the wait state.

If MMC receives another request
say(“Aloha”) in the execute state, it sends a
STOP SPEECH and moves to the cancel state.
The MMDAgent tells the VA to stop speaking
and executes over() method. When the speech
of “hello” is canceled, MMC sends a SPEECH
command with “aloha”. Thus, two consecutive
requests are successfully consumed.

Similarly, we implement the same mecha-
nism for the doMotion() method.

Figure 2. Architectures of prototype and proposed HNS-VAUI frameworks

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of Software Innovation, 3(2), 24-34, April-June 2015

MSM (Miku State Machine) Service

The MSM Service provides Web service that
dynamically constructs a stateful logic of HNS-
VAUI. The MSM service wraps a set of finite
state machines (say MSM-FSMs) that receive
input messages (from external voice recognition
systems, sensors, context-aware services, etc.)
and invoke Web services (including the MMC
service, HNS services, generic Web services,

etc). The MSM service has input() method
that inputs a message to a MSM-FSM. When
the MSM-FSM receives a message, it moves
to a new state and execute actions associated
with the state transition. The MSM service also
has addTransition(), editTransition(), deleteT-
ransition() methods to dynamically modify a
MSM-FSM.

A MSM-FSM consists of a set of state
transitions. Each transition is defined by five

Figure 3. Detail of MMC service architecture

Figure 4. Communicating FSMs to handle say() method of MMC service

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(2), 24-34, April-June 2015 31

elements: transition ID, current state, next state,
event and action. A current state (or next state)
specifies a state which the transition moves from
(or to, respectively). An event corresponds to
an input message making the transition fire. An
action contains one or more Web services to
be executed as feedback of the state transition.
Table 1 shows an example of a MSM-FSM, and
Figure 5 shows its schematic representation.

We explain how the MSM Service realizes
the interaction as follows. First, an external
application (e.g., a voice recognizer, a context-
aware application, manual input of a user)
executes input() API with an event string. Then,
the MSM service checks the current state of the
MSM-FSM, and finds a transition whose event
is identical to the given event. Next, the MSM
service change the current state to the next state,
and executes Web services associated with the
corresponding action. The Web services include

behaviors of a VA (executed by MMC service)
and HNS operations.

Implementation

The proposed framework has been implemented
by using the following technologies.

a. MMC service: Java 1.7.0 45, Apache Tom-
cat 7.0.39, Apache Axis2 1.6.2, MMDA-
gent 1.4

b. MSM service: Java 1.7.0 45, Apache Tom-
cat 7.0.39, Apache Axis2 1.6.2, MongoDB
2.2.7

c. Voice Recognizer: Java 1.7.0 45, Julius
4.2.3

In addition, the 3D model for the agent
have been borrowed from Lat, respectively
(MikuMikuDance Wiki, 2010).

Table 1. Example of state transition

Figure 5. State transition diagram of table 1

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal of Software Innovation, 3(2), 24-34, April-June 2015

The whole system comprised of about 4500
lines of code. The development effort was about
5 man-days. Note that the MMC and MSM
services are deployed as Web service using
Axis2 middleware. Every API is invoked in
the form of URL. For example, MMCService.
say(“hello”) can be executed as http://server
addr:8080/MMCService/say?text=hello.

CASE STUDY

Outline

In this section, we conduct a case study that dem-
onstrates three kinds of interaction scenarios
between a VA and a user. The first scenario is
the conventional command-based interaction,
where the user asks the VA to turn on a TV. The
second scenario involves advanced interaction,
where the VA obtains data from an external
weather service and tells the weather report to the
user. The third one is the context-aware interac-
tion, where the VA autonomously recommends
to turn on a fan when room temperature is high.

To implement these interaction scenarios,
we first build the MSM-FSM shown in Table I
and Figure 5, using the MSM service. The initial
state is set to Idle. Then, for the external voice
recognizer, we define a mapping from user’s
voice to an input event of the MSM service, as
shown in Table 2. For example, if the user says
“Thank you” to the system, the voice recognizer
sends DEACTIVATE to the MSM service. In the
MMC service, we configure two motions smile
and bye, by which the VA smiles and waves a
hand, respectively. For the appliance control,
we use TVService and FanService that operate
a TV and a FAN in CS27-HNS.

Scenario 1: Turning on TV

This scenario starts when the user says “Hello,
Ms. Agent!”. According to Table II, event AC-
TIVATE is sent to the MSM service. The MSM
service in Idle state receives ACTIVATE, and
executes two actions of the MMC service (See
transition no.1 in Table I). By the MMC service,

the VA says “May I help you?” with a smile
face. The MSM then moves to VoiceCtrlMode.
Next, the user says “Turn on a TV.”. Event TV
ON occurs, and transition no.3 fires to execute
two actions. The VA says “I turn on the TV”
and the TV is turned on by TVService.on().

Scenario 2: Asking
Today’s Weather

Following Scenario 1, if the user says “What
is today’s weather?”, event ASK WEATHER
occurs at VoiceCtrlMode state. The MSM ser-
vice then triggers transition no.4 and executes
WeatherService to get weather report data. The
data is temporarily stored in variable [weather],
which is passed in the speech text for the MMC
service. If the weather report is “fine”, the VA
says “it is fine today”. Finally, the user says
“Thank you” and event DEACTIVATE occurs.
The state moves to Idle to wait for the next order.

Scenario 3: Suggesting Using Fan

Our research group has developed a framework,
called RuCAS, for creating context aware ser-
vices in CS27-HNS (Takatsuka et al., 2013).
RuCAS helps users to define custom contexts
using various sensors and services, and to cre-
ate own context-aware services. Using RuCAS,
we first define a context Hot to be a situation
that the room temperature is higher than 28
degree. Then, we create a rule “When Hot is
true, send event RECOMMEND FAN to the
MSM service”.

When the temperature actually becomes
higher than 28 degree, RuCAS sends RECOM-
MEND FAN to the MSM service, and transition
no.5 fires. The VA speaks “Shall I turn on the
fan?”, and the MSM service moves to state
Recommend Fan. Now, if the user says “Yes”,
the VA says “I turn on the fan” and the fan is
switched on, by transition no.6. If the user says
“No” or event TIMEOUT occurs, no operation
is performed.

Thus, RuCAS and the proposed framework
are easily integrated to perform sophisticated
context-aware interactions of HNS-VAUI.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Software Innovation, 3(2), 24-34, April-June 2015 33

Discussion

Through the case study, it was shown that the
proposed HNS-VAUI framework can imple-
ment richer and more advanced interactions,
easily. However, as the size of HNS becomes
larger, the MSM-FSM becomes more complex,
since new transitions are required for each op-
eration of home appliances. We believe that the
management can be facilitated by introducing a
dedicated management service and patterns of
state transitions. Furthermore, using multiple
MSM-FSMs may cause a functional conflict,
which is known as a feature interaction prob-
lem. For this, the existing approach to detect
and solve the interactions can be used (Inada
et al., 2012).

Our next challenge would be adaptation
or personalization of HNS-VAUI. Since every
HNS environment is different from each other,
and life style varies from one family to another.
Moreover, every user has a favorite virtual agent
and preferred interactions. In order to meet such
individual needs, HNS-VAUI should be able
to adapt to the user as the user keeps using it.
An approach to implement the adaptation is to
extract user’s preference and contexts by ap-
plying data mining to large-scale log of VAUI
operations and environment. This challenge
will be left for our future work.

CONCLUSION

In this paper, we have proposed a new frame-
work for implementing virtual agent user inter-
face for home network system (HNS-VAUI). To
cope with limitations of the previous prototype
system, we decompose detailed behaviors of
the virtual agent and logic of HNS operations
within two separate services: MMC (Miku
Miku Command) service and MSM (Miku State
Machine) service. The two services are loosely
coupled to enable more flexible and sophisti-
cated dialog in the HNS-VAUI. A case study
with three interaction scenarios illustrated the
practical feasibility of the proposed framework.

Our future work include the personalization
and adaptation of HNS-VAUI. We also plan to
conduct experimental evaluation with subjects,
to see how interactions with VA affect the hu-
man satisfaction and usability.

ACKNOWLEDGMENT

This research was partially supported by the Ja-
pan Ministry of Education, Science, Sports, and
Culture [Grant-in-Aid for Scientific Research
(C) (No.24500079, No.24500258), Scientific
Research (B) (No.26280115), Young Scientists
(B) (No.26730155)] and Kawanishi Memorial
ShinMaywa Education Foundation.

Table 2. Voice-event mapping configured in voice recognizer

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of Software Innovation, 3(2), 24-34, April-June 2015

REFERENCES

Axis.apache.org. (2004). Apache Axis2. Retrieved
from http://axis.apache.org/axis2/java/core/

Cassell, J. (2000). Embodied conversational interface
agents. Communications of the ACM, 43(4), 70–78.
doi:10.1145/332051.332075

Igaki, H., Nakamura, M., & Matsumoto, K. (2004).
Design and evaluation of the home network sys-
tems using the service oriented architecture. In
1st International Conference on E-business and
Telecommunication Networks (pp. 62-69). Setúbal,
Portugal: INSTICC Press.

Inada, T., Igaki, H., Ikegami, K., Matsumoto, S.,
Nakamura, M., & Kusumoto, S. (2012). Detect-
ing Service Chains and Feature Interactions in
Sensor-Driven Home Network Services. Sensors
(Basel, Switzerland), 12(7), 8447–8464. doi:10.3390/
s120708447 PMID:23012499

Julius.sourceforge.jp. (2002). Open-Source Large
Vocabulary CSR Engine Julius. Retrieved from http://
julius.sourceforge.jp/en_index.php

Li, X., & Zhang, W. (2004). The design and imple-
mentation of home network system using OSGi
compliant middleware. Consumer Electronics. IEEE
Transactions on, 50(2), 528–534.

MikuMikuDance Wiki. (2010). Miku Hatsune (Lat).
Retrieved from http://mikumikudance.wikia.com/
wiki/Miku_Hatsune_(Lat)

Mmdagent.jp. (2009). mmdagent.jp. Retrieved from
http://www.mmdagent.jp/

Nakamura, M., Igaki, H., Tamada, H., & Matsumoto,
K. (2004). Implementing integrated services of
networked home appliances using service-oriented
architecture. In 2nd International Conference on
Service Oriented Computing (pp. 269-278). NY:
ACM. doi:10.1145/1035167.1035206

Nakamura, M., Tanaka, A., Igaki, H., Tamada, H., &
Matsumoto, K. (2008). Constructing home network
systems and integrated services using legacy home
appliances and web services. [IJWSR]. International
Journal of Web Services Research, 5(1), 82–98.
doi:10.4018/jwsr.2008010105

Ochs, M., Pelachaud, C., & Sadek, D. (2008). An
empathic virtual dialog agent to improve human-
machine interaction. In The Seventh international
Conference on Autonomous Agents and Multiagent
Systems (pp. 89-96). Richland, SC: International
Foundation for Autonomous Agents and Multiagent
Systems.

Papazoglou, M., & Georgakopoulos, G. (2003).
Service-Oriented Computing. Communications of
the ACM, 46(10), 25–28.

Soda, S., Nakamura, M., Matsumoto, S., Izumi, S.,
Kawaguchi, H., & Yoshimoto, M. (2012). Imple-
menting virtual agent as an interface for smart home
voice control. In The 19th Asia-Pacific Software
Engineering Conference (pp. 342-345). NY: IEEE.
doi:10.1109/APSEC.2012.39

Takatsuka, H., Saiki, S., Matsumoto, S., & Nakamura,
M. (2013). Implementing execution platform for
managing context-aware services based on heteroge-
neous and distributed web services. IEICE Technical
Report, 113(327), 71–76.

Tokuda, K., Matsumoto, S., & Nakamura, M.
(2012). Implementing personal home controllers on
smartphones for service-oriented home network. In
The 8th IEEE International Conference on Wireless
and Mobile Computing, Networking and Commu-
nications (pp. 777-784). NY: IEEE. doi:10.1109/
WiMOB.2012.6379162

Tomcat.apache.org. (1999). Apache Tomcat. Re-
trieved from http://tomcat.apache.org/

http://axis.apache.org/axis2/java/core/
http://dx.doi.org/10.1145/332051.332075
http://dx.doi.org/10.3390/s120708447
http://dx.doi.org/10.3390/s120708447
http://www.ncbi.nlm.nih.gov/pubmed/23012499
http://julius.sourceforge.jp/en_index.php
http://julius.sourceforge.jp/en_index.php
http://mikumikudance.wikia.com/wiki/Miku_Hatsune_(Lat)
http://mikumikudance.wikia.com/wiki/Miku_Hatsune_(Lat)
http://www.mmdagent.jp/
http://dx.doi.org/10.1145/1035167.1035206
http://dx.doi.org/10.4018/jwsr.2008010105
http://dx.doi.org/10.1109/APSEC.2012.39
http://dx.doi.org/10.1109/WiMOB.2012.6379162
http://dx.doi.org/10.1109/WiMOB.2012.6379162
http://tomcat.apache.org/

